Datasets:

Tasks:
Other
Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 31,734 Bytes
c16ac20
a03bea0
 
 
f2cade2
a03bea0
f2cade2
a03bea0
 
 
 
3444e31
a03bea0
 
c4040c7
 
3ad6339
c4040c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ad6339
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5c7703
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc216bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b006f86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ef290b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd01d74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77f23e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4d5f05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cae1088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47c4e6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c3bffe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa7f155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
213c8f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ac4088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c64596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a06b2d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfbbc71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cb8b6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7befa12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9f3e1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc1399c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d7cf98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b449601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175b96d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53e0295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d080545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d05dc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9dabf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79bb5ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4040c7
 
 
 
 
 
 
3ad6339
 
 
 
 
 
e5c7703
 
 
 
 
 
 
 
dc216bb
 
 
 
 
 
b006f86
 
 
 
 
 
9ef290b
 
 
 
 
 
bd01d74
 
 
 
 
 
77f23e7
 
 
 
 
 
 
 
c4d5f05
 
 
 
 
 
cae1088
 
 
 
 
 
47c4e6d
 
 
 
 
 
5c3bffe
 
 
 
 
 
fa7f155
 
 
 
 
 
 
 
213c8f1
 
 
 
 
 
3ac4088
 
 
 
 
 
7c64596
 
 
 
 
 
a06b2d5
 
 
 
 
 
bfbbc71
 
 
 
 
 
3cb8b6a
 
 
 
 
 
7befa12
 
 
 
 
 
e9f3e1b
 
 
 
 
 
fc1399c
 
 
 
 
 
7d7cf98
 
 
 
 
 
 
 
b449601
 
 
 
 
 
 
 
175b96d
 
 
 
 
 
 
 
53e0295
 
 
 
 
 
 
 
d080545
 
 
 
 
 
 
 
8d05dc7
 
 
 
 
 
 
 
b9dabf4
 
 
 
 
 
 
 
79bb5ac
 
 
 
 
 
 
 
c16ac20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c447515
0d6d527
c16ac20
 
 
98a458f
c16ac20
a03bea0
c16ac20
6ed21a0
c16ac20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3444e31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c16ac20
 
a03bea0
c16ac20
 
 
 
 
a03bea0
 
 
3444e31
 
 
 
 
c16ac20
 
 
c76acf3
c16ac20
 
 
 
 
a03bea0
c16ac20
 
 
 
 
 
 
 
 
 
 
 
 
a03bea0
 
 
 
 
c16ac20
 
a03bea0
c16ac20
 
a03bea0
 
c16ac20
 
 
a03bea0
c16ac20
 
a03bea0
c16ac20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f52f478
 
c16ac20
 
 
 
 
 
 
c447515
6ed21a0
c447515
 
 
 
