Datasets:

Languages:
English
License:
phlobo commited on
Commit
2ac7e4a
1 Parent(s): 9d60e72

Update ppr based on git version d04fce3

Browse files
Files changed (3) hide show
  1. README.md +43 -0
  2. bigbiohub.py +592 -0
  3. ppr.py +391 -0
README.md ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ language:
4
+ - en
5
+ bigbio_language:
6
+ - English
7
+ license: unknown
8
+ multilinguality: monolingual
9
+ bigbio_license_shortname: UNKNOWN
10
+ pretty_name: PPR
11
+ homepage: https://github.com/DMCB-GIST/PPRcorpus
12
+ bigbio_pubmed: True
13
+ bigbio_public: True
14
+ bigbio_tasks:
15
+ - NAMED_ENTITY_RECOGNITION
16
+ - RELATION_EXTRACTION
17
+ ---
18
+
19
+
20
+ # Dataset Card for PPR
21
+
22
+ ## Dataset Description
23
+
24
+ - **Homepage:** https://github.com/DMCB-GIST/PPRcorpus
25
+ - **Pubmed:** True
26
+ - **Public:** True
27
+ - **Tasks:** NER,RE
28
+
29
+ The Plant-Phenotype corpus is a text corpus with human annotations of plants, phenotypes, and their relations on a corpus in 600 PubMed abstracts.
30
+
31
+ ## Citation Information
32
+
33
+ ```
34
+ @article{cho2022plant,
35
+ author = {Cho, Hyejin and Kim, Baeksoo and Choi, Wonjun and Lee, Doheon and Lee, Hyunju},
36
+ title = {Plant phenotype relationship corpus for biomedical relationships between plants and phenotypes},
37
+ journal = {Scientific Data},
38
+ volume = {9},
39
+ year = {2022},
40
+ publisher = {Nature Publishing Group},
41
+ doi = {https://doi.org/10.1038/s41597-022-01350-1},
42
+ }
43
+ ```
bigbiohub.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import defaultdict
2
+ from dataclasses import dataclass
3
+ from enum import Enum
4
+ import logging
5
+ from pathlib import Path
6
+ from types import SimpleNamespace
7
+ from typing import TYPE_CHECKING, Dict, Iterable, List, Tuple
8
+
9
+ import datasets
10
+
11
+ if TYPE_CHECKING:
12
+ import bioc
13
+
14
+ logger = logging.getLogger(__name__)
15
+
16
+
17
+ BigBioValues = SimpleNamespace(NULL="<BB_NULL_STR>")
18
+
19
+
20
+ @dataclass
21
+ class BigBioConfig(datasets.BuilderConfig):
22
+ """BuilderConfig for BigBio."""
23
+
24
+ name: str = None
25
+ version: datasets.Version = None
26
+ description: str = None
27
+ schema: str = None
28
+ subset_id: str = None
29
+
30
+
31
+ class Tasks(Enum):
32
+ NAMED_ENTITY_RECOGNITION = "NER"
33
+ NAMED_ENTITY_DISAMBIGUATION = "NED"
34
+ EVENT_EXTRACTION = "EE"
35
+ RELATION_EXTRACTION = "RE"
36
+ COREFERENCE_RESOLUTION = "COREF"
37
+ QUESTION_ANSWERING = "QA"
38
+ TEXTUAL_ENTAILMENT = "TE"
39
+ SEMANTIC_SIMILARITY = "STS"
40
+ TEXT_PAIRS_CLASSIFICATION = "TXT2CLASS"
41
+ PARAPHRASING = "PARA"
42
+ TRANSLATION = "TRANSL"
43
+ SUMMARIZATION = "SUM"
44
+ TEXT_CLASSIFICATION = "TXTCLASS"
45
+
46
+
47
+ entailment_features = datasets.Features(
48
+ {
49
+ "id": datasets.Value("string"),
50
+ "premise": datasets.Value("string"),
51
+ "hypothesis": datasets.Value("string"),
52
+ "label": datasets.Value("string"),
53
+ }
54
+ )
55
+
56
+ pairs_features = datasets.Features(
57
+ {
58
+ "id": datasets.Value("string"),
59
+ "document_id": datasets.Value("string"),
60
+ "text_1": datasets.Value("string"),
61
+ "text_2": datasets.Value("string"),
62
+ "label": datasets.Value("string"),
63
+ }
64
+ )
65
+
66
+ qa_features = datasets.Features(
67
+ {
68
+ "id": datasets.Value("string"),
69
+ "question_id": datasets.Value("string"),
70
+ "document_id": datasets.Value("string"),
71
+ "question": datasets.Value("string"),
72
+ "type": datasets.Value("string"),
73
+ "choices": [datasets.Value("string")],
74
+ "context": datasets.Value("string"),
75
+ "answer": datasets.Sequence(datasets.Value("string")),
76
+ }
77
+ )
78
+
79
+ text_features = datasets.Features(
80
+ {
81
+ "id": datasets.Value("string"),
82
+ "document_id": datasets.Value("string"),
83
+ "text": datasets.Value("string"),
84
+ "labels": [datasets.Value("string")],
85
+ }
86
+ )
87
+
88
+ text2text_features = datasets.Features(
89
+ {
90
+ "id": datasets.Value("string"),
