Datasets:

Languages:
English
License:
File size: 14,579 Bytes
2ac7e4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import itertools as it
from typing import Dict, Generator, List, Tuple

import datasets

from .bigbiohub import BigBioConfig, Tasks, kb_features

_LANGUAGES = ["English"]
_PUBMED = True
_LOCAL = False

_CITATION = """\
@article{cho2022plant,
  author    = {Cho, Hyejin and Kim, Baeksoo and Choi, Wonjun and Lee, Doheon and Lee, Hyunju},
  title     = {Plant phenotype relationship corpus for biomedical relationships between plants and phenotypes},
  journal   = {Scientific Data},
  volume    = {9},
  year      = {2022},
  publisher = {Nature Publishing Group},
  doi       = {https://doi.org/10.1038/s41597-022-01350-1},
}
"""

_DATASETNAME = "ppr"
_DISPLAYNAME = "Plant-Phenotype-Relations"

_DESCRIPTION = """\
The Plant-Phenotype corpus is a text corpus with human annotations of plants, phenotypes, and their relations on a \
corpus in 600 PubMed abstracts.
"""

_HOMEPAGE = "https://github.com/DMCB-GIST/PPRcorpus"

_LICENSE = "UNKNOWN"

_URLS = {
    _DATASETNAME: [
        "https://raw.githubusercontent.com/davidkartchner/PPRcorpus/main/corpus/PPR_train_corpus.txt",
        "https://raw.githubusercontent.com/davidkartchner/PPRcorpus/main/corpus/PPR_dev_corpus.txt",
        "https://raw.githubusercontent.com/davidkartchner/PPRcorpus/main/corpus/PPR_test_corpus.txt",
    ],
}

_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]

_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"


class PlantPhenotypeDataset(datasets.GeneratorBasedBuilder):
    """Plant-Phenotype is dataset for NER and RE of plants and their induced phenotypes"""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    BUILDER_CONFIGS = [
        BigBioConfig(
            name="ppr_source",
            version=SOURCE_VERSION,
            description="Plant Phenotype Relations source schema",
            schema="source",
            subset_id="plant_phenotype",
        ),
        BigBioConfig(
            name="ppr_bigbio_kb",
            version=BIGBIO_VERSION,
            description="Plant Phenotype Relations BigBio schema",
            schema="bigbio_kb",
            subset_id="plant_phenotype",
        ),
    ]

    DEFAULT_CONFIG_NAME = "ppr_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":

            features = datasets.Features(
                {
                    "passage_id": datasets.Value("string"),
                    "pmid": datasets.Value("string"),
                    "section": datasets.Value("int32"),
                    "text": datasets.Value("string"),
                    "entities": [
                        {
                            "offsets": datasets.Sequence(datasets.Value("int32")),
                            "text": datasets.Value("string"),
                            "type": datasets.Value("string"),
                        }
                    ],
                    "relations": [
                        {
                            "relation_type": datasets.Value("string"),
                            "entity1_offsets": datasets.Sequence(datasets.Value("int32")),
                            "entity1_text": datasets.Value("string"),
                            "entity1_type": datasets.Value("string"),
                            "entity2_offsets": datasets.Sequence(datasets.Value("int32")),
                            "entity2_text": datasets.Value("string"),
                            "entity2_type": datasets.Value("string"),
                        }
                    ],
                }
            )

        elif self.config.schema == "bigbio_kb":
            features = kb_features
        else:
            raise NotImplementedError(f"Schema {self.config.schema} not supported")

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""

        urls = _URLS[_DATASETNAME]
        train, dev, test = dl_manager.download_and_extract(urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": train,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": test,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": dev,
                },
            ),
        ]

    def _generate_examples(
        self,
        filepath,
    ) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""

        with open(filepath, "r") as f:
            chunks = f.read().strip().split("\n\n")

        if self.config.schema == "source":
            for id_, doc in self._generate_source_examples(chunks):
                yield id_, doc

        elif self.config.schema == "bigbio_kb":
            for id_, doc in self._generate_bigbio_kb_examples(chunks):
                yield id_, doc

    def _generate_whole_documents(self, annotation_chunks: List[str]) -> Generator[Dict, None, None]:
        """Aggregate individual sentence annotations into whole abstracts.

        Args:
            annotation_chunks (List[str]): List of annotation chunks, i.e., a sentence with its annotations.
                For example:
                10072339_4	OBJECTIVE: A patient with possible airborne facial dermatitis to potato is described.
                10072339	44	61	facial dermatitis	Negative_phenotype
                10072339	65	71	potato	Plant

        Returns:
              Generator producing a dictionary containing the pmid of an article and all document chunks.
        """
        prev_pmid = None
        pmid = ""
        doc_chunks = []

        for chunk in annotation_chunks:
            lines = chunk.split("\n")

            # The first line is the sentence (format: <pmid>_<num>\t<sentence-text>)
            passage_info, passage_text = lines[0].split("\t")

            # Then annotations in Pubtator format
            annotations = [line.split("\t") for line in lines[1:]]

            # Get info on passage
            pmid, section = passage_info.split("_")
            if prev_pmid is None:
                prev_pmid = pmid

            elif prev_pmid != pmid:
                yield {"pmid": prev_pmid, "doc_chunks": doc_chunks}

                # Reset everything for next PMID
                prev_pmid = pmid
                doc_chunks = []

            doc_chunks.append(
                {
                    "passage": passage_text,
                    "annotations": annotations,
                    "sentence_id": passage_info,
                }
            )

        # Take care of last document
        yield {"pmid": pmid, "doc_chunks": doc_chunks}

    def _generate_source_examples(self, annotation_chunks: List[str]) -> Generator[Tuple[str, Dict], None, None]:
        """Generate examples in format of source schema

        Args:
            annotation_chunks (List[str]): List of annotation chunks.

