messages
listlengths
8
8
images
images listlengths
1
1
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "regression on sarcos1-dataset . left : normalized mean squared errors ( the lower the better ) , middle : r-score ( the higher the better ) , right : running times ; as functions of nyström approximation level ( note the logartithmic scales ) . the results for krr are calculated without approximation and are shown as horizontal dashed lines . results for view and early fusion are worse than others and outside of the scope of the two plots .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "regression on sarcos1-dataset . left : normalized mean squared errors ( the lower the better ) , middle : r-score ( the higher the better ) , right : running times ; as functions of nyström approximation level ( note the logartithmic scales ) . the results for krr are calculated without approximation and are shown as horizontal dashed lines . results for view and early fusion are worse than others and outside of the scope of the two plots .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "regression on sarcos1-dataset . left : normalized mean squared errors ( the lower the better ) , middle : r-score ( the higher the better ) , right : running times ; as functions of nyström approximation level ( note the logartithmic scales ) . the results for krr are calculated without approximation and are shown as horizontal dashed lines . results for view and early fusion are worse than others and outside of the scope of the two plots .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "regression on sarcos1-dataset . left : normalized mean squared errors ( the lower the better ) , middle : r-score ( the higher the better ) , right : running times ; as functions of nyström approximation level ( note the logartithmic scales ) . the results for krr are calculated without approximation and are shown as horizontal dashed lines . results for view and early fusion are worse than others and outside of the scope of the two plots .", "type": "text" } ], "role": "assistant" } ]
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "strong scaling on cosmo large ( 69b particles ) , plasma large ( 189b particles ) and dayabay large ( 3b records ) datasets normalized to the time taken on 61 , 2576 , and 768 cores respectively . dashed lines denote ideal scaling .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "strong scaling on cosmo large ( 69b particles ) , plasma large ( 189b particles ) and dayabay large ( 3b records ) datasets normalized to the time taken on 61 , 2576 , and 768 cores respectively . dashed lines denote ideal scaling .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "strong scaling on cosmo large ( 69b particles ) , plasma large ( 189b particles ) and dayabay large ( 3b records ) datasets normalized to the time taken on 61 , 2576 , and 768 cores respectively . dashed lines denote ideal scaling .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "strong scaling on cosmo large ( 69b particles ) , plasma large ( 189b particles ) and dayabay large ( 3b records ) datasets normalized to the time taken on 61 , 2576 , and 768 cores respectively . dashed lines denote ideal scaling .", "type": "text" } ], "role": "assistant" } ]
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "1-nn exemplar classifier accuracy varying the number of ( counter- ) exemplars .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "1-nn exemplar classifier accuracy varying the number of ( counter- ) exemplars .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "1-nn exemplar classifier accuracy varying the number of ( counter- ) exemplars .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "1-nn exemplar classifier accuracy varying the number of ( counter- ) exemplars .", "type": "text" } ], "role": "assistant" } ]
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "stream size vs. time , ǫ = 0.5 .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "stream size vs. time , ǫ = 0.5 .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "stream size vs. time , ǫ = 0.5 .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "stream size vs. time , ǫ = 0.5 .", "type": "text" } ], "role": "assistant" } ]
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "masstree characterization .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "masstree characterization .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "masstree characterization .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "masstree characterization .", "type": "text" } ], "role": "assistant" } ]
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "objective value obtained versus number of effective passes over data . in the plots , the “ best ” objective value is defined as the lowest value obtained across the methods .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "objective value obtained versus number of effective passes over data . in the plots , the “ best ” objective value is defined as the lowest value obtained across the methods .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "objective value obtained versus number of effective passes over data . in the plots , the “ best ” objective value is defined as the lowest value obtained across the methods .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "objective value obtained versus number of effective passes over data . in the plots , the “ best ” objective value is defined as the lowest value obtained across the methods .", "type": "text" } ], "role": "assistant" } ]
