File size: 3,584 Bytes
3f04071
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3158a7
 
 
 
 
3f04071
 
 
 
 
 
c3158a7
3f04071
 
 
 
552016d
3f04071
2de09ce
552016d
3f04071
5038e3d
3f04071
 
 
 
6f48c7f
3f04071
 
 
 
 
 
 
 
 
 
 
 
 
 
f237940
3f04071
 
 
 
 
 
 
 
2de09ce
3f04071
 
 
 
 
9b2124d
2de09ce
3f04071
 
 
30631d7
3f04071
 
2de09ce
5038e3d
3f04071
332af39
c0c7015
3f04071
3ff5d9c
3f04071
 
 
fbce027
c8bcfeb
fbce027
8564221
fbce027
3ff5d9c
fbce027
d22e0a9
7912593
fbce027
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# coding=utf-8
# Copyright 2022 the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import datasets


_CITATION = """\
@article{Pattern Recognition,
    Author = {bri A. Mahmoud, Irfan Ahmad, Wasfi G. Al-Khatib, Mohammad Alshayeb, Mohammad Tanvir Parvez, Volker Märgner, Gernot A. Fink},
    Title = { {KHATT: An Open Arabic Offline Handwritten Text Database} },
    Year = {2013},
    doi = {10.1016/j.patcog.2013.08.009},
}
"""

_HOMEPAGE = "https://khatt.ideas2serve.net/KHATTAgreement.php"

_DESCRIPTION = """\
KHATT (KFUPM Handwritten Arabic TexT) database is a database of unconstrained handwritten Arabic Text written by 1000 different writers. This research database’s development was undertaken by a research group from KFUPM, Dhahran, S audi Arabia headed by Professor Sabri Mahmoud in collaboration with Professor Fink from TU-Dortmund, Germany and Dr. Märgner from TU-Braunschweig, Germany.
"""

_DATA_URL = {
    "train": [
        "https://huggingface.co/datasets/benhachem/KHATT/resolve/main/data/train.zip"
    ],
    "validation": [
        "https://huggingface.co/datasets/benhachem/KHATT/resolve/main/data/validation.zip"
    ],

}


class KHATT(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "image": datasets.Image(),
                    "text": datasets.Value("string"),
                }
            ),
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        archives = dl_manager.download(_DATA_URL)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "archives": [dl_manager.iter_archive(archive) for archive in archives["train"]],
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "archives": [dl_manager.iter_archive(archive) for archive in archives["validation"]],
                    "split": "validation",
                },
            ),
        ]
    def _generate_examples(self, archives, split):
        """Yields examples."""
        idx = 0

        for archive in archives:
            for path, file in archive:
                # If we have an image
                if path.endswith(".tif"):
                    if split != "test":
                        img_file = file                          
                    else:
                        text = ""

                elif path.endswith(".txt"):

                    text = file.read()
                    text = text.decode('utf-8')

                    ex = {"image": {"path": path, "bytes": img_file.read()}, "text": text}

                    yield idx, ex

                    idx += 1