File size: 8,632 Bytes
6918fe9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The Repository for Medical Dataset for Abbreviation Disambiguation for Natural Language Understanding (MeDAL) is
a large medical text dataset curated for abbreviation disambiguation, designed for natural language understanding
pre-training in the medical domain. This script loads the MeDAL dataset in the bigbio KB schema and/or source schema.
"""
import pandas as pd
from typing import Dict, List, Tuple
import datasets
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
logger = datasets.logging.get_logger(__name__)
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@inproceedings{,
title = {MeDAL\: Medical Abbreviation Disambiguation Dataset for Natural Language Understanding Pretraining},
author = {Wen, Zhi and Lu, Xing Han and Reddy, Siva},
booktitle = {Proceedings of the 3rd Clinical Natural Language Processing Workshop},
month = {Nov},
year = {2020},
address = {Online},
publisher = {Association for Computational Linguistics},
url = {https://www.aclweb.org/anthology/2020.clinicalnlp-1.15},
pages = {130--135},
}
"""
_DATASETNAME = "medal"
_DISPLAYNAME = "MeDAL"
_DESCRIPTION = """\
The Repository for Medical Dataset for Abbreviation Disambiguation for Natural Language Understanding (MeDAL) is
a large medical text dataset curated for abbreviation disambiguation, designed for natural language understanding
pre-training in the medical domain.
"""
_HOMEPAGE = "https://github.com/BruceWen120/medal"
_LICENSE = 'National Library of Medicine Terms and Conditions'
_URL = "https://zenodo.org/record/4482922/files/"
_URLS = {
"train": _URL + "train.csv",
"test": _URL + "test.csv",
"valid": _URL + "valid.csv",
}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_DISAMBIGUATION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class MedalDataset(datasets.GeneratorBasedBuilder):
"""The Repository for Medical Dataset for Abbreviation Disambiguation for Natural Language Understanding (MeDAL) is
a large medical text dataset curated for abbreviation disambiguation, designed for natural language understanding
pre-training in the medical domain."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="medal_source",
version=SOURCE_VERSION,
description="MeDAL source schema",
schema="source",
subset_id="medal",
),
BigBioConfig(
name="medal_bigbio_kb",
version=BIGBIO_VERSION,
description="MeDAL BigBio schema",
schema="bigbio_kb",
subset_id="medal",
),
]
DEFAULT_CONFIG_NAME = "medal_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"abstract_id": datasets.Value("int32"),
"text": datasets.Value("string"),
"location": datasets.Sequence(datasets.Value("int32")),
"label": datasets.Sequence(datasets.Value("string")),
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(
self, dl_manager: datasets.DownloadManager
) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS
data_dir = dl_manager.download_and_extract(urls)
urls_to_dl = _URLS
try:
dl_dir = dl_manager.download_and_extract(urls_to_dl)
except Exception:
logger.warning(
"This dataset is downloaded through Zenodo which is flaky. If this download failed try a few times before reporting an issue"
)
raise
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": dl_dir["train"], "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": dl_dir["test"], "split": "test"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": dl_dir["valid"], "split": "val"},
),
]
def _generate_offsets(self, text, location):
"""Generate offsets from text and word location.
Parameters
----------
text : text
Abstract text
location : int
location of abbreviation in text, indexed by number of words in abstract
Returns
-------
dict
"word": str,
"offsets": tuple (int, int)
"""
words = text.split(" ")
word = words[location]
offset_start = sum(len(word) for word in words[0:location]) + location
offset_end = offset_start + len(word)
# return word and offsets
return {"word": word, "offsets": (offset_start, offset_end)}
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
with open(filepath, encoding="utf-8") as file:
data = pd.read_csv(
file,
sep=",",
dtype={"ABSTRACT_ID": str, "TEXT": str, "LOCATION": int, "LABEL": str},
)
if self.config.schema == "source":
for id_, row in enumerate(data.itertuples()):
yield id_, {
"abstract_id": int(row.ABSTRACT_ID),
"text": row.TEXT,
"location": [row.LOCATION],
"label": [row.LABEL],
}
elif self.config.schema == "bigbio_kb":
uid = 0 # global unique id
for id_, row in enumerate(data.itertuples()):
word_offsets = self._generate_offsets(row.TEXT, row.LOCATION)
example = {
"id": str(uid),
"document_id": row.ABSTRACT_ID,
"passages": [],
"entities": [],
"relations": [],
"events": [],
"coreferences": [],
}
uid += 1
example["passages"].append(
{
"id": str(uid),
"type": "PubMed abstract",
"text": [row.TEXT],
"offsets": [(0, len(row.TEXT))],
}
)
uid += 1
example["entities"].append(
{
"id": str(uid),
"type": "abbreviation",
"text": [word_offsets["word"]],
"offsets": [word_offsets["offsets"]],
"normalized": [
{
"db_name": "medal",
"db_id": row.LABEL,
}
],
}
)
uid += 1
yield id_, example
|