 
ec51587
c16ac20
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
---
annotations_creators:
- crowdsourced
- expert-generated
language:
- en
license:
- apache-2.0
multilinguality:
- monolingual
size_categories:
- 100M<n<1B
task_categories:
- other
pretty_name: P3
dataset_info:
- config_name: adversarial_qa_dbert_answer_the_following_q
  features:
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 18313753
    num_examples: 10000
  - name: validation
    num_bytes: 1791034
    num_examples: 1000
  download_size: 6288641
  dataset_size: 20104787
- config_name: adversarial_qa_dbert_based_on
  features:
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 17580553
    num_examples: 10000
  - name: validation
    num_bytes: 1717566
    num_examples: 1000
  download_size: 6206744
  dataset_size: 19298119
- config_name: adversarial_qa_dbert_generate_question
  features:
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 18552810
    num_examples: 10000
  - name: validation
    num_bytes: 1824231
    num_examples: 1000
  - name: test
    num_bytes: 1954952
    num_examples: 1000
  download_size: 5882604
  dataset_size: 22331993
- config_name: adversarial_qa_dbert_question_context_answer
  features:
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 16859685
    num_examples: 10000
  - name: validation
    num_bytes: 1646118
    num_examples: 1000
  download_size: 6180363
  dataset_size: 18505803
- config_name: adversarial_qa_dbert_tell_what_it_is
  features:
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 17793277
    num_examples: 10000
  - name: validation
    num_bytes: 1739418
    num_examples: 1000
  download_size: 6276720
  dataset_size: 19532695
- config_name: adversarial_qa_dbidaf_answer_the_following_q
  features:
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 18273217
    num_examples: 10000
  - name: validation
    num_bytes: 1797789
    num_examples: 1000
  download_size: 6321670
  dataset_size: 20071006
- config_name: adversarial_qa_dbidaf_based_on
  features:
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 17539777
    num_examples: 10000
  - name: validation
    num_bytes: 1724577
    num_examples: 1000
  download_size: 6247591
  dataset_size: 19264354
- config_name: adversarial_qa_dbidaf_generate_question
  features:
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 18508967
    num_examples: 10000
  - name: validation
    num_bytes: 1830585
    num_examples: 1000
  - name: test
    num_bytes: 1925723
    num_examples: 1000
  download_size: 5983857
  dataset_size: 22265275
- config_name: adversarial_qa_dbidaf_question_context_answer
  features:
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 16821505
    num_examples: 10000
  - name: validation
    num_bytes: 1652425
    num_examples: 1000
  download_size: 6292806
  dataset_size: 18473930
- config_name: adversarial_qa_dbidaf_tell_what_it_is
  features:
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 17755161
    num_examples: 10000
  - name: validation
    num_bytes: 1745717
    num_examples: 1000
  download_size: 6250903
  dataset_size: 19500878
- config_name: adversarial_qa_droberta_answer_the_following_q
  features:
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 18084393
    num_examples: 10000
  - name: validation
    num_bytes: 1798375
    num_examples: 1000
  download_size: 6223439
  dataset_size: 19882768
- config_name: adversarial_qa_droberta_based_on
  features:
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 17352073
    num_examples: 10000
  - name: validation
    num_bytes: 1725151
    num_examples: 1000
  download_size: 6202901
  dataset_size: 19077224
- config_name: adversarial_qa_droberta_generate_question
  features:
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 18257414
    num_examples: 10000
  - name: validation
    num_bytes: 1828966
    num_examples: 1000
  - name: test
    num_bytes: 1997556
    num_examples: 1000
  download_size: 5928633
  dataset_size: 22083936
- config_name: adversarial_qa_droberta_question_context_answer
  features:
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 16638393
    num_examples: 10000
  - name: validation
    num_bytes: 1653815
    num_examples: 1000