        Returns:
            Generator of instance tuples (<key>, <instance-dict>)
        """
        for chunk in annotation_chunks:
            lines = chunk.split("\n")

            passage_id, passage_text = lines[0].split("\t")
            annotations = [line.split("\t") for line in lines[1:]]

            # Get info on passage
            pmid, section = passage_id.split("_")
            section = int(section)

            # Grab entities and relations
            entities = []
            relations = []
            for annotation in annotations:
                if len(annotation) == 5:
                    # It's an entity annotation
                    entities.append(
                        {
                            "offsets": (int(annotation[1]), int(annotation[2])),
                            "text": annotation[3],
                            "type": annotation[4],
                        }
                    )

                elif len(annotation) == 10:
                    # Relation annotation
                    relations.append(
                        {
                            "relation_type": annotation[1],
                            "entity1_offsets": (int(annotation[2]), int(annotation[3])),
                            "entity1_text": annotation[4],
                            "entity1_type": annotation[5],
                            "entity2_offsets": (int(annotation[6]), int(annotation[7])),
                            "entity2_text": annotation[8],
                            "entity2_type": annotation[9],
                        }
                    )
                else:
                    # This is a special case that occurs for a single data point
                    relations.append(
                        {
                            "relation_type": annotation[1],
                            "entity1_offsets": (int(annotation[2]), int(annotation[3])),
                            "entity1_text": annotation[4],
                            "entity1_type": annotation[5],
                            "entity2_offsets": (int(annotation[8]), int(annotation[9])),
                            "entity2_text": annotation[10],
                            "entity2_type": annotation[11],
                        }
                    )

                # Consolidate into document
                document = {
                    "passage_id": passage_id,
                    "pmid": pmid,
                    "section": section,
                    "text": passage_text,
                    "entities": entities,
                    "relations": relations,
                }

            yield passage_id, document

    def _generate_bigbio_kb_examples(self, annotation_chunks: List[str]):
        """Generator for training examples in bigbio_kb schema format.

        Args:
            annotation_chunks (List[str]): List of annotation chunks.

        Returns:
            Generator of instance tuples (<key>, <instance-dict>)
        """
        uid = it.count(1)
        for document in self._generate_whole_documents(annotation_chunks):
            pmid = document["pmid"]
            offset_delta = 0
            id_ = str(next(uid))

            passages = []
            entities = []
            relations = []

            # Iterate through each section of the article
            for text_section in document["doc_chunks"]:
                # Extract passages
                passage = text_section["passage"]
                passages.append(
                    {
                        "id": str(next(uid)),
                        "text": [passage],
                        "type": "sentence",
                        "offsets": [(offset_delta, offset_delta + len(passage))],
                    }
                )

                # Extract entities
                entities_sublist = []
                for annotation in text_section["annotations"]:
                    if len(annotation) == 5:
                        entities_sublist.append(
                            {
                                "id": str(next(uid)),
                                "type": annotation[4],
                                "text": [annotation[3]],
                                "offsets": [(int(annotation[1]) + offset_delta, int(annotation[2]) + offset_delta)],
                                "normalized": [],
                            }
                        )

                # Create mapping of offsets to entity_id
                ent2id = {tuple(x["offsets"]): x["id"] for x in entities_sublist}
                entities.extend(entities_sublist)

                # Extract relations
                for annotation in text_section["annotations"]:
                    if len(annotation) == 10:
                        e1_offsets = [(int(annotation[2]) + offset_delta, int(annotation[3]) + offset_delta)]
                        e2_offsets = [(int(annotation[6]) + offset_delta, int(annotation[7]) + offset_delta)]
                        relations.append(
                            {
                                "id": str(next(uid)),
                                "type": annotation[1],
                                "arg1_id": ent2id[tuple(e1_offsets)],
                                "arg2_id": ent2id[tuple(e2_offsets)],
                                "normalized": [],
                            }
                        )

                    # Special case for a single annotation
                    elif len(annotation) > 10:
                        e1_offsets = [(int(annotation[2]) + offset_delta, int(annotation[3]) + offset_delta)]
                        e2_offsets = [(int(annotation[8]) + offset_delta, int(annotation[9]) + offset_delta)]
                        relations.append(
                            {
                                "id": str(next(uid)),
                                "type": annotation[1],
                                "arg1_id": ent2id[tuple(e1_offsets)],
                                "arg2_id": ent2id[tuple(e2_offsets)],
                                "normalized": [],
                            }
                        )

                offset_delta += len(passage) + 1

            doc = {
                "id": id_,
                "document_id": pmid,
                "passages": passages,
                "entities": entities,
                "relations": relations,
                "events": [],
                "coreferences": [],
            }

            yield id_, doc