91
+ "document_id": datasets.Value("string"),
92
+ "text_1": datasets.Value("string"),
93
+ "text_2": datasets.Value("string"),
94
+ "text_1_name": datasets.Value("string"),
95
+ "text_2_name": datasets.Value("string"),
96
+ }
97
+ )
98
+
99
+ kb_features = datasets.Features(
100
+ {
101
+ "id": datasets.Value("string"),
102
+ "document_id": datasets.Value("string"),
103
+ "passages": [
104
+ {
105
+ "id": datasets.Value("string"),
106
+ "type": datasets.Value("string"),
107
+ "text": datasets.Sequence(datasets.Value("string")),
108
+ "offsets": datasets.Sequence([datasets.Value("int32")]),
109
+ }
110
+ ],
111
+ "entities": [
112
+ {
113
+ "id": datasets.Value("string"),
114
+ "type": datasets.Value("string"),
115
+ "text": datasets.Sequence(datasets.Value("string")),
116
+ "offsets": datasets.Sequence([datasets.Value("int32")]),
117
+ "normalized": [
118
+ {
119
+ "db_name": datasets.Value("string"),
120
+ "db_id": datasets.Value("string"),
121
+ }
122
+ ],
123
+ }
124
+ ],
125
+ "events": [
126
+ {
127
+ "id": datasets.Value("string"),
128
+ "type": datasets.Value("string"),
129
+ # refers to the text_bound_annotation of the trigger
130
+ "trigger": {
131
+ "text": datasets.Sequence(datasets.Value("string")),
132
+ "offsets": datasets.Sequence([datasets.Value("int32")]),
133
+ },
134
+ "arguments": [
135
+ {
136
+ "role": datasets.Value("string"),
137
+ "ref_id": datasets.Value("string"),
138
+ }
139
+ ],
140
+ }
141
+ ],
142
+ "coreferences": [
143
+ {
144
+ "id": datasets.Value("string"),
145
+ "entity_ids": datasets.Sequence(datasets.Value("string")),
146
+ }
147
+ ],
148
+ "relations": [
149
+ {
150
+ "id": datasets.Value("string"),
151
+ "type": datasets.Value("string"),
152
+ "arg1_id": datasets.Value("string"),
153
+ "arg2_id": datasets.Value("string"),
154
+ "normalized": [
155
+ {
156
+ "db_name": datasets.Value("string"),
157
+ "db_id": datasets.Value("string"),
158
+ }
159
+ ],
160
+ }
161
+ ],
162
+ }
163
+ )
164
+
165
+
166
+ TASK_TO_SCHEMA = {
167
+ Tasks.NAMED_ENTITY_RECOGNITION.name: "KB",
168
+ Tasks.NAMED_ENTITY_DISAMBIGUATION.name: "KB",
169
+ Tasks.EVENT_EXTRACTION.name: "KB",
170
+ Tasks.RELATION_EXTRACTION.name: "KB",
171
+ Tasks.COREFERENCE_RESOLUTION.name: "KB",
172
+ Tasks.QUESTION_ANSWERING.name: "QA",
173
+ Tasks.TEXTUAL_ENTAILMENT.name: "TE",
174
+ Tasks.SEMANTIC_SIMILARITY.name: "PAIRS",
175
+ Tasks.TEXT_PAIRS_CLASSIFICATION.name: "PAIRS",
176
+ Tasks.PARAPHRASING.name: "T2T",
177
+ Tasks.TRANSLATION.name: "T2T",
178
+ Tasks.SUMMARIZATION.name: "T2T",
179
+ Tasks.TEXT_CLASSIFICATION.name: "TEXT",
180
+ }
181
+
182
+ SCHEMA_TO_TASKS = defaultdict(set)
183
+ for task, schema in TASK_TO_SCHEMA.items():
184
+ SCHEMA_TO_TASKS[schema].add(task)
185
+ SCHEMA_TO_TASKS = dict(SCHEMA_TO_TASKS)
186
+
187
+ VALID_TASKS = set(TASK_TO_SCHEMA.keys())
188
+ VALID_SCHEMAS = set(TASK_TO_SCHEMA.values())
189
+
190
+ SCHEMA_TO_FEATURES = {
191
+ "KB": kb_features,
192
+ "QA": qa_features,
193
+ "TE": entailment_features,
194
+ "T2T": text2text_features,
195
+ "TEXT": text_features,
196
+ "PAIRS": pairs_features,
197
+ }
198
+
199
+
200
+ def get_texts_and_offsets_from_bioc_ann(ann: "bioc.BioCAnnotation") -> Tuple:
201
+
202
+ offsets = [(loc.offset, loc.offset + loc.length) for loc in ann.locations]
203
+
204
+ text = ann.text
205
+
206
+ if len(offsets) > 1:
207
+ i = 0
208
+ texts = []
209
+ for start, end in offsets:
210
+ chunk_len = end - start
211
+ texts.append(text[i : chunk_len + i])
212
+ i += chunk_len
213
+ while i < len(text) and text[i] == " ":
214
+ i += 1
215
+ else:
216
+ texts = [text]
217
+
218
+ return offsets, texts
219
+
220
+
221
+ def remove_prefix(a: str, prefix: str) -> str:
222
+ if a.startswith(prefix):
223
+ a = a[len(prefix) :]
224
+ return a
225
+
226
+
227
+ def parse_brat_file(
228
+ txt_file: Path,
229
+ annotation_file_suffixes: List[str] = None,
230
+ parse_notes: bool = False,
231
+ ) -> Dict:
232
+ """
233
+ Parse a brat file into the schema defined below.