  download_size: 6193786
  dataset_size: 18292208
- config_name: adversarial_qa_droberta_tell_what_it_is
  features:
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 17571837
    num_examples: 10000
  - name: validation
    num_bytes: 1747043
    num_examples: 1000
  download_size: 6152157
  dataset_size: 19318880
- config_name: ag_news_classify
  features:
  - name: answer_choices
    sequence: string
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 79459523
    num_examples: 120000
  - name: test
    num_bytes: 5007082
    num_examples: 7600
  download_size: 37504540
  dataset_size: 84466605
- config_name: ag_news_classify_question_first
  features:
  - name: answer_choices
    sequence: string
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 79339523
    num_examples: 120000
  - name: test
    num_bytes: 4999482
    num_examples: 7600
  download_size: 37311664
  dataset_size: 84339005
- config_name: ag_news_classify_with_choices
  features:
  - name: answer_choices
    sequence: string
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 91699523
    num_examples: 120000
  - name: test
    num_bytes: 5782282
    num_examples: 7600
  download_size: 38377186
  dataset_size: 97481805
- config_name: ag_news_classify_with_choices_question_first
  features:
  - name: answer_choices
    sequence: string
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 91699523
    num_examples: 120000
  - name: test
    num_bytes: 5782282
    num_examples: 7600
  download_size: 38318638
  dataset_size: 97481805
- config_name: ag_news_recommend
  features:
  - name: answer_choices
    sequence: string
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 94039523
    num_examples: 120000
  - name: test
    num_bytes: 5930482
    num_examples: 7600
  download_size: 38368116
  dataset_size: 99970005
- config_name: ag_news_which_section
  features:
  - name: answer_choices
    sequence: string
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 83899523
    num_examples: 120000
  - name: test
    num_bytes: 5288282
    num_examples: 7600
  download_size: 37893964
  dataset_size: 89187805
- config_name: ag_news_which_section_choices
  features:
  - name: answer_choices
    sequence: string
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 100099523
    num_examples: 120000
  - name: test
    num_bytes: 6314282
    num_examples: 7600
  download_size: 39167925
  dataset_size: 106413805
- config_name: ai2_arc_ARC_Challenge_heres_a_problem
  features:
  - name: answer_choices
    sequence: string
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 870695
    num_examples: 1119
  - name: validation
    num_bytes: 237526
    num_examples: 299
  - name: test
    num_bytes: 929144
    num_examples: 1172
  download_size: 796298
  dataset_size: 2037365
- config_name: ai2_arc_ARC_Challenge_i_am_hesitating
  features:
  - name: answer_choices
    sequence: string
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 1063080
    num_examples: 1119
  - name: validation
    num_bytes: 290313
    num_examples: 299
  - name: test
    num_bytes: 1135794
    num_examples: 1172
  download_size: 1087298
  dataset_size: 2489187
- config_name: ai2_arc_ARC_Challenge_multiple_choice
  features:
  - name: answer_choices
    sequence: string
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 1079865
    num_examples: 1119
  - name: validation
    num_bytes: 294798
    num_examples: 299
  - name: test
    num_bytes: 1153374
    num_examples: 1172
  download_size: 1096748
  dataset_size: 2528037
- config_name: ai2_arc_ARC_Challenge_pick_false_options
  features:
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 965402
    num_examples: 1119
  - name: validation
    num_bytes: 263171
    num_examples: 299
  - name: test
    num_bytes: 1032956
    num_examples: 1172
  download_size: 1043688
  dataset_size: 2261529
- config_name: ai2_arc_ARC_Challenge_pick_the_most_correct_option
  features:
  - name: answer_choices
    sequence: string
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 812508
    num_examples: 1119
  - name: validation
    num_bytes: 221981
    num_examples: 299
  - name: test
    num_bytes: 868204
    num_examples: 1172
  download_size: 791475