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "histogram statistics of cosine distance for positive and negative pairs on mnist [ 15 ] . feature discrimination and polymerization are more evident using coco than other losses .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "histogram statistics of cosine distance for positive and negative pairs on mnist [ 15 ] . feature discrimination and polymerization are more evident using coco than other losses .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "histogram statistics of cosine distance for positive and negative pairs on mnist [ 15 ] . feature discrimination and polymerization are more evident using coco than other losses .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "histogram statistics of cosine distance for positive and negative pairs on mnist [ 15 ] . feature discrimination and polymerization are more evident using coco than other losses .", "type": "text" } ], "role": "assistant" } ]
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "tubular reactor example : decay of the singular values of the snapshot matrix and the nonlinear snapshot matrix .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "tubular reactor example : decay of the singular values of the snapshot matrix and the nonlinear snapshot matrix .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "tubular reactor example : decay of the singular values of the snapshot matrix and the nonlinear snapshot matrix .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "tubular reactor example : decay of the singular values of the snapshot matrix and the nonlinear snapshot matrix .", "type": "text" } ], "role": "assistant" } ]
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "performance evaluation on general mer , using different numbers of latent topics in aeg .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "performance evaluation on general mer , using different numbers of latent topics in aeg .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "performance evaluation on general mer , using different numbers of latent topics in aeg .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "performance evaluation on general mer , using different numbers of latent topics in aeg .", "type": "text" } ], "role": "assistant" } ]
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "comparison of the algorithms on exploration tasks ( a , b , c ) and goal-conditioned learning ( d ) , with parameters ξ = 0.1 , ζ = 0.7 , n = 10 ( a , b , d ) and ξ = 0.01 , ζ = 1 , n = 200 ( c ) . ( 9 % c.i . over 100 runs ( a , b ) , 40 runs ( c ) , 00 runs ( d ) ) . comparison of the solve time ( e ) achieved by column sum and dual formulations as a function of the number of variables .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "comparison of the algorithms on exploration tasks ( a , b , c ) and goal-conditioned learning ( d ) , with parameters ξ = 0.1 , ζ = 0.7 , n = 10 ( a , b , d ) and ξ = 0.01 , ζ = 1 , n = 200 ( c ) . ( 9 % c.i . over 100 runs ( a , b ) , 40 runs ( c ) , 00 runs ( d ) ) . comparison of the solve time ( e ) achieved by column sum and dual formulations as a function of the number of variables .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "comparison of the algorithms on exploration tasks ( a , b , c ) and goal-conditioned learning ( d ) , with parameters ξ = 0.1 , ζ = 0.7 , n = 10 ( a , b , d ) and ξ = 0.01 , ζ = 1 , n = 200 ( c ) . ( 9 % c.i . over 100 runs ( a , b ) , 40 runs ( c ) , 00 runs ( d ) ) . comparison of the solve time ( e ) achieved by column sum and dual formulations as a function of the number of variables .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "comparison of the algorithms on exploration tasks ( a , b , c ) and goal-conditioned learning ( d ) , with parameters ξ = 0.1 , ζ = 0.7 , n = 10 ( a , b , d ) and ξ = 0.01 , ζ = 1 , n = 200 ( c ) . ( 9 % c.i . over 100 runs ( a , b ) , 40 runs ( c ) , 00 runs ( d ) ) . comparison of the solve time ( e ) achieved by column sum and dual formulations as a function of the number of variables .", "type": "text" } ], "role": "assistant" } ]
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "( a ) error ration of lre , pc and ip algorithms , ( b ) ud ratio of lre and pc algorithms .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "( a ) error ration of lre , pc and ip algorithms , ( b ) ud ratio of lre and pc algorithms .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "( a ) error ration of lre , pc and ip algorithms , ( b ) ud ratio of lre and pc algorithms .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "( a ) error ration of lre , pc and ip algorithms , ( b ) ud ratio of lre and pc algorithms .", "type": "text" } ], "role": "assistant" } ]