234
+ `txt_file` should be the path to the brat '.txt' file you want to parse, e.g. 'data/1234.txt'
235
+ Assumes that the annotations are contained in one or more of the corresponding '.a1', '.a2' or '.ann' files,
236
+ e.g. 'data/1234.ann' or 'data/1234.a1' and 'data/1234.a2'.
237
+ Will include annotator notes, when `parse_notes == True`.
238
+ brat_features = datasets.Features(
239
+ {
240
+ "id": datasets.Value("string"),
241
+ "document_id": datasets.Value("string"),
242
+ "text": datasets.Value("string"),
243
+ "text_bound_annotations": [ # T line in brat, e.g. type or event trigger
244
+ {
245
+ "offsets": datasets.Sequence([datasets.Value("int32")]),
246
+ "text": datasets.Sequence(datasets.Value("string")),
247
+ "type": datasets.Value("string"),
248
+ "id": datasets.Value("string"),
249
+ }
250
+ ],
251
+ "events": [ # E line in brat
252
+ {
253
+ "trigger": datasets.Value(
254
+ "string"
255
+ ), # refers to the text_bound_annotation of the trigger,
256
+ "id": datasets.Value("string"),
257
+ "type": datasets.Value("string"),
258
+ "arguments": datasets.Sequence(
259
+ {
260
+ "role": datasets.Value("string"),
261
+ "ref_id": datasets.Value("string"),
262
+ }
263
+ ),
264
+ }
265
+ ],
266
+ "relations": [ # R line in brat
267
+ {
268
+ "id": datasets.Value("string"),
269
+ "head": {
270
+ "ref_id": datasets.Value("string"),
271
+ "role": datasets.Value("string"),
272
+ },
273
+ "tail": {
274
+ "ref_id": datasets.Value("string"),
275
+ "role": datasets.Value("string"),
276
+ },
277
+ "type": datasets.Value("string"),
278
+ }
279
+ ],
280
+ "equivalences": [ # Equiv line in brat
281
+ {
282
+ "id": datasets.Value("string"),
283
+ "ref_ids": datasets.Sequence(datasets.Value("string")),
284
+ }
285
+ ],
286
+ "attributes": [ # M or A lines in brat
287
+ {
288
+ "id": datasets.Value("string"),
289
+ "type": datasets.Value("string"),
290
+ "ref_id": datasets.Value("string"),
291
+ "value": datasets.Value("string"),
292
+ }
293
+ ],
294
+ "normalizations": [ # N lines in brat
295
+ {
296
+ "id": datasets.Value("string"),
297
+ "type": datasets.Value("string"),
298
+ "ref_id": datasets.Value("string"),
299
+ "resource_name": datasets.Value(
300
+ "string"
301
+ ), # Name of the resource, e.g. "Wikipedia"
302
+ "cuid": datasets.Value(
303
+ "string"
304
+ ), # ID in the resource, e.g. 534366
305
+ "text": datasets.Value(
306
+ "string"
307
+ ), # Human readable description/name of the entity, e.g. "Barack Obama"
308
+ }
309
+ ],
310
+ ### OPTIONAL: Only included when `parse_notes == True`
311
+ "notes": [ # # lines in brat
312
+ {
313
+ "id": datasets.Value("string"),
314
+ "type": datasets.Value("string"),
315
+ "ref_id": datasets.Value("string"),
316
+ "text": datasets.Value("string"),
317
+ }
318
+ ],
319
+ },
320
+ )
321
+ """
322
+
323
+ example = {}
324
+ example["document_id"] = txt_file.with_suffix("").name
325
+ with txt_file.open() as f:
326
+ example["text"] = f.read()
327
+
328
+ # If no specific suffixes of the to-be-read annotation files are given - take standard suffixes
329
+ # for event extraction
330
+ if annotation_file_suffixes is None:
331
+ annotation_file_suffixes = [".a1", ".a2", ".ann"]
332
+
333
+ if len(annotation_file_suffixes) == 0:
334
+ raise AssertionError(
335
+ "At least one suffix for the to-be-read annotation files should be given!"