  dataset_size: 1902693
- config_name: ai2_arc_ARC_Challenge_qa_options
  features:
  - name: answer_choices
    sequence: string
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 815781
    num_examples: 1119
  - name: validation
    num_bytes: 224234
    num_examples: 299
  - name: test
    num_bytes: 876782
    num_examples: 1172
  download_size: 1044349
  dataset_size: 1916797
- config_name: ai2_arc_ARC_Easy_heres_a_problem
  features:
  - name: answer_choices
    sequence: string
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 1585434
    num_examples: 2251
  - name: validation
    num_bytes: 402833
    num_examples: 570
  - name: test
    num_bytes: 1680740
    num_examples: 2376
  download_size: 1372031
  dataset_size: 3669007
- config_name: ai2_arc_ARC_Easy_i_am_hesitating
  features:
  - name: answer_choices
    sequence: string
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 1893561
    num_examples: 2251
  - name: validation
    num_bytes: 479155
    num_examples: 570
  - name: test
    num_bytes: 2003593
    num_examples: 2376
  download_size: 1829256
  dataset_size: 4376309
configs:
- config_name: adversarial_qa_dbert_answer_the_following_q
  data_files:
  - split: train
    path: adversarial_qa_dbert_answer_the_following_q/train-*
  - split: validation
    path: adversarial_qa_dbert_answer_the_following_q/validation-*
- config_name: adversarial_qa_dbert_based_on
  data_files:
  - split: train
    path: adversarial_qa_dbert_based_on/train-*
  - split: validation
    path: adversarial_qa_dbert_based_on/validation-*
- config_name: adversarial_qa_dbert_generate_question
  data_files:
  - split: train
    path: adversarial_qa_dbert_generate_question/train-*
  - split: validation
    path: adversarial_qa_dbert_generate_question/validation-*
  - split: test
    path: adversarial_qa_dbert_generate_question/test-*
- config_name: adversarial_qa_dbert_question_context_answer
  data_files:
  - split: train
    path: adversarial_qa_dbert_question_context_answer/train-*
  - split: validation
    path: adversarial_qa_dbert_question_context_answer/validation-*
- config_name: adversarial_qa_dbert_tell_what_it_is
  data_files:
  - split: train
    path: adversarial_qa_dbert_tell_what_it_is/train-*
  - split: validation
    path: adversarial_qa_dbert_tell_what_it_is/validation-*
- config_name: adversarial_qa_dbidaf_answer_the_following_q
  data_files:
  - split: train
    path: adversarial_qa_dbidaf_answer_the_following_q/train-*
  - split: validation
    path: adversarial_qa_dbidaf_answer_the_following_q/validation-*
- config_name: adversarial_qa_dbidaf_based_on
  data_files:
  - split: train
    path: adversarial_qa_dbidaf_based_on/train-*
  - split: validation
    path: adversarial_qa_dbidaf_based_on/validation-*
- config_name: adversarial_qa_dbidaf_generate_question
  data_files:
  - split: train
    path: adversarial_qa_dbidaf_generate_question/train-*
  - split: validation
    path: adversarial_qa_dbidaf_generate_question/validation-*
  - split: test
    path: adversarial_qa_dbidaf_generate_question/test-*
- config_name: adversarial_qa_dbidaf_question_context_answer
  data_files:
  - split: train
    path: adversarial_qa_dbidaf_question_context_answer/train-*
  - split: validation
    path: adversarial_qa_dbidaf_question_context_answer/validation-*
- config_name: adversarial_qa_dbidaf_tell_what_it_is
  data_files:
  - split: train
    path: adversarial_qa_dbidaf_tell_what_it_is/train-*
  - split: validation
    path: adversarial_qa_dbidaf_tell_what_it_is/validation-*
- config_name: adversarial_qa_droberta_answer_the_following_q
  data_files:
  - split: train
    path: adversarial_qa_droberta_answer_the_following_q/train-*
  - split: validation
    path: adversarial_qa_droberta_answer_the_following_q/validation-*
- config_name: adversarial_qa_droberta_based_on
  data_files:
  - split: train
    path: adversarial_qa_droberta_based_on/train-*
  - split: validation
    path: adversarial_qa_droberta_based_on/validation-*
- config_name: adversarial_qa_droberta_generate_question
  data_files:
  - split: train
    path: adversarial_qa_droberta_generate_question/train-*
  - split: validation
