label
int64 0
1
| text
stringlengths 328
4.12k
| pmid
int64 1.82M
37M
|
---|---|---|
1 | Evolution of TRP channels inferred by their classification in diverse animal species.
The functions of TRP channels have primarily been characterized in model organisms within a limited evolutionary context. We thus characterize the TRP channels in choanoflagellate, sponge, Cnidaria, Lophotrochozoa, and arthropods to understand how they emerged during early evolution of animals and have changed during diversification of various species. As previously reported, five metazoan TRP subfamily members (TRPA, TRPC, TRPM, TRPML, and TRPV) were identified in choanoflagellates, demonstrating that they evolved before the emergence of multicellular animals. TRPN was identified in Hydra magnipapillata, and therefore emerged in the last common ancestor of Cnidaria-Bilateria. A novel subfamily member (TRPVL) was identified in Cnidaria and Capitella teleta, indicating that it was present in the last common ancestor of Cnidaria-Bilateria but has since been lost in most bilaterians. The characterization of arthropod TRP channels revealed that Daphnia pulex and insects have specifically expanded the TRPA subfamily, which diverged from the ancient TRPA1 channel gene. The diversity of TRPA channels except TRPA1 was detectable even within a single insect family, namely the ant lineage. The present study demonstrates the evolutionary history of TRP channel genes, which may have diverged in conjunction with the specific habitats and life histories of individual species.
| 24,981,559 |
1 | Opposite effect of capsaicin and capsazepine on behavioral thermoregulation in insects.
Transient receptor potential channels are implicated in thermosensation both in mammals and insects. The aim of our study was to assess the effect of mammalian vanilloid receptor subtype 1 (TRPV1) agonist (capsaicin) and antagonist (capsazepine) on insect behavioral thermoregulation. We tested behavioral thermoregulation of mealworms larvae intoxicated with capsaicin and capsazepine in two concentrations (10(-7) and 10(-4) M) in a thermal gradient system for 3 days. Our results revealed that in low concentration, capsaicin induces seeking lower temperatures than the ones selected by the insects that were not intoxicated. After application of capsazepine in the same concentration, the mealworms prefer higher temperatures than the control group. The observed opposite effect of TRPV1 agonist and antagonist on insect behavioral thermoregulation, which is similar to the effect of these substances on thermoregulation in mammals, indicates indirectly that capsaicin may act on receptors in insects that are functionally similar to TRPV1.
| 21,667,066 |
1 | Nociceptive Pathway in the Cockroach Periplaneta americana.
Detecting and avoiding environmental threats such as those with a potential for injury is of crucial importance for an animal's survival. In this work, we examine the nociceptive pathway in an insect, the cockroach Periplaneta americana, from detection of noxious stimuli to nocifensive behavior. We show that noxious stimuli applied to the cuticle of cockroaches evoke responses in sensory axons that are distinct from tactile sensory axons in the sensory afferent nerve. We also reveal differences in the evoked response of post-synaptic projection interneurons in the nerve cord to tactile versus noxious stimuli. Noxious stimuli are encoded in the cockroach nerve cord by fibers of diameter different from that of tactile and wind sensitive fibers with a slower conduction velocity of 2-3 m/s. Furthermore, recording from the neck-connectives show that the nociceptive information reaches the head ganglia. Removing the head ganglia results in a drastic decrease in the nocifensive response indicating that the head ganglia and the nerve cord are both involved in processing noxious stimuli.
| 31,496,959 |
1 | Effect of Capsaicin and Other Thermo-TRP Agonists on Thermoregulatory Processes in the American Cockroach.
Capsaicin is known to activate heat receptor TRPV1 and induce changes in thermoregulatory processes of mammals. However, the mechanism by which capsaicin induces thermoregulatory responses in invertebrates is unknown. Insect thermoreceptors belong to the TRP receptors family, and are known to be activated not only by temperature, but also by other stimuli. In the following study, we evaluated the effects of different ligands that have been shown to activate (allyl isothiocyanate) or inhibit (camphor) heat receptors, as well as, activate (camphor) or inhibit (menthol and thymol) cold receptors in insects. Moreover, we decided to determine the effect of agonist (capsaicin) and antagonist (capsazepine) of mammalian heat receptor on the American cockroach's thermoregulatory processes. We observed that capsaicin induced the decrease of the head temperature of immobilized cockroaches. Moreover, the examined ligands induced preference for colder environments, when insects were allowed to choose the ambient temperature. Camphor exposure resulted in a preference for warm environments, but the changes in body temperature were not observed. The results suggest that capsaicin acts on the heat receptor in cockroaches and that TRP receptors are involved in cockroaches' thermosensation.
| 30,567,399 |
1 | The roles of thermal transient receptor potential channels in thermotactic behavior and in thermal acclimation in the red flour beetle, Tribolium castaneum.