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "the average training errors of the asyspa and the algorithm in [ 7 ] versus computing time under different β .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "the average training errors of the asyspa and the algorithm in [ 7 ] versus computing time under different β .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "the average training errors of the asyspa and the algorithm in [ 7 ] versus computing time under different β .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "the average training errors of the asyspa and the algorithm in [ 7 ] versus computing time under different β .", "type": "text" } ], "role": "assistant" } ]
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "cumulative mismatch as a function of time for each consumer under three algorithms : ( a ) the proposed framework , ( b ) the proposed mpc and a myopic ( short-sighted ) settlement , and ( c ) a rule-based control algorithm and the myopic settlement . the proposed framework delivers smaller end-of year mismatches .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "cumulative mismatch as a function of time for each consumer under three algorithms : ( a ) the proposed framework , ( b ) the proposed mpc and a myopic ( short-sighted ) settlement , and ( c ) a rule-based control algorithm and the myopic settlement . the proposed framework delivers smaller end-of year mismatches .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "cumulative mismatch as a function of time for each consumer under three algorithms : ( a ) the proposed framework , ( b ) the proposed mpc and a myopic ( short-sighted ) settlement , and ( c ) a rule-based control algorithm and the myopic settlement . the proposed framework delivers smaller end-of year mismatches .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "cumulative mismatch as a function of time for each consumer under three algorithms : ( a ) the proposed framework , ( b ) the proposed mpc and a myopic ( short-sighted ) settlement , and ( c ) a rule-based control algorithm and the myopic settlement . the proposed framework delivers smaller end-of year mismatches .", "type": "text" } ], "role": "assistant" } ]
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "prediction performance of various classifiers with variable length test speech streams .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "prediction performance of various classifiers with variable length test speech streams .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "prediction performance of various classifiers with variable length test speech streams .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "prediction performance of various classifiers with variable length test speech streams .", "type": "text" } ], "role": "assistant" } ]
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "tracking of subject s5 between ert ( solid line ) and erest ( dotted line ) during cycling .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "tracking of subject s5 between ert ( solid line ) and erest ( dotted line ) during cycling .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "tracking of subject s5 between ert ( solid line ) and erest ( dotted line ) during cycling .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "tracking of subject s5 between ert ( solid line ) and erest ( dotted line ) during cycling .", "type": "text" } ], "role": "assistant" } ]
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "graph size vs average component ingest rate .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "graph size vs average component ingest rate .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "graph size vs average component ingest rate .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "graph size vs average component ingest rate .", "type": "text" } ], "role": "assistant" } ]
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "the estimation variables θ̂i for second-order agents ( i = 1 , . . . , 4 ) .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "the estimation variables θ̂i for second-order agents ( i = 1 , . . . , 4 ) .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "the estimation variables θ̂i for second-order agents ( i = 1 , . . . , 4 ) .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "the estimation variables θ̂i for second-order agents ( i = 1 , . . . , 4 ) .", "type": "text" } ], "role": "assistant" } ]
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "the variance of user synthesized channel capacities with the sup scheme . the channel is configured as the awgn channel .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "the variance of user synthesized channel capacities with the sup scheme . the channel is configured as the awgn channel .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "the variance of user synthesized channel capacities with the sup scheme . the channel is configured as the awgn channel .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "the variance of user synthesized channel capacities with the sup scheme . the channel is configured as the awgn channel .", "type": "text" } ], "role": "assistant" } ]
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "classification accuracy versus α , for d = 5 and β = 0.8 .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "classification accuracy versus α , for d = 5 and β = 0.8 .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "classification accuracy versus α , for d = 5 and β = 0.8 .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "classification accuracy versus α , for d = 5 and β = 0.8 .", "type": "text" } ], "role": "assistant" } ]