336
+ )
337
+
338
+ ann_lines = []
339
+ for suffix in annotation_file_suffixes:
340
+ annotation_file = txt_file.with_suffix(suffix)
341
+ try:
342
+ with annotation_file.open() as f:
343
+ ann_lines.extend(f.readlines())
344
+ except Exception:
345
+ continue
346
+
347
+ example["text_bound_annotations"] = []
348
+ example["events"] = []
349
+ example["relations"] = []
350
+ example["equivalences"] = []
351
+ example["attributes"] = []
352
+ example["normalizations"] = []
353
+
354
+ if parse_notes:
355
+ example["notes"] = []
356
+
357
+ for line in ann_lines:
358
+ line = line.strip()
359
+ if not line:
360
+ continue
361
+
362
+ if line.startswith("T"): # Text bound
363
+ ann = {}
364
+ fields = line.split("\t")
365
+
366
+ ann["id"] = fields[0]
367
+ ann["type"] = fields[1].split()[0]
368
+ ann["offsets"] = []
369
+ span_str = remove_prefix(fields[1], (ann["type"] + " "))
370
+ text = fields[2]
371
+ for span in span_str.split(";"):
372
+ start, end = span.split()
373
+ ann["offsets"].append([int(start), int(end)])
374
+
375
+ # Heuristically split text of discontiguous entities into chunks
376
+ ann["text"] = []
377
+ if len(ann["offsets"]) > 1:
378
+ i = 0
379
+ for start, end in ann["offsets"]:
380
+ chunk_len = end - start
381
+ ann["text"].append(text[i : chunk_len + i])
382
+ i += chunk_len
383
+ while i < len(text) and text[i] == " ":
384
+ i += 1
385
+ else:
386
+ ann["text"] = [text]
387
+
388
+ example["text_bound_annotations"].append(ann)
389
+
390
+ elif line.startswith("E"):
391
+ ann = {}
392
+ fields = line.split("\t")
393
+
394
+ ann["id"] = fields[0]
395
+
396
+ ann["type"], ann["trigger"] = fields[1].split()[0].split(":")
397
+
398
+ ann["arguments"] = []
399
+ for role_ref_id in fields[1].split()[1:]:
400
+ argument = {
401
+ "role": (role_ref_id.split(":"))[0],
402
+ "ref_id": (role_ref_id.split(":"))[1],
403
+ }
404
+ ann["arguments"].append(argument)
405
+
406
+ example["events"].append(ann)
407
+
408
+ elif line.startswith("R"):
409
+ ann = {}
410
+ fields = line.split("\t")
411
+
412
+ ann["id"] = fields[0]
413
+ ann["type"] = fields[1].split()[0]
414
+
415
+ ann["head"] = {
416
+ "role": fields[1].split()[1].split(":")[0],
417
+ "ref_id": fields[1].split()[1].split(":")[1],
418
+ }
419
+ ann["tail"] = {
420
+ "role": fields[1].split()[2].split(":")[0],
421
+ "ref_id": fields[1].split()[2].split(":")[1],
422
+ }
423
+
424
+ example["relations"].append(ann)
425
+
426
+ # '*' seems to be the legacy way to mark equivalences,
427
+ # but I couldn't find any info on the current way
428
+ # this might have to be adapted dependent on the brat version
429
+ # of the annotation
430
+ elif line.startswith("*"):
431
+ ann = {}
432
+ fields = line.split("\t")
433
+
434
+ ann["id"] = fields[0]
435
+ ann["ref_ids"] = fields[1].split()[1:]
436
+
437
+ example["equivalences"].append(ann)
438
+
439
+ elif line.startswith("A") or line.startswith("M"):
440
+ ann = {}
441
+ fields = line.split("\t")
442
+
443
+ ann["id"] = fields[0]
444
+
445
+ info = fields[1].split()
446
+ ann["type"] = info[0]
447
+ ann["ref_id"] = info[1]
448
+
449
+ if len(info) > 2:
450
+ ann["value"] = info[2]
451
+ else:
452
+ ann["value"] = ""
453
+
454
+ example["attributes"].append(ann)
455
+
456
+ elif line.startswith("N"):
457
+ ann = {}
458
+ fields = line.split("\t")
459
+
460
+ ann["id"] = fields[0]
461
+ ann["text"] = fields[2]
462
+
463
+ info = fields[1].split()
464
+
465
+ ann["type"] = info[0]
466
+ ann["ref_id"] = info[1]
467