To survive in variable or fluctuating temperature, organisms should show appropriate behavioral and physiological responses which must be mediated through properly attuned thermal sensory mechanisms. Transient receptor potential channels (TRPs) are a family of cation channels a number of which, called thermo-TRPs, are known to function as thermosensors. We investigated the potential role of thermo-TPRs that have been previously identified in the fruit fly, Drosophila melanogaster, in thermotaxis and thermal acclimation in the red flour beetle, Tribolium castaneum. Phylogenetic analysis of the trp genes showed generally one-to-one orthology between those in D. melanogaster and in T. castaneum, although there are putative gene-losses in two TRP subfamilies of D. melanogaster. With RNA interference (RNAi) of T. castaneum thermo-TRP candidates painless, pyrexia and trpA1, we measured thermal avoidance behavior. RNAi of trpA1 resulted in reduced avoidance of high temperatures, 39 and 42 C. We also measured the effects of RNAi on heat-induced knockout and death under a short exposure to high temperature (1min at 52 C) either with or without a 10-min acclimation period at 42 C. Relatively short exposure to high temperature was enough to induce high temperature thermal acclimation. RNAi of trpA1 led to faster knockout at 52 C. RNAi of painless showed lower recovery rates from heat-induced knockout after thermal acclimation, and RNAi of pyrexia showed lower long-term survivorship without thermal acclimation. Therefore, we concluded that trpA1 is important in high temperature sensing and also in enhanced tolerance to high-temperature induced knockout; painless plays a role in rapid acclimation to high temperature; and pyrexia functions in protecting beetles from acute heat stress without acclimation.
| 25,813,190 |
1 | Tiling of the body wall by multidendritic sensory neurons in Manduca sexta.
A plexus of multidendritic sensory neurons, the dendritic arborization (da) neurons, innervates the epidermis of soft-bodied insects. Previous studies have indicated that the plexus may comprise distinct subtypes of da neurons, which utilize diverse cyclic 3',5'-guanosine monophosphate signaling pathways and could serve several functions. Here, we identify three distinct classes of da neurons in Manduca, which we term the alpha, beta, and gamma classes. These three classes differ in their sensory responses, branch complexity, peripheral dendritic fields, and axonal projections. The two identified alpha neurons branch over defined regions of the body wall, which in some cases correspond to specific natural folds of the cuticle. These cells project to an intermediate region of the neuropil and appear to function as proprioceptors. Three beta neurons are characterized by long, sinuous dendritic branches and axons that terminate in the ventral neuropil. The function of this group of neurons is unknown. Four neurons belonging to the gamma class have the most complex peripheral dendrites. A representative gamma neuron responds to forceful touch of the cuticle. Although the dendrites of da neurons of different classes may overlap extensively, cells belonging to the same class show minimal dendritic overlap. As a result, the body wall is independently tiled by the beta and gamma da neurons and partially innervated by the alpha neurons. These properties of the da system likely allow insects to discriminate the quality and location of several types of stimuli acting on the cuticle.
| 11,745,623 |
1 | Nociceptive neurons respond to multimodal stimuli in Manduca sexta.
The caterpillar Manduca sexta produces a highly stereotyped strike behavior in response to noxious thermal or mechanical stimuli to the abdomen. This rapid movement is targeted to the site of the stimulus, but the identity of the nociceptive sensory neurons are currently unknown. It is also not known whether both mechanical and thermal stimuli are detected by the same neurons. Here, we show that the likelihood of a strike increases with the strength of the stimulus and that activity in nerves innervating the body wall increases rapidly in response to noxious stimuli. Mechanical and thermal stimuli to the dorsal body wall activate the same sensory unit, suggesting it represents a multimodal neuron. This is further supported by the effects of rapidly repeated thermal or mechanical stimuli, which cause a depression of neuronal responsiveness that is generalized across modalities. Mapping the receptive fields of neurons responding to strong thermal stimuli indicates that these multimodal, nociceptive units are produced by class gamma multidendritic neurons in the body wall.
| 31,932,302 |
1 | Nociceptive neurons protect Drosophila larvae from parasitoid wasps.
