Datasets:

Languages:
English
License:
File size: 1,511 Bytes
21207d0
 
 
 
d1a3ce5
 
21207d0
0cad23e
d1a3ce5
21207d0
d1a3ce5
 
 
 
 
 
 
21207d0
 
 
 
 
 
 
 
 
 
3ea16ec
21207d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

---
language: 
- en
bigbio_language: 
- English
license: cc0-1.0
multilinguality: monolingual
bigbio_license_shortname: CC0_1p0
pretty_name: NLM-Chem
homepage: https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-2
bigbio_pubmed: True
bigbio_public: True
bigbio_tasks: 
- NAMED_ENTITY_RECOGNITION
- NAMED_ENTITY_DISAMBIGUATION
- TEXT_CLASSIFICATION
---


# Dataset Card for NLM-Chem

## Dataset Description

- **Homepage:** https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-2
- **Pubmed:** True
- **Public:** True
- **Tasks:** NER,NED,TXTCLASS


NLM-Chem corpus consists of 150 full-text articles from the PubMed Central Open Access dataset,
comprising 67 different chemical journals, aiming to cover a general distribution of usage of chemical
names in the biomedical literature.
Articles were selected so that human annotation was most valuable (meaning that they were rich in bio-entities,
and current state-of-the-art named entity recognition systems disagreed on bio-entity recognition.



## Citation Information

```
@Article{islamaj2021nlm,
title={NLM-Chem, a new resource for chemical entity recognition in PubMed full text literature},
author={Islamaj, Rezarta and Leaman, Robert and Kim, Sun and Kwon, Dongseop and Wei, Chih-Hsuan and Comeau, Donald C and Peng, Yifan and Cissel, David and Coss, Cathleen and Fisher, Carol and others},
journal={Scientific Data},
volume={8},
number={1},
pages={1--12},
year={2021},
publisher={Nature Publishing Group}
}

```