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "computational error ec of banio3 with hexagonal unit cell : a ) effective mechanical modulus c ; b ) effective electromechanical modulus e ; c ) effective dielectric modulus .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "computational error ec of banio3 with hexagonal unit cell : a ) effective mechanical modulus c ; b ) effective electromechanical modulus e ; c ) effective dielectric modulus .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "computational error ec of banio3 with hexagonal unit cell : a ) effective mechanical modulus c ; b ) effective electromechanical modulus e ; c ) effective dielectric modulus .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "computational error ec of banio3 with hexagonal unit cell : a ) effective mechanical modulus c ; b ) effective electromechanical modulus e ; c ) effective dielectric modulus .", "type": "text" } ], "role": "assistant" } ]
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "the logarithm of the global error at t = 1 against h/ǫ for ǫ = 1/210 and h = 1/k , where k = 60 , 61 , . . . , 600 .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "the logarithm of the global error at t = 1 against h/ǫ for ǫ = 1/210 and h = 1/k , where k = 60 , 61 , . . . , 600 .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "the logarithm of the global error at t = 1 against h/ǫ for ǫ = 1/210 and h = 1/k , where k = 60 , 61 , . . . , 600 .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "the logarithm of the global error at t = 1 against h/ǫ for ǫ = 1/210 and h = 1/k , where k = 60 , 61 , . . . , 600 .", "type": "text" } ], "role": "assistant" } ]
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "se ( ‖uk+1−uk‖‖uk‖ ) changes v.s . iteration number ( both in log scale ) : top : bca ; bottom : bcaf ; left : η = 1 , σ = 10 −1 ; right : η = 1 , σ = 10−4 . the test image is circles ( fig1 ( a ) ) .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "se ( ‖uk+1−uk‖‖uk‖ ) changes v.s . iteration number ( both in log scale ) : top : bca ; bottom : bcaf ; left : η = 1 , σ = 10 −1 ; right : η = 1 , σ = 10−4 . the test image is circles ( fig1 ( a ) ) .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "se ( ‖uk+1−uk‖‖uk‖ ) changes v.s . iteration number ( both in log scale ) : top : bca ; bottom : bcaf ; left : η = 1 , σ = 10 −1 ; right : η = 1 , σ = 10−4 . the test image is circles ( fig1 ( a ) ) .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "se ( ‖uk+1−uk‖‖uk‖ ) changes v.s . iteration number ( both in log scale ) : top : bca ; bottom : bcaf ; left : η = 1 , σ = 10 −1 ; right : η = 1 , σ = 10−4 . the test image is circles ( fig1 ( a ) ) .", "type": "text" } ], "role": "assistant" } ]
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "comparison of the energy consumption between the ai-enabled lpwa hybrid method and different wireless-communication technologies and in the aiwac system .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "comparison of the energy consumption between the ai-enabled lpwa hybrid method and different wireless-communication technologies and in the aiwac system .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "comparison of the energy consumption between the ai-enabled lpwa hybrid method and different wireless-communication technologies and in the aiwac system .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "comparison of the energy consumption between the ai-enabled lpwa hybrid method and different wireless-communication technologies and in the aiwac system .", "type": "text" } ], "role": "assistant" } ]
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "the influence of the dimensionality of the hidden view on the classification accuracy .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "the influence of the dimensionality of the hidden view on the classification accuracy .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "the influence of the dimensionality of the hidden view on the classification accuracy .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "the influence of the dimensionality of the hidden view on the classification accuracy .", "type": "text" } ], "role": "assistant" } ]
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "figure ( a ) shows both theoretical approximations and simulation results . figures ( b ) and ( c ) are based on computer simulations . here k = 50 caches and n = 1000 files .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "figure ( a ) shows both theoretical approximations and simulation results . figures ( b ) and ( c ) are based on computer simulations . here k = 50 caches and n = 1000 files .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "figure ( a ) shows both theoretical approximations and simulation results . figures ( b ) and ( c ) are based on computer simulations . here k = 50 caches and n = 1000 files .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "figure ( a ) shows both theoretical approximations and simulation results . figures ( b ) and ( c ) are based on computer simulations . here k = 50 caches and n = 1000 files .", "type": "text" } ], "role": "assistant" } ]