BACKGROUND: Natural selection has resulted in a complex and fascinating repertoire of innate behaviors that are produced by insects. One puzzling example occurs in fruit fly larvae that have been subjected to a noxious mechanical or thermal sensory input. In response, the larvae "roll" with a motor pattern that is completely distinct from the style of locomotion that is used for foraging. RESULTS: We have precisely mapped the sensory neurons that are used by the Drosophila larvae to detect nociceptive stimuli. By using complementary optogenetic activation and targeted silencing of sensory neurons, we have demonstrated that a single class of neuron (class IV multidendritic neuron) is sufficient and necessary for triggering the unusual rolling behavior. In addition, we find that larvae have an innately encoded preference in the directionality of rolling. Surprisingly, the initial direction of rolling locomotion is toward the side of the body that has been stimulated. We propose that directional rolling might provide a selective advantage in escape from parasitoid wasps that are ubiquitously present in the natural environment of Drosophila. Consistent with this hypothesis, we have documented that larvae can escape the attack of Leptopilina boulardi parasitoid wasps by rolling, occasionally flipping the attacker onto its back. CONCLUSIONS: The class IV multidendritic neurons of Drosophila larvae are nociceptive. The nociception behavior of Drosophila melanagaster larvae includes an innately encoded directional preference. Nociception behavior is elicited by the ecologically relevant sensory stimulus of parasitoid wasp attack.
| 18,060,782 |
1 | Thermal nociception in adult Drosophila: behavioral characterization and the role of the painless gene.
Nociception, warning of injury that should be avoided, serves an important protective function in animals. In this study, we show that adult Drosophila avoids noxious heat by a jump response. To quantitatively analyze this nociceptive behavior, we developed two assays. In the CO2 laser beam assay, flies exhibit this behavior when a laser beam heats their abdomens. The consistency of the jump latency in this assay meets an important criterion for a good nociceptive assay. In the hot plate assay, flies jump quickly to escape from a hot copper plate (>45 degrees C). Our results demonstrate that, as in mammals, the latency of the jump response is inversely related to stimulus intensity, and innoxious thermosensation does not elicit this nociceptive behavior. To explore the genetic mechanisms of nociception, we examined several mutants in both assays. Abnormal nociceptive behavior of a mutant, painless, indicates that painless, a gene essential for nociception in Drosophila larvae, is also required for thermal nociception in adult flies. painless is expressed in certain neurons of the peripheral nervous system and thoracic ganglia, as well as in the definite brain structures, the mushroom bodies. However, chemical or genetic insults to the mushroom bodies do not influence the nociceptive behavior, suggesting that different painless-expressing neurons play diverse roles in thermal nociception. Additionally, no-bridge(KS49), a mutant that has a structural defect in the protocerebral bridge, shows defective response to noxious heat. Thus, our results validate adult Drosophila as a useful model to study the genetic mechanisms of thermal nociception.
| 17,081,265 |
1 | Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation.
Touch sensation is essential for behaviours ranging from environmental exploration to social interaction; however, the underlying mechanisms are largely unknown. In Drosophila larvae, two types of sensory neurons, class III and class IV dendritic arborization neurons, tile the body wall. The mechanotransduction channel PIEZO in class IV neurons is essential for sensing noxious mechanical stimuli but is not involved in gentle touch. On the basis of electrophysiological-recording, calcium-imaging and behavioural studies, here we report that class III dendritic arborization neurons are touch sensitive and contribute to gentle-touch sensation. We further identify NOMPC (No mechanoreceptor potential C), a member of the transient receptor potential (TRP) family of ion channels, as a mechanotransduction channel for gentle touch. NOMPC is highly expressed in class III neurons and is required for their mechanotransduction. Moreover, ectopic NOMPC expression confers touch sensitivity to the normally touch-insensitive class IV neurons. In addition to the critical role of NOMPC in eliciting gentle-touch-mediated behavioural responses, expression of this protein in the Drosophila S2 cell line also gives rise to mechanosensitive channels in which ion selectivity can be altered by NOMPC mutation, indicating that NOMPC is a pore-forming subunit of a mechanotransduction channel. Our study establishes NOMPC as a bona fide mechanotransduction channel that satisfies all four criteria proposed for a channel to qualify as a transducer of mechanical stimuli and mediates gentle-touch sensation. Our study also suggests that different mechanosensitive channels may be used to sense gentle touch versus noxious mechanical stimuli.
| 23,222,543 |
1 | An assay for chemical nociception in Drosophila larvae.