+ ann["resource_name"] = info[2].split(":")[0]
468
+ ann["cuid"] = info[2].split(":")[1]
469
+ example["normalizations"].append(ann)
470
+
471
+ elif parse_notes and line.startswith("#"):
472
+ ann = {}
473
+ fields = line.split("\t")
474
+
475
+ ann["id"] = fields[0]
476
+ ann["text"] = fields[2] if len(fields) == 3 else BigBioValues.NULL
477
+
478
+ info = fields[1].split()
479
+
480
+ ann["type"] = info[0]
481
+ ann["ref_id"] = info[1]
482
+ example["notes"].append(ann)
483
+
484
+ return example
485
+
486
+
487
+ def brat_parse_to_bigbio_kb(brat_parse: Dict) -> Dict:
488
+ """
489
+ Transform a brat parse (conforming to the standard brat schema) obtained with
490
+ `parse_brat_file` into a dictionary conforming to the `bigbio-kb` schema (as defined in ../schemas/kb.py)
491
+ :param brat_parse:
492
+ """
493
+
494
+ unified_example = {}
495
+
496
+ # Prefix all ids with document id to ensure global uniqueness,
497
+ # because brat ids are only unique within their document
498
+ id_prefix = brat_parse["document_id"] + "_"
499
+
500
+ # identical
501
+ unified_example["document_id"] = brat_parse["document_id"]
502
+ unified_example["passages"] = [
503
+ {
504
+ "id": id_prefix + "_text",
505
+ "type": "abstract",
506
+ "text": [brat_parse["text"]],
507
+ "offsets": [[0, len(brat_parse["text"])]],
508
+ }
509
+ ]
510
+
511
+ # get normalizations
512
+ ref_id_to_normalizations = defaultdict(list)
513
+ for normalization in brat_parse["normalizations"]:
514
+ ref_id_to_normalizations[normalization["ref_id"]].append(
515
+ {
516
+ "db_name": normalization["resource_name"],
517
+ "db_id": normalization["cuid"],
518
+ }
519
+ )
520
+
521
+ # separate entities and event triggers
522
+ unified_example["events"] = []
523
+ non_event_ann = brat_parse["text_bound_annotations"].copy()
524
+ for event in brat_parse["events"]:
525
+ event = event.copy()
526
+ event["id"] = id_prefix + event["id"]
527
+ trigger = next(
528
+ tr
529
+ for tr in brat_parse["text_bound_annotations"]
530
+ if tr["id"] == event["trigger"]
531
+ )
532
+ if trigger in non_event_ann:
533
+ non_event_ann.remove(trigger)
534
+ event["trigger"] = {
535
+ "text": trigger["text"].copy(),
536
+ "offsets": trigger["offsets"].copy(),
537
+ }
538
+ for argument in event["arguments"]:
539
+ argument["ref_id"] = id_prefix + argument["ref_id"]
540
+
541
+ unified_example["events"].append(event)
542
+
543
+ unified_example["entities"] = []
544
+ anno_ids = [ref_id["id"] for ref_id in non_event_ann]
545
+ for ann in non_event_ann:
546
+ entity_ann = ann.copy()
547
+ entity_ann["id"] = id_prefix + entity_ann["id"]
548
+ entity_ann["normalized"] = ref_id_to_normalizations[ann["id"]]
549
+ unified_example["entities"].append(entity_ann)
550
+
551
+ # massage relations
552
+ unified_example["relations"] = []
553
+ skipped_relations = set()
554
+ for ann in brat_parse["relations"]:
555
+ if (
556
+ ann["head"]["ref_id"] not in anno_ids
557
+ or ann["tail"]["ref_id"] not in anno_ids
558
+ ):
559
+ skipped_relations.add(ann["id"])
560
+ continue
561
+ unified_example["relations"].append(
562
+ {
563
+ "arg1_id": id_prefix + ann["head"]["ref_id"],
564
+ "arg2_id": id_prefix + ann["tail"]["ref_id"],
565
+ "id": id_prefix + ann["id"],
566
+ "type": ann["type"],
567
+ "normalized": [],
568
+ }
569
+ )
570
+ if len(skipped_relations) > 0:
571
+ example_id = brat_parse["document_id"]
572
+ logger.info(
573
+ f"Example:{example_id}: The `bigbio_kb` schema allows `relations` only between entities."