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "test performance of resnet-32 model with bn , for increased training length in number of epochs . cifar-10 dataset with data augmentation .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "test performance of resnet-32 model with bn , for increased training length in number of epochs . cifar-10 dataset with data augmentation .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "test performance of resnet-32 model with bn , for increased training length in number of epochs . cifar-10 dataset with data augmentation .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "test performance of resnet-32 model with bn , for increased training length in number of epochs . cifar-10 dataset with data augmentation .", "type": "text" } ], "role": "assistant" } ]
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "performance of distributed ( dotted lines ) , centralized ( solid ) , and single-task learning ( dashed ) algorithms on benchmark datasets . shaded region shows standard error ( best viewed in color . ) .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "performance of distributed ( dotted lines ) , centralized ( solid ) , and single-task learning ( dashed ) algorithms on benchmark datasets . shaded region shows standard error ( best viewed in color . ) .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "performance of distributed ( dotted lines ) , centralized ( solid ) , and single-task learning ( dashed ) algorithms on benchmark datasets . shaded region shows standard error ( best viewed in color . ) .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "performance of distributed ( dotted lines ) , centralized ( solid ) , and single-task learning ( dashed ) algorithms on benchmark datasets . shaded region shows standard error ( best viewed in color . ) .", "type": "text" } ], "role": "assistant" } ]
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "for hellaswag , we ensure high human agreement through several rounds of annotation . by collecting how likely each ending is we can filter false negative endings – machine generations that sound realistic – and replace them with true negatives . on both subdatasets , bert performance increases during validation , but the gap to human performance remains wide .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "for hellaswag , we ensure high human agreement through several rounds of annotation . by collecting how likely each ending is we can filter false negative endings – machine generations that sound realistic – and replace them with true negatives . on both subdatasets , bert performance increases during validation , but the gap to human performance remains wide .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "for hellaswag , we ensure high human agreement through several rounds of annotation . by collecting how likely each ending is we can filter false negative endings – machine generations that sound realistic – and replace them with true negatives . on both subdatasets , bert performance increases during validation , but the gap to human performance remains wide .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "for hellaswag , we ensure high human agreement through several rounds of annotation . by collecting how likely each ending is we can filter false negative endings – machine generations that sound realistic – and replace them with true negatives . on both subdatasets , bert performance increases during validation , but the gap to human performance remains wide .", "type": "text" } ], "role": "assistant" } ]
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "cost vs. switching offset with real data .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "cost vs. switching offset with real data .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "cost vs. switching offset with real data .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "cost vs. switching offset with real data .", "type": "text" } ], "role": "assistant" } ]
[ { "content": [ { "index": null, "text": "Can you provide a scientific caption for this image?\n", "type": "text" }, { "index": 0, "text": null, "type": "image" } ], "role": "user" }, { "content": [ { "index": null, "text": "clusters and mean series estimated by the regression mixture em algorithm applied with ( k , p ) = ( 2 , 10 ) .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What are the key features observed in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "clusters and mean series estimated by the regression mixture em algorithm applied with ( k , p ) = ( 2 , 10 ) .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "Can you provide a scientific explanation for this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "clusters and mean series estimated by the regression mixture em algorithm applied with ( k , p ) = ( 2 , 10 ) .", "type": "text" } ], "role": "assistant" }, { "content": [ { "index": null, "text": "What is the significance of the findings shown in this image?\n", "type": "text" } ], "role": "user" }, { "content": [ { "index": null, "text": "clusters and mean series estimated by the regression mixture em algorithm applied with ( k , p ) = ( 2 , 10 ) .", "type": "text" } ], "role": "assistant" } ]
README.md exists but content is empty. Use the Edit dataset card button to edit it.
Downloads last month
33
Edit dataset card