File size: 7,935 Bytes
f11974a
 
 
 
 
452ea5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f11974a
 
452ea5e
f11974a
452ea5e
 
f11974a
 
 
 
 
249fd0b
 
 
 
 
 
 
 
 
 
 
 
 
d0bff7a
c1bb188
d0bff7a
c1bb188
d0bff7a
c1bb188
d0bff7a
 
 
c1bb188
d0bff7a
c1bb188
 
d0bff7a
c1bb188
d0bff7a
 
 
 
 
c1bb188
 
 
 
d0bff7a
 
 
c1bb188
 
 
 
d0bff7a
c1bb188
d0bff7a
 
 
c1bb188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0bff7a
c1bb188
d0bff7a
 
 
 
 
c1bb188
 
 
 
d0bff7a
c1bb188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0bff7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
---
dataset_info:
  features:
  - name: audio
    dtype: audio
  - name: amusing
    dtype: float64
  - name: angry
    dtype: float64
  - name: annoying
    dtype: float64
  - name: anxious/tense
    dtype: float64
  - name: awe-inspiring/amazing
    dtype: float64
  - name: beautiful
    dtype: float64
  - name: bittersweet
    dtype: float64
  - name: calm/relaxing/serene
    dtype: float64
  - name: compassionate/sympathetic
    dtype: float64
  - name: dreamy
    dtype: float64
  - name: eerie/mysterious
    dtype: float64
  - name: energizing/pump-up
    dtype: float64
  - name: entrancing
    dtype: float64
  - name: erotic/desirous
    dtype: float64
  - name: euphoric/ecstatic
    dtype: float64
  - name: exciting
    dtype: float64
  - name: goose bumps
    dtype: float64
  - name: indignant/defiant
    dtype: float64
  - name: joyful/cheerful
    dtype: float64
  - name: nauseating/revolting
    dtype: float64
  - name: painful
    dtype: float64
  - name: proud/strong
    dtype: float64
  - name: romantic/loving
    dtype: float64
  - name: sad/depressing
    dtype: float64
  - name: scary/fearful
    dtype: float64
  - name: tender/longing
    dtype: float64
  - name: transcendent/mystical
    dtype: float64
  - name: triumphant/heroic
    dtype: float64
  splits:
  - name: train
    num_bytes: 166110026.787
    num_examples: 1841
  download_size: 159674012
  dataset_size: 166110026.787
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
task_categories:
- feature-extraction
- audio-classification
tags:
- Music
- Emotion
- Recognition
- MERT
- Dataset
- Audio
pretty_name: 13 Dimension Emotions Dataset
size_categories:
- 1K<n<10K
---
# Dataset Card for **Music Emotion Ratings Across Cultures**

This dataset captures the mean emotional category ratings for 1,841 music samples based on subjective experiences reported by participants from the United States and China. The ratings were collected as part of the study to uncover the **universal and nuanced emotions** evoked by instrumental music.

---

## Dataset Details

### Dataset Sources

- **Paper**: [What music makes us feel: At least 13 dimensions organize subjective experiences associated with music across different cultures](https://www.pnas.org/cgi/doi/10.1073/pnas.1910704117)  
- **Demo (Interactive Map)**: [Music Emotion Map](https://www.ocf.berkeley.edu/~acowen/music.html)  

---

## Uses

### Direct Use

This dataset is designed for:  
- **Music Emotion Classification**: Training multi-label classifiers for identifying emotions in music based on 13 universal categories.  
- **Cross-Cultural Emotion Analysis**: Analyzing similarities and differences in emotional responses to music across cultures.  
- **Emotion Visualization**: Creating high-dimensional visualizations of emotional distributions in music.  

### Out-of-Scope Use

The dataset is **not suitable** for:  
- Identifying lyrics-related emotions (as the music is instrumental).  
- Cultural or genre-specific emotional predictions outside the U.S. and China.  
- Misuse for building biased systems that assume emotional responses are fixed across all populations.  

---

## Dataset Structure

### Data Fields

- **Sample ID**: Unique identifier for each of the 2,168 music clips.  
- **Category Ratings**: Mean ratings for each of the 13 universal emotional categories:  
  - Joyful/Cheerful  
  - Calm/Relaxing  
  - Sad/Depressing  
  - Scary/Fearful  
  - Triumphant/Heroic  
  - Energizing/Pump-up  
  - Dreamy  
  - Romantic/Loving  
  - Amusing  
  - Exciting  
  - Compassionate/Sympathetic  
  - Awe-Inspiring  
  - Eerie/Mysterious  
- **Valence**: Mean ratings for pleasantness (positive or negative feelings).  
- **Arousal**: Mean ratings for energy levels (calm or excited feelings).  

### Splits

The dataset does not use predefined splits but can be segmented based on:  
- **Cultural groups**: U.S. vs. China.  
- **Emotional dimensions**: Individual emotional categories or broad features like valence/arousal.  

---

## Dataset Creation

### Curation Rationale

The dataset was created to:  
- **Map Universal Emotions in Music**: Investigate whether emotional experiences evoked by music are universal across cultures.  
- **Broaden Emotional Taxonomies**: Move beyond traditional models that use only 6 emotions or simple valence/arousal dimensions.  
- **Enable Nuanced Emotional Understanding**: Provide a high-dimensional framework for understanding and classifying emotional responses to music.  

---

### Source Data

- **Original Sources**: Instrumental music samples (5 seconds each) were contributed by participants to represent specific emotional categories.  
- **Annotations**: Ratings collected through large-scale crowdsourcing from 1,591 U.S. and 1,258 Chinese participants.  

---

## License

[More Information Needed]  

---

## Citation

If you use this dataset, please cite the following paper:
Cowen, A. S., Fang, X., Sauter, D., & Keltner, D. (2020). What music makes us feel: At least 13 dimensions organize subjective experiences associated with music across different cultures. PNAS, 117(4), 1924-1934. https://doi.org/10.1073/pnas.1910704117

### Source Data

<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->

#### Data Collection and Processing

<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->

[More Information Needed]

#### Who are the source data producers?

<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->

[More Information Needed]

### Annotations [optional]

<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->

#### Annotation process

<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->

[More Information Needed]

#### Who are the annotators?

<!-- This section describes the people or systems who created the annotations. -->

[More Information Needed]

#### Personal and Sensitive Information

<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->

[More Information Needed]

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

[More Information Needed]

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.

## Citation [optional]

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Dataset Card Authors [optional]

[More Information Needed]

## Dataset Card Contact

[More Information Needed]