Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 7,819 Bytes
408e34b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
The DDI corpus has been manually annotated with drugs and pharmacokinetics and
pharmacodynamics interactions. It contains 1025 documents from two different
sources: DrugBank database and MedLine.
"""

import os
from pathlib import Path
from typing import Dict, List, Tuple

import datasets

from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks

_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@article{HERREROZAZO2013914,
  title        = {
    The DDI corpus: An annotated corpus with pharmacological substances and
    drug-drug interactions
  },
  author       = {
    María Herrero-Zazo and Isabel Segura-Bedmar and Paloma Martínez and Thierry
    Declerck
  },
  year         = 2013,
  journal      = {Journal of Biomedical Informatics},
  volume       = 46,
  number       = 5,
  pages        = {914--920},
  doi          = {https://doi.org/10.1016/j.jbi.2013.07.011},
  issn         = {1532-0464},
  url          = {https://www.sciencedirect.com/science/article/pii/S1532046413001123},
  keywords     = {Biomedical corpora, Drug interaction, Information extraction}
}

"""

_DATASETNAME = "ddi_corpus"
_DISPLAYNAME = "DDI Corpus"

_DESCRIPTION = """\
The DDI corpus has been manually annotated with drugs and pharmacokinetics and \
pharmacodynamics interactions. It contains 1025 documents from two different \
sources: DrugBank database and MedLine.
"""

_HOMEPAGE = "https://github.com/isegura/DDICorpus"

_LICENSE = 'Creative Commons Attribution Non Commercial 4.0 International'

_URLS = {
    _DATASETNAME: "https://github.com/isegura/DDICorpus/raw/master/DDICorpus-2013(BRAT).zip",
}

_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]

_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"


class DDICorpusDataset(datasets.GeneratorBasedBuilder):
    """DDI Corpus"""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    BUILDER_CONFIGS = [
        BigBioConfig(
            name="ddi_corpus_source",
            version=SOURCE_VERSION,
            description="DDI Corpus source schema",
            schema="source",
            subset_id="ddi_corpus",
        ),
        BigBioConfig(
            name="ddi_corpus_bigbio_kb",
            version=BIGBIO_VERSION,
            description="DDI Corpus BigBio schema",
            schema="bigbio_kb",
            subset_id="ddi_corpus",
        ),
    ]

    DEFAULT_CONFIG_NAME = "ddi_corpus_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "document_id": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "entities": [
                        {
                            "offsets": datasets.Sequence(datasets.Value("int32")),
                            "text": datasets.Value("string"),
                            "type": datasets.Value("string"),
                            "id": datasets.Value("string"),
                        }
                    ],
                    "relations": [
                        {
                            "id": datasets.Value("string"),
                            "head": {
                                "ref_id": datasets.Value("string"),
                                "role": datasets.Value("string"),
                            },
                            "tail": {
                                "ref_id": datasets.Value("string"),
                                "role": datasets.Value("string"),
                            },
                            "type": datasets.Value("string"),
                        }
                    ],
                }
            )

        elif self.config.schema == "bigbio_kb":
            features = kb_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
        urls = _URLS[_DATASETNAME]
        data_dir = dl_manager.download_and_extract(urls)

        standoff_dir = os.path.join(data_dir, "DDICorpusBrat")

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": os.path.join(standoff_dir, "Train"),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": os.path.join(standoff_dir, "Test"),
                    "split": "test",
                },
            ),
        ]

    def _generate_examples(self, filepath: str, split: str) -> Tuple[int, Dict]:
        if self.config.schema == "source":
            for subdir, _, files in os.walk(filepath):
                for file in files:
                    # Ignore configuration files and annotation files - we just consider the brat text files
                    if not file.endswith(".txt"):
                        continue

                    brat_example = parsing.parse_brat_file(Path(subdir) / file)
                    source_example = self._to_source_example(brat_example)

                    yield source_example["document_id"], source_example

        elif self.config.schema == "bigbio_kb":
            for subdir, _, files in os.walk(filepath):
                for file in files:
                    # Ignore configuration files and annotation files - we just consider the brat text files
                    if not file.endswith(".txt"):
                        continue

                    # Read brat annotations for the given text file and convert example to the BigBio-KB format
                    brat_example = parsing.parse_brat_file(Path(subdir) / file)
                    kb_example = parsing.brat_parse_to_bigbio_kb(brat_example)
                    kb_example["id"] = kb_example["document_id"]

                    yield kb_example["id"], kb_example

    @staticmethod
    def _to_source_example(brat_example: Dict) -> Dict:
        source_example = {
            "document_id": brat_example["document_id"],
            "text": brat_example["text"],
            "relations": brat_example["relations"],
        }

        source_example["entities"] = []
        for entity_annotation in brat_example["text_bound_annotations"]:
            entity_ann = entity_annotation.copy()

            source_example["entities"].append(
                {
                    # These are lists in the parsed output, so just take the first element to
                    # match the source schema.
                    "offsets": entity_annotation["offsets"][0],
                    "text": entity_ann["text"][0],
                    "type": entity_ann["type"],
                    "id": entity_ann["id"],
                }
            )

        return source_example