574
+ f" Skip (for now): "
575
+ f"{list(skipped_relations)}"
576
+ )
577
+
578
+ # get coreferences
579
+ unified_example["coreferences"] = []
580
+ for i, ann in enumerate(brat_parse["equivalences"], start=1):
581
+ is_entity_cluster = True
582
+ for ref_id in ann["ref_ids"]:
583
+ if not ref_id.startswith("T"): # not textbound -> no entity
584
+ is_entity_cluster = False
585
+ elif ref_id not in anno_ids: # event trigger -> no entity
586
+ is_entity_cluster = False
587
+ if is_entity_cluster:
588
+ entity_ids = [id_prefix + i for i in ann["ref_ids"]]
589
+ unified_example["coreferences"].append(
590
+ {"id": id_prefix + str(i), "entity_ids": entity_ids}
591
+ )
592
+ return unified_example
ppr.py ADDED
@@ -0,0 +1,391 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import itertools as it
17
+ from typing import Dict, Generator, List, Tuple
18
+
19
+ import datasets
20
+
21
+ from .bigbiohub import BigBioConfig, Tasks, kb_features
22
+
23
+ _LANGUAGES = ["English"]
24
+ _PUBMED = True
25
+ _LOCAL = False
26
+
27
+ _CITATION = """\
28
+ @article{cho2022plant,
29
+ author = {Cho, Hyejin and Kim, Baeksoo and Choi, Wonjun and Lee, Doheon and Lee, Hyunju},
30
+ title = {Plant phenotype relationship corpus for biomedical relationships between plants and phenotypes},
31
+ journal = {Scientific Data},
32
+ volume = {9},
33
+ year = {2022},
34
+ publisher = {Nature Publishing Group},
35
+ doi = {https://doi.org/10.1038/s41597-022-01350-1},
36
+ }
37
+ """
38
+
39
+ _DATASETNAME = "ppr"
40
+ _DISPLAYNAME = "Plant-Phenotype-Relations"
41
+
42
+ _DESCRIPTION = """\
43
+ The Plant-Phenotype corpus is a text corpus with human annotations of plants, phenotypes, and their relations on a \
44
+ corpus in 600 PubMed abstracts.
45
+ """
46
+
47
+ _HOMEPAGE = "https://github.com/DMCB-GIST/PPRcorpus"
48
+
49
+ _LICENSE = "UNKNOWN"
50
+
51
+ _URLS = {
52
+ _DATASETNAME: [
53
+ "https://raw.githubusercontent.com/davidkartchner/PPRcorpus/main/corpus/PPR_train_corpus.txt",
54
+ "https://raw.githubusercontent.com/davidkartchner/PPRcorpus/main/corpus/PPR_dev_corpus.txt",
55
+ "https://raw.githubusercontent.com/davidkartchner/PPRcorpus/main/corpus/PPR_test_corpus.txt",
56
+ ],
57
+ }
58
+
59
+ _SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]
60
+
61
+ _SOURCE_VERSION = "1.0.0"
62
+ _BIGBIO_VERSION = "1.0.0"
63
+
64
+
65
+ class PlantPhenotypeDataset(datasets.GeneratorBasedBuilder):
66
+ """Plant-Phenotype is dataset for NER and RE of plants and their induced phenotypes"""
67
+
68
+ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
69
+ BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
70
+
71
+ BUILDER_CONFIGS = [
72
+ BigBioConfig(
73
+ name="ppr_source",
74
+ version=SOURCE_VERSION,
75
+ description="Plant Phenotype Relations source schema",
76
+ schema="source",
77
+ subset_id="plant_phenotype",
78
+ ),
79
+ BigBioConfig(
80
+ name="ppr_bigbio_kb",
81
+ version=BIGBIO_VERSION,
82
+ description="Plant Phenotype Relations BigBio schema",
83
+ schema="bigbio_kb",
84
+ subset_id="plant_phenotype",
85
+ ),
86
+ ]
87
+
88
+ DEFAULT_CONFIG_NAME = "ppr_source"
89
+
90
+ def _info(self) -> datasets.DatasetInfo:
91
+ if self.config.schema == "source":
92
+
93
+ features = datasets.Features(
94
+ {
95
+ "passage_id": datasets.Value("string"),
96
+ "pmid": datasets.Value("string"),
97
+ "section": datasets.Value("int32"),
98
+ "text": datasets.Value("string"),
99
+ "entities": [
100
+ {
101
+ "offsets": datasets.Sequence(datasets.Value("int32")),
102
+ "text": datasets.Value("string"),
103
+ "type": datasets.Value("string"),
104
+ }
105
+ ],
106
+ "relations": [
107
+ {
108
+ "relation_type": datasets.Value("string"),
109
+ "entity1_offsets": datasets.Sequence(datasets.Value("int32")),
110
+ "entity1_text": datasets.Value("string"),
111
+ "entity1_type": datasets.Value("string"),
112
+ "entity2_offsets": datasets.Sequence(datasets.Value("int32")),
113
+ "entity2_text": datasets.Value("string"),
114
+ "entity2_type": datasets.Value("string"),
115
+ }
116
+ ],
117
+ }
118
+ )
119
+
120
+ elif self.config.schema == "bigbio_kb":
121
+ features = kb_features
122
+ else:
123
+ raise NotImplementedError(f"Schema {self.config.schema} not supported")
124
+
125
+ return datasets.DatasetInfo(
126
+ description=_DESCRIPTION,
127
+ features=features,
128
+ homepage=_HOMEPAGE,
129
+ license=_LICENSE,
130
+ citation=_CITATION,
131
+ )
132
+
133
+ def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
134
+ """Returns SplitGenerators."""
