Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 8,632 Bytes
6918fe9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
The Repository for Medical Dataset for Abbreviation Disambiguation for Natural Language Understanding (MeDAL) is
a large medical text dataset curated for abbreviation disambiguation, designed for natural language understanding
pre-training in the medical domain. This script loads the MeDAL dataset in the bigbio KB schema and/or source schema.
"""

import pandas as pd
from typing import Dict, List, Tuple

import datasets

from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks

logger = datasets.logging.get_logger(__name__)

_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@inproceedings{,
    title = {MeDAL\: Medical Abbreviation Disambiguation Dataset for Natural Language Understanding Pretraining},
    author = {Wen, Zhi and Lu, Xing Han and Reddy, Siva},
    booktitle = {Proceedings of the 3rd Clinical Natural Language Processing Workshop},
    month = {Nov},
    year = {2020},
    address = {Online},
    publisher = {Association for Computational Linguistics},
    url = {https://www.aclweb.org/anthology/2020.clinicalnlp-1.15},
    pages = {130--135},
}
"""

_DATASETNAME = "medal"
_DISPLAYNAME = "MeDAL"

_DESCRIPTION = """\
The Repository for Medical Dataset for Abbreviation Disambiguation for Natural Language Understanding (MeDAL) is
a large medical text dataset curated for abbreviation disambiguation, designed for natural language understanding
pre-training in the medical domain.
"""

_HOMEPAGE = "https://github.com/BruceWen120/medal"

_LICENSE = 'National Library of Medicine Terms and Conditions'

_URL = "https://zenodo.org/record/4482922/files/"
_URLS = {
    "train": _URL + "train.csv",
    "test": _URL + "test.csv",
    "valid": _URL + "valid.csv",
}

_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_DISAMBIGUATION]

_SOURCE_VERSION = "1.0.0"

_BIGBIO_VERSION = "1.0.0"


class MedalDataset(datasets.GeneratorBasedBuilder):
    """The Repository for Medical Dataset for Abbreviation Disambiguation for Natural Language Understanding (MeDAL) is
    a large medical text dataset curated for abbreviation disambiguation, designed for natural language understanding
    pre-training in the medical domain."""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    BUILDER_CONFIGS = [
        BigBioConfig(
            name="medal_source",
            version=SOURCE_VERSION,
            description="MeDAL source schema",
            schema="source",
            subset_id="medal",
        ),
        BigBioConfig(
            name="medal_bigbio_kb",
            version=BIGBIO_VERSION,
            description="MeDAL BigBio schema",
            schema="bigbio_kb",
            subset_id="medal",
        ),
    ]

    DEFAULT_CONFIG_NAME = "medal_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "abstract_id": datasets.Value("int32"),
                    "text": datasets.Value("string"),
                    "location": datasets.Sequence(datasets.Value("int32")),
                    "label": datasets.Sequence(datasets.Value("string")),
                }
            )

        elif self.config.schema == "bigbio_kb":
            features = kb_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(
        self, dl_manager: datasets.DownloadManager
    ) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""

        urls = _URLS
        data_dir = dl_manager.download_and_extract(urls)

        urls_to_dl = _URLS
        try:
            dl_dir = dl_manager.download_and_extract(urls_to_dl)
        except Exception:
            logger.warning(
                "This dataset is downloaded through Zenodo which is flaky. If this download failed try a few times before reporting an issue"
            )
            raise

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepath": dl_dir["train"], "split": "train"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepath": dl_dir["test"], "split": "test"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepath": dl_dir["valid"], "split": "val"},
            ),
        ]

    def _generate_offsets(self, text, location):
        """Generate offsets from text and word location.

        Parameters
        ----------
        text : text
            Abstract text
        location : int
            location of abbreviation in text, indexed by number of words in abstract

        Returns
        -------
        dict
            "word": str,
            "offsets": tuple (int, int)
        """
        words = text.split(" ")
        word = words[location]
        offset_start = sum(len(word) for word in words[0:location]) + location
        offset_end = offset_start + len(word)

        # return word and offsets
        return {"word": word, "offsets": (offset_start, offset_end)}

    def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""

        with open(filepath, encoding="utf-8") as file:
            data = pd.read_csv(
                file,
                sep=",",
                dtype={"ABSTRACT_ID": str, "TEXT": str, "LOCATION": int, "LABEL": str},
            )

            if self.config.schema == "source":
                for id_, row in enumerate(data.itertuples()):
                    yield id_, {
                        "abstract_id": int(row.ABSTRACT_ID),
                        "text": row.TEXT,
                        "location": [row.LOCATION],
                        "label": [row.LABEL],
                    }
            elif self.config.schema == "bigbio_kb":
                uid = 0  # global unique id
                for id_, row in enumerate(data.itertuples()):
                    word_offsets = self._generate_offsets(row.TEXT, row.LOCATION)
                    example = {
                        "id": str(uid),
                        "document_id": row.ABSTRACT_ID,
                        "passages": [],
                        "entities": [],
                        "relations": [],
                        "events": [],
                        "coreferences": [],
                    }
                    uid += 1

                    example["passages"].append(
                        {
                            "id": str(uid),
                            "type": "PubMed abstract",
                            "text": [row.TEXT],
                            "offsets": [(0, len(row.TEXT))],
                        }
                    )

                    uid += 1

                    example["entities"].append(
                        {
                            "id": str(uid),
                            "type": "abbreviation",
                            "text": [word_offsets["word"]],
                            "offsets": [word_offsets["offsets"]],
                            "normalized": [
                                {
                                    "db_name": "medal",
                                    "db_id": row.LABEL,
                                }
                            ],
                        }
                    )
                    uid += 1
                    yield id_, example