Chemically induced nociception has not yet been studied intensively in genetically tractable models. Hence, our goal was to establish a Drosophila assay that can be used to study the cellular and molecular/genetic bases of chemically induced nociception. Drosophila larvae exposed to increasing concentrations of hydrochloric acid (HCl) produced an increasingly intense aversive rolling response. HCl (0.5%) was subthreshold and provoked no response. All classes of peripheral multidendritic (md) sensory neurons (classes I-IV) are required for full responsiveness to acid, with class IV making the largest contribution. At the cellular level, classes IV, III and I showed increases in calcium following acid exposure. In the central nervous system, Basin-4 second-order neurons are the key regulators of chemically induced nociception, with a slight contribution from other types. Finally, chemical nociception can be sensitized by tissue damage. Subthreshold HCl provoked chemical allodynia in larvae 4 h after physical puncture wounding. Pinch wounding and UV irradiation, which do not compromise the cuticle, did not cause chemical allodynia. In sum, we developed a novel assay to study chemically induced nociception in Drosophila larvae. This assay, combined with the high genetic resolving power of Drosophila, should improve our basic understanding of fundamental mechanisms of chemical nociception. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
| 31,544,619 |
1 | painless, a Drosophila gene essential for nociception.
We describe a paradigm for nociception in Drosophila. In response to the touch of a probe heated above 38 degrees C, Drosophila larvae produce a stereotypical rolling behavior, unlike the response to an unheated probe. In a genetic screen for mutants defective in this noxious heat response, we identified the painless gene. Recordings from wild-type larval nerves identified neurons that initiated strong spiking above 38 degrees C, and this activity was absent in the painless mutant. The painless mRNA encodes a protein of the transient receptor potential ion channel family. Painless is required for both thermal and mechanical nociception, but not for sensing light touch. painless is expressed in peripheral neurons that extend multiple branched dendrites beneath the larval epidermis, similar to vertebrate pain receptors. An antibody to Painless binds to localized dendritic structures that we hypothesize are involved in nociceptive signaling.
| 12,705,873 |
1 | Pickpocket is a DEG/ENaC protein required for mechanical nociception in Drosophila larvae.
Highly branched class IV multidendritic sensory neurons of the Drosophila larva function as polymodal nociceptors that are necessary for behavioral responses to noxious heat (>39 degrees C) or noxious mechanical (>30 mN) stimuli. However, the molecular mechanisms that allow these cells to detect both heat and force are unknown. Here, we report that the pickpocket (ppk) gene, which encodes a Degenerin/Epithelial Sodium Channel (DEG/ENaC) subunit, is required for mechanical nociception but not thermal nociception in these sensory cells. Larvae mutant for pickpocket show greatly reduced nociception behaviors in response to harsh mechanical stimuli. However, pickpocket mutants display normal behavioral responses to gentle touch. Tissue-specific knockdown of pickpocket in nociceptors phenocopies the mechanical nociception impairment without causing defects in thermal nociception behavior. Finally, optogenetically triggered nociception behavior is unaffected by pickpocket RNAi, which indicates that ppk is not generally required for the excitability of the nociceptors. Interestingly, DEG/ENaCs are known to play a critical role in detecting gentle touch stimuli in Caenorhabditis elegans and have also been implicated in some aspects of harsh touch sensation in mammals. Our results suggest that neurons that detect harsh touch in Drosophila utilize similar mechanosensory molecules.
| 20,171,104 |
1 | Multidendritic sensory neurons in the adult Drosophila abdomen: origins, dendritic morphology, and segment- and age-dependent programmed cell death.