135
+
136
+ urls = _URLS[_DATASETNAME]
137
+ train, dev, test = dl_manager.download_and_extract(urls)
138
+
139
+ return [
140
+ datasets.SplitGenerator(
141
+ name=datasets.Split.TRAIN,
142
+ gen_kwargs={
143
+ "filepath": train,
144
+ },
145
+ ),
146
+ datasets.SplitGenerator(
147
+ name=datasets.Split.TEST,
148
+ gen_kwargs={
149
+ "filepath": test,
150
+ },
151
+ ),
152
+ datasets.SplitGenerator(
153
+ name=datasets.Split.VALIDATION,
154
+ gen_kwargs={
155
+ "filepath": dev,
156
+ },
157
+ ),
158
+ ]
159
+
160
+ def _generate_examples(
161
+ self,
162
+ filepath,
163
+ ) -> Tuple[int, Dict]:
164
+ """Yields examples as (key, example) tuples."""
165
+
166
+ with open(filepath, "r") as f:
167
+ chunks = f.read().strip().split("\n\n")
168
+
169
+ if self.config.schema == "source":
170
+ for id_, doc in self._generate_source_examples(chunks):
171
+ yield id_, doc
172
+
173
+ elif self.config.schema == "bigbio_kb":
174
+ for id_, doc in self._generate_bigbio_kb_examples(chunks):
175
+ yield id_, doc
176
+
177
+ def _generate_whole_documents(self, annotation_chunks: List[str]) -> Generator[Dict, None, None]:
178
+ """Aggregate individual sentence annotations into whole abstracts.
179
+
180
+ Args:
181
+ annotation_chunks (List[str]): List of annotation chunks, i.e., a sentence with its annotations.
182
+ For example:
183
+ 10072339_4 OBJECTIVE: A patient with possible airborne facial dermatitis to potato is described.
184
+ 10072339 44 61 facial dermatitis Negative_phenotype
185
+ 10072339 65 71 potato Plant
186
+
187
+ Returns:
188
+ Generator producing a dictionary containing the pmid of an article and all document chunks.
189
+ """
190
+ prev_pmid = None
191
+ pmid = ""
192
+ doc_chunks = []
193
+
194
+ for chunk in annotation_chunks:
195
+ lines = chunk.split("\n")
196
+
197
+ # The first line is the sentence (format: <pmid>_<num>\t<sentence-text>)
198
+ passage_info, passage_text = lines[0].split("\t")
199
+
200
+ # Then annotations in Pubtator format
201
+ annotations = [line.split("\t") for line in lines[1:]]
202
+
203
+ # Get info on passage
204
+ pmid, section = passage_info.split("_")
205
+ if prev_pmid is None:
206
+ prev_pmid = pmid
207
+
208
+ elif prev_pmid != pmid:
209
+ yield {"pmid": prev_pmid, "doc_chunks": doc_chunks}
210
+
211
+ # Reset everything for next PMID
212
+ prev_pmid = pmid
213
+ doc_chunks = []
214
+
215
+ doc_chunks.append(
216
+ {
217
+ "passage": passage_text,
218
+ "annotations": annotations,
219
+ "sentence_id": passage_info,
220
+ }
221
+ )
222
+
223
+ # Take care of last document
224
+ yield {"pmid": pmid, "doc_chunks": doc_chunks}
225
+
226
+ def _generate_source_examples(self, annotation_chunks: List[str]) -> Generator[Tuple[str, Dict], None, None]:
227
+ """Generate examples in format of source schema
228
+
229
+ Args:
230
+ annotation_chunks (List[str]): List of annotation chunks.