    path: adversarial_qa_droberta_generate_question/validation-*
  - split: test
    path: adversarial_qa_droberta_generate_question/test-*
- config_name: adversarial_qa_droberta_question_context_answer
  data_files:
  - split: train
    path: adversarial_qa_droberta_question_context_answer/train-*
  - split: validation
    path: adversarial_qa_droberta_question_context_answer/validation-*
- config_name: adversarial_qa_droberta_tell_what_it_is
  data_files:
  - split: train
    path: adversarial_qa_droberta_tell_what_it_is/train-*
  - split: validation
    path: adversarial_qa_droberta_tell_what_it_is/validation-*
- config_name: ag_news_classify
  data_files:
  - split: train
    path: ag_news_classify/train-*
  - split: test
    path: ag_news_classify/test-*
- config_name: ag_news_classify_question_first
  data_files:
  - split: train
    path: ag_news_classify_question_first/train-*
  - split: test
    path: ag_news_classify_question_first/test-*
- config_name: ag_news_classify_with_choices
  data_files:
  - split: train
    path: ag_news_classify_with_choices/train-*
  - split: test
    path: ag_news_classify_with_choices/test-*
- config_name: ag_news_classify_with_choices_question_first
  data_files:
  - split: train
    path: ag_news_classify_with_choices_question_first/train-*
  - split: test
    path: ag_news_classify_with_choices_question_first/test-*
- config_name: ag_news_recommend
  data_files:
  - split: train
    path: ag_news_recommend/train-*
  - split: test
    path: ag_news_recommend/test-*
- config_name: ag_news_which_section
  data_files:
  - split: train
    path: ag_news_which_section/train-*
  - split: test
    path: ag_news_which_section/test-*
- config_name: ag_news_which_section_choices
  data_files:
  - split: train
    path: ag_news_which_section_choices/train-*
  - split: test
    path: ag_news_which_section_choices/test-*
- config_name: ai2_arc_ARC_Challenge_heres_a_problem
  data_files:
  - split: train
    path: ai2_arc_ARC_Challenge_heres_a_problem/train-*
  - split: validation
    path: ai2_arc_ARC_Challenge_heres_a_problem/validation-*
  - split: test
    path: ai2_arc_ARC_Challenge_heres_a_problem/test-*
- config_name: ai2_arc_ARC_Challenge_i_am_hesitating
  data_files:
  - split: train
    path: ai2_arc_ARC_Challenge_i_am_hesitating/train-*
  - split: validation
    path: ai2_arc_ARC_Challenge_i_am_hesitating/validation-*
  - split: test
    path: ai2_arc_ARC_Challenge_i_am_hesitating/test-*
- config_name: ai2_arc_ARC_Challenge_multiple_choice
  data_files:
  - split: train
    path: ai2_arc_ARC_Challenge_multiple_choice/train-*
  - split: validation
    path: ai2_arc_ARC_Challenge_multiple_choice/validation-*
  - split: test
    path: ai2_arc_ARC_Challenge_multiple_choice/test-*
- config_name: ai2_arc_ARC_Challenge_pick_false_options
  data_files:
  - split: train
    path: ai2_arc_ARC_Challenge_pick_false_options/train-*
  - split: validation
    path: ai2_arc_ARC_Challenge_pick_false_options/validation-*
  - split: test
    path: ai2_arc_ARC_Challenge_pick_false_options/test-*
- config_name: ai2_arc_ARC_Challenge_pick_the_most_correct_option
  data_files:
  - split: train
    path: ai2_arc_ARC_Challenge_pick_the_most_correct_option/train-*
  - split: validation
    path: ai2_arc_ARC_Challenge_pick_the_most_correct_option/validation-*
  - split: test
    path: ai2_arc_ARC_Challenge_pick_the_most_correct_option/test-*
- config_name: ai2_arc_ARC_Challenge_qa_options
  data_files:
  - split: train
    path: ai2_arc_ARC_Challenge_qa_options/train-*
  - split: validation
    path: ai2_arc_ARC_Challenge_qa_options/validation-*
  - split: test
    path: ai2_arc_ARC_Challenge_qa_options/test-*
- config_name: ai2_arc_ARC_Easy_heres_a_problem
  data_files:
  - split: train
    path: ai2_arc_ARC_Easy_heres_a_problem/train-*
  - split: validation
    path: ai2_arc_ARC_Easy_heres_a_problem/validation-*
  - split: test
    path: ai2_arc_ARC_Easy_heres_a_problem/test-*
- config_name: ai2_arc_ARC_Easy_i_am_hesitating
  data_files:
  - split: train
    path: ai2_arc_ARC_Easy_i_am_hesitating/train-*
  - split: validation
    path: ai2_arc_ARC_Easy_i_am_hesitating/validation-*
  - split: test
    path: ai2_arc_ARC_Easy_i_am_hesitating/test-*
---