BACKGROUND: For the establishment of functional neural circuits that support a wide range of animal behaviors, initial circuits formed in early development have to be reorganized. One way to achieve this is local remodeling of the circuitry hardwiring. To genetically investigate the underlying mechanisms of this remodeling, one model system employs a major group of Drosophila multidendritic sensory neurons - the dendritic arborization (da) neurons - which exhibit dramatic dendritic pruning and subsequent growth during metamorphosis. The 15 da neurons are identified in each larval abdominal hemisegment and are classified into four categories - classes I to IV - in order of increasing size of their receptive fields and/or arbor complexity at the mature larval stage. Our knowledge regarding the anatomy and developmental basis of adult da neurons is still fragmentary. RESULTS: We identified multidendritic neurons in the adult Drosophila abdomen, visualized the dendritic arbors of the individual neurons, and traced the origins of those cells back to the larval stage. There were six da neurons in abdominal hemisegment 3 or 4 (A3/4) of the pharate adult and the adult just after eclosion, five of which were persistent larval da neurons. We quantitatively analyzed dendritic arbors of three of the six adult neurons and examined expression in the pharate adult of key transcription factors that result in the larval class-selective dendritic morphologies. The 'baseline design' of A3/4 in the adult was further modified in a segment-dependent and age-dependent manner. One of our notable findings is that a larval class I neuron, ddaE, completed dendritic remodeling in A2 to A4 and then underwent caspase-dependent cell death within 1 week after eclosion, while homologous neurons in A5 and in more posterior segments degenerated at pupal stages. Another finding is that the dendritic arbor of a class IV neuron, v'ada, was immediately reshaped during post-eclosion growth. It exhibited prominent radial-to-lattice transformation in 1-day-old adults, and the resultant lattice-shaped arbor persisted throughout adult life. CONCLUSION: Our study provides the basis on which we can investigate the genetic programs controlling dendritic remodeling and programmed cell death of adult neurons, and the life-long maintenance of dendritic arbors.
| 19,799,768 |
1 | The role of Drosophila Piezo in mechanical nociception.
Transduction of mechanical stimuli by receptor cells is essential for senses such as hearing, touch and pain. Ion channels have a role in neuronal mechanotransduction in invertebrates; however, functional conservation of these ion channels in mammalian mechanotransduction is not observed. For example, no mechanoreceptor potential C (NOMPC), a member of transient receptor potential (TRP) ion channel family, acts as a mechanotransducer in Drosophila melanogaster and Caenorhabditis elegans; however, it has no orthologues in mammals. Degenerin/epithelial sodium channel (DEG/ENaC) family members are mechanotransducers in C. elegans and potentially in D. melanogaster; however, a direct role of its mammalian homologues in sensing mechanical force has not been shown. Recently, Piezo1 (also known as Fam38a) and Piezo2 (also known as Fam38b) were identified as components of mechanically activated channels in mammals. The Piezo family are evolutionarily conserved transmembrane proteins. It is unknown whether they function in mechanical sensing in vivo and, if they do, which mechanosensory modalities they mediate. Here we study the physiological role of the single Piezo member in D. melanogaster (Dmpiezo; also known as CG8486). Dmpiezo expression in human cells induces mechanically activated currents, similar to its mammalian counterparts. Behavioural responses to noxious mechanical stimuli were severely reduced in Dmpiezo knockout larvae, whereas responses to another noxious stimulus or touch were not affected. Knocking down Dmpiezo in sensory neurons that mediate nociception and express the DEG/ENaC ion channel pickpocket (ppk) was sufficient to impair responses to noxious mechanical stimuli. Furthermore, expression of Dmpiezo in these same neurons rescued the phenotype of the constitutive Dmpiezo knockout larvae. Accordingly, electrophysiological recordings from ppk-positive neurons revealed a Dmpiezo-dependent, mechanically activated current. Finally, we found that Dmpiezo and ppk function in parallel pathways in ppk-positive cells, and that mechanical nociception is abolished in the absence of both channels. These data demonstrate the physiological relevance of the Piezo family in mechanotransduction in vivo, supporting a role of Piezo proteins in mechanosensory nociception.
| 22,343,891 |
1 | Response of Drosophila to wasabi is mediated by painless, the fly homolog of mammalian TRPA1/ANKTM1.
A number of repellent compounds produced by plants elicit a spicy or pungent sensation in mammals . In several cases, this has been found to occur through activation of ion channels in the transient receptor potential (TRP) family . We report that isothiocyanate (ITC), the pungent ingredient of wasabi, is a repellent to the insect Drosophila melanogaster, and that the painless gene, previously known to be required for larval nociception, is required for this avoidance behavior. A painless reporter gene is expressed in gustatory receptor neurons of the labial palpus, tarsus, and wing anterior margin, but not in olfactory receptor neurons, suggesting a gustatory role. Indeed, painless expression overlaps with a variety of gustatory-receptor gene reporters. Some, such as Gr66a, are known to be expressed in neurons that mediate gustatory repulsion . painless mutants are not taste blind; they show normal aversive gustatory behavior with salt and quinine and attractive responses to sugars and capsaicin. The painless gene is an evolutionary homolog of the mammalian "wasabi receptor" TRPA1/ANKTM1 , also thought to be involved in nociception. Our results suggest that the stinging sensation of isothiocyanate is caused by activation of an evolutionarily conserved molecular pathway that is also used for nociception.
| 16,647,259 |
1 | HsTRPA of the Red Imported Fire Ant, Solenopsis invicta, Functions as a Nocisensor and Uncovers the Evolutionary Plasticity of HsTRPA Channels.
Solenopsis invicta, the red imported fire ant, represents one of the most devastating invasive species. To understand their sensory physiology, we identified and characterized their Hymenoptera-specific (Hs) TRPA channel, SiHsTRPA. Consistent with the sensory functions of SiHsTRPA, it is activated by heat, an electrophile, and an insect repellent. Nevertheless, SiHsTRPA does not respond to most of the honey bee ortholog (AmHsTRPA)-activating compounds. The jewel wasp ortholog (NvHsTRPA) is activated by these compounds even though it outgroups both AmHsTRPA and SiHsTRPA. Characterization of AmHsTRPA/SiHsTRPA chimeric channels revealed that the amino acids in the N terminus, as well as ankyrin repeat 2 (AR2) of AmHsTRPA, are essential for the response to camphor. Furthermore, amino acids in ARs 3 and 5-7 were specifically required for the response to diallyl disulfide. Thus, amino acid substitutions in the corresponding domains of SiHsTRPA during evolution would be responsible for the loss of chemical sensitivity. SiHsTRPA-activating compounds repel red imported fire ants, suggesting that SiHsTRPA functions as a sensor for noxious compounds. SiHsTRPA represents an example of the species-specific modulation of orthologous TRPA channel properties by amino acid substitutions in multiple domains, and SiHsTRPA-activating compounds could be used to develop a method for controlling red imported fire ants.
| 29,445,768 |
1 | A TRPA1 channel that senses thermal stimulus and irritating chemicals in Helicoverpa armigera.
Sensing and responding to changes in the external environment is important for insect survival. Transient receptor potential (TRP) channels are crucial for various sensory modalities including olfaction, vision, hearing, thermosensation and mechanosensation. Here, we identified and characterized a transient receptor potential gene named as HarmTRPA1 in Helicoverpa armigera antennae. HarmTRPA1 was abundantly expressed in the antennae and labial palps. Transcripts of HarmTRPA1 could also be detected in the head and proboscis. Furthermore, functional analyses of HarmTRPA1 were conducted in the Xenopus Oocyte system. The results showed that the HarmTRPA1 channel could be activated by increasing the temperature from 20 to 45 C. No significant adaptation was observed when the stimulus was repeated. In addition to thermal stimuli, pungent natural compounds including allyl isothiocyanate, cinnamaldehyde and citronellal also activated HarmTRPA1. Taken together, we infer that HarmTRPA1 may function as both a thermal sensor involved in peripheral temperature detection and as a chemical sensor detecting irritating chemicals in vivo. Our data provide valuable insight into the TRPA1 channel in this moth and lay the foundation for developing novel strategies for pest control.
| 25,827,167 |
1 | Insights into the genomic evolution of insects from cricket genomes.
Most of our knowledge of insect genomes comes from Holometabolous species, which undergo complete metamorphosis and have genomes typically under 2 Gb with little signs of DNA methylation. In contrast, Hemimetabolous insects undergo the presumed ancestral process of incomplete metamorphosis, and have larger genomes with high levels of DNA methylation. Hemimetabolous species from the Orthopteran order (grasshoppers and crickets) have some of the largest known insect genomes. What drives the evolution of these unusual insect genome sizes, remains unknown. Here we report the sequencing, assembly and annotation of the 1.66-Gb genome of the Mediterranean field cricket Gryllus bimaculatus, and the annotation of the 1.60-Gb genome of the Hawaiian cricket Laupala kohalensis. We compare these two cricket genomes with those of 14 additional insects and find evidence that hemimetabolous genomes expanded due to transposable element activity. Based on the ratio of observed to expected CpG sites, we find higher conservation and stronger purifying selection of methylated genes than non-methylated genes. Finally, our