231
+
232
+ Returns:
233
+ Generator of instance tuples (<key>, <instance-dict>)
234
+ """
235
+ for chunk in annotation_chunks:
236
+ lines = chunk.split("\n")
237
+
238
+ passage_id, passage_text = lines[0].split("\t")
239
+ annotations = [line.split("\t") for line in lines[1:]]
240
+
241
+ # Get info on passage
242
+ pmid, section = passage_id.split("_")
243
+ section = int(section)
244
+
245
+ # Grab entities and relations
246
+ entities = []
247
+ relations = []
248
+ for annotation in annotations:
249
+ if len(annotation) == 5:
250
+ # It's an entity annotation
251
+ entities.append(
252
+ {
253
+ "offsets": (int(annotation[1]), int(annotation[2])),
254
+ "text": annotation[3],
255
+ "type": annotation[4],
256
+ }
257
+ )
258
+
259
+ elif len(annotation) == 10:
260
+ # Relation annotation
261
+ relations.append(
262
+ {
263
+ "relation_type": annotation[1],
264
+ "entity1_offsets": (int(annotation[2]), int(annotation[3])),
265
+ "entity1_text": annotation[4],
266
+ "entity1_type": annotation[5],
267
+ "entity2_offsets": (int(annotation[6]), int(annotation[7])),
268
+ "entity2_text": annotation[8],
269
+ "entity2_type": annotation[9],
270
+ }
271
+ )
272
+ else:
273
+ # This is a special case that occurs for a single data point
274
+ relations.append(
275
+ {
276
+ "relation_type": annotation[1],
277
+ "entity1_offsets": (int(annotation[2]), int(annotation[3])),
278
+ "entity1_text": annotation[4],
279
+ "entity1_type": annotation[5],
280
+ "entity2_offsets": (int(annotation[8]), int(annotation[9])),
281
+ "entity2_text": annotation[10],
282
+ "entity2_type": annotation[11],
283
+ }
284
+ )
285
+
286
+ # Consolidate into document
287
+ document = {
288
+ "passage_id": passage_id,
289
+ "pmid": pmid,
290
+ "section": section,
291
+ "text": passage_text,
292
+ "entities": entities,
293
+ "relations": relations,
294
+ }
295
+
296
+ yield passage_id, document
297
+
298
+ def _generate_bigbio_kb_examples(self, annotation_chunks: List[str]):
299
+ """Generator for training examples in bigbio_kb schema format.
300
+
301
+ Args:
302
+ annotation_chunks (List[str]): List of annotation chunks.
303
+
304
+ Returns:
305
+ Generator of instance tuples (<key>, <instance-dict>)
306
+ """
307
+ uid = it.count(1)
308
+ for document in self._generate_whole_documents(annotation_chunks):
309
+ pmid = document["pmid"]
310
+ offset_delta = 0
311
+ id_ = str(next(uid))
312
+
313
+ passages = []
314
+ entities = []
315
+ relations = []
316
+
317
+ # Iterate through each section of the article
318
+ for text_section in document["doc_chunks"]:
319
+ # Extract passages
320
+ passage = text_section["passage"]
321
+ passages.append(
322
+ {
323
+ "id": str(next(uid)),
324
+ "text": [passage],
325
+ "type": "sentence",
326
+ "offsets": [(offset_delta, offset_delta + len(passage))],
327
+ }
328
+ )
329
+
330
+ # Extract entities
331
+ entities_sublist = []
332
+ for annotation in text_section["annotations"]:
333
+ if len(annotation) == 5:
334
+ entities_sublist.append(
335
+ {
336
+ "id": str(next(uid)),
337
+ "type": annotation[4],
338
+ "text": [annotation[3]],
339
+ "offsets": [(int(annotation[1]) + offset_delta, int(annotation[2]) + offset_delta)],
340
+ "normalized": [],
341
+ }
342
+ )
343
+
344
+ # Create mapping of offsets to entity_id
345
+ ent2id = {tuple(x["offsets"]): x["id"] for x in entities_sublist}
346
+ entities.extend(entities_sublist)
347
+
348
+ # Extract relations
349
+ for annotation in text_section["annotations"]:
350
+ if len(annotation) == 10:
351
+ e1_offsets = [(int(annotation[2]) + offset_delta, int(annotation[3]) + offset_delta)]
352
+ e2_offsets = [(int(annotation[6]) + offset_delta, int(annotation[7]) + offset_delta)]
353
+ relations.append(
354
+ {
355
+ "id": str(next(uid)),
356
+ "type": annotation[1],
357
+ "arg1_id": ent2id[tuple(e1_offsets)],
358
+ "arg2_id": ent2id[tuple(e2_offsets)],
359
+ "normalized": [],
360
+ }
361
+ )
362
+
363
+ # Special case for a single annotation
364
+ elif len(annotation) > 10:
365
+ print(annotation)
366
+ print(passage)
367
+ e1_offsets = [(int(annotation[2]) + offset_delta, int(annotation[3]) + offset_delta)]
368
+ e2_offsets = [(int(annotation[8]) + offset_delta, int(annotation[9]) + offset_delta)]
369
+ relations.append(
370
+ {
371
+ "id": str(next(uid)),
372
+ "type": annotation[1],
373
+ "arg1_id": ent2id[tuple(e1_offsets)],
374
+ "arg2_id": ent2id[tuple(e2_offsets)],
375
+ "normalized": [],
376
+ }
377
+ )
378
+
379
+ offset_delta += len(passage) + 1
380
+
381
+ doc = {
382
+ "id": id_,
383
+ "document_id": pmid,
384
+ "passages": passages,
385
+ "entities": entities,
386
+ "relations": relations,
387
+ "events": [],
388
+ "coreferences": [],
389
+ }
390
+
391
+ yield id_, doc