# Dataset Card for P3

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
- [Additional Information](#additional-information)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://bigscience.huggingface.co/promptsource
- **Repository:** https://github.com/bigscience-workshop/promptsource/
- **Paper:** [Multitask Prompted Training Enables Zero-Shot Task Generalization](https://arxiv.org/abs/2110.08207)
- **Point of Contact:** [Victor Sanh](mailto:victor@huggingface.co)

### Dataset Summary

P3 (Public Pool of Prompts) is a collection of prompted English datasets covering a diverse set of NLP tasks. A prompt is the combination of an input template and a target template. The templates are functions mapping a data example into natural language for the input and target sequences. For example, in the case of an NLI dataset, the data example would include fields for *Premise, Hypothesis, Label*. An input template would be *If {Premise} is true, is it also true that {Hypothesis}?*, whereas a target template can be defined with the label choices *Choices[label]*. Here *Choices* is prompt-specific metadata that consists of the options *yes, maybe, no* corresponding to *label* being entailment (0), neutral (1) or contradiction (2).

Prompts are collected using [Promptsource](https://github.com/bigscience-workshop/promptsource), an interface to interactively write prompts on datasets, and collect prompt-specific metadata such as evaluation metrics. As of October 13th, there are 2'000 prompts collected for 270+ data(sub)sets. The collection of prompts of P3 is publicly available on [Promptsource](https://github.com/bigscience-workshop/promptsource).

To train [T0*](https://huggingface.co/bigscience/T0pp), we used a subset of the prompts available in Promptsource (see details [here](https://huggingface.co/bigscience/T0pp#training-data)). However, some of the prompts use `random.choice`, a method that selects uniformly at random an option in a list of valid possibilities. For reproducibility purposes, we release the collection of prompted examples used to train T0*. **The data available here are the materialized version of the prompted datasets used in [Multitask Prompted Training Enables Zero-Shot Task Generalization](https://arxiv.org/abs/2110.08207) which represent only a subset of the datasets for which there is at least one prompt in Promptsource.**

### Supported Tasks and Leaderboards

The tasks represented in P3 cover a diverse set of NLP tasks including multiple-choice QA, sentiment analysis or natural language inference. We detail the full list of datasets in [Source Data](#source-data).

### Languages

The data in P3 are in English (BCP-47 `en`).

## Dataset Structure

### Data Instances

An example of "train" looks as follows:
```bash
{
  'answer_choices': ['safe', 'trolley'],
  'inputs': [86, 8, 7142, 666, 6, 405, 8, 3, 834, 1518, 21, 1346, 42, 31682, 58, 37, 3, 929, 9, 3042, 63, 2765, 808, 8, 2045, 6448, 326, 13, 8, 31682, 11, 3, 24052, 135, 16, 8, 1346, 552, 8, 3, 834, 47, 6364, 5], 'inputs_pretokenized': 'In the sentence below, does the _ stand for safe or trolley?\nThe treasury workers took the gold bars off of the trolley and stacked them in the safe until the _ was empty.',
  'targets': [31682, 1],
  'targets_pretokenized': '\ntrolley'
}
```

In the case of rank classification (letting the model select its the prediction the option with the highest log-likelihood), an example looks as follows:
```bash
{
  'idx': [5, 0],
  'inputs': [86, 8, 7142, 666, 6, 405, 8, 3, 834, 1518, 21, 19454, 42, 22227, 58, 19454, 744, 31, 17, 2112, 4553, 17742, 7, 12, 1953, 6, 298, 22227, 966, 373, 405, 5, 3, 834, 19, 72, 952, 12, 619, 16, 3, 9, 17742, 3298, 5],
  'inputs_pretokenized': "In the sentence below, does the _ stand for Kyle or Logan?\nKyle doesn't wear leg warmers to bed, while Logan almost always does. _ is more likely to live in a warmer climate.",
  'is_correct': True,
  'targets': [19454, 1],
  'targets_pretokenized': 'Kyle',
  'weight': 1.0
}
```

To check all the prompted examples, you can use the [Promptsource hosted tool](http://bigscience.huggingface.co/promptsource) and choose the `Prompted dataset viewer` mode in the left panel.


### Data Fields

The data fields are the same among all splits:
- `answer_choices`: the choices (in natural language) available to the model
- `inputs_pretokenized`: the natural language input fed to the model
- `targets_pretokenized`: the natural language target that the model has to generate
- `inputs`: the tokenized input with [T5](https://huggingface.co/google/t5-v1_1-base)'s tokenizer
- `targets`: the tokenized target with [T5](https://huggingface.co/google/t5-v1_1-base)'s tokenizer
- `idx`: identifier of the (example, answer_option_id) in the case of rank classification
- `weight`: a weight for the example produced by seqio (always set to 1.0 in practise)
- `is_correct`: whether the (example, answer_option_id) is the correct one

### Data Splits

The list of data splits and their respective sizes is very long. You'll find the whole list in this [file](https://huggingface.co/datasets/bigscience/P3/blob/main/tasks_splits_and_features.py).

## Dataset Creation

### Curation Rationale

The Public Pool of Prompts relies on the Hugging Face Dataset library. Any public dataset in the Datasets library can be prompted. We select the datasets that have at least one subset in English and excluded datasets containing (predominantly) non-natural language examples.

We conservatively decided not to prompt datasets that contain potentially harmful content (for instance, datasets built on social media content). However, we sometimes prompt datasets that are purposefully built to measure bias and fairness of trained models, and reserve these prompted datasets (the validation or test sets) for evaluation purposes.

### Source Data

Here's the full list of the datasets present in the materialized version of P3:
- Multiple-Choice QA
  - CommonsenseQA
  - DREAM
  - QUAIL
  - QuaRTz
  - Social IQA
  - WiQA
  - Cosmos
  - QASC
  - Quarel
  - SciQ
  - Wiki Hop
  - ARC
  - OpenBookQA
  - MultiRC
  - PIQA
  - RACE
  - HellaSwag
  - BoolQ
- Extractive QA
  - Adversarial QA
  - Quoref
  - DuoRC
  - ROPES
  - SQuAD v2
  - ReCoRD
- Close-book QA
  - Hotpot QA
  - Wiki QA
  - Trivia QA
  - Web Questions
- Structure-to-text
  - Common Gen
  - Wiki Bio
- Sentiment
  - Amazon
  - App Reviews
  - IMDB
  - Rotten Tomatoes
  - Yelp
- Summarization
  - CNN Daily Mail
  - Gigaword
  - MultiNews
  - SamSum
  - XSum
- Topic Classification
  - AG News
  - DBPedia
  - TREC
- Paraphrase Identification
  - MRPC
  - PAWS
  - QQP
- Natural Language Inference
  - ANLI
  - CB
  - RTE
- Coreference Resolution
  - WSC
  - Winogrande
- Word Sense disambiguation
  - WiC
- Sentence Completion
  - COPA
  - HellaSwag
  - Story Cloze

### Annotations

The prompts available in Promptsource are collected as part of BigScience, one-year long research workshop on large multilingual models and datasets. 36 contributors affiliated with 24 institutions in 8 countries participated to the prompt collection. Contributors are in majority machine learning researchers or machine learning engineers.

The main annotation guideline was that prompts needed to be grammatical and understandable by a native English speaker with no prior experience of the tasks. Additionally, prompts that required explicit counting or numerical indexing were removed in favor of natural language variants, e.g., instead of predicting indices of a span to extract (e.g. in extractive question answering), the model was expected to copy the span's text instead. With these minimal constraints, prompt writers were encouraged to use both formal and creative prompts and various orderings of the data. Most of the prompts correspond directly to a version of the original proposed task, although we also allowed prompts that permuted the original task (for instance, generating a document from its summary) or allowed for ambiguous output (for instance, not indicating a list of available choices).

The full annotation given to the contributors can be found [here](https://github.com/bigscience-workshop/promptsource/blob/main/CONTRIBUTING.md). *Note to self: the link is currently being updated with the)

## Additional Information

### Licensing Information

The dataset is released under Apache 2.0.

### Citation Information

```bibtex
@misc{sanh2021multitask,
      title={Multitask Prompted Training Enables Zero-Shot Task Generalization},
      author={Victor Sanh and Albert Webson and Colin Raffel and Stephen H. Bach and Lintang Sutawika and Zaid Alyafeai and Antoine Chaffin and Arnaud Stiegler and Teven Le Scao and Arun Raja and Manan Dey and M Saiful Bari and Canwen Xu and Urmish Thakker and Shanya Sharma Sharma and Eliza Szczechla and Taewoon Kim and Gunjan Chhablani and Nihal Nayak and Debajyoti Datta and Jonathan Chang and Mike Tian-Jian Jiang and Han Wang and Matteo Manica and Sheng Shen and Zheng Xin Yong and Harshit Pandey and Rachel Bawden and Thomas Wang and Trishala Neeraj and Jos Rozen and Abheesht Sharma and Andrea Santilli and Thibault Fevry and Jason Alan Fries and Ryan Teehan and Stella Biderman and Leo Gao and Tali Bers and Thomas Wolf and Alexander M. Rush},
      year={2021},
      eprint={2110.08207},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
```

### Contributions

Thanks to the contributors of [promptsource](https://github.com/bigscience-workshop/promptsource/graphs/contributors) for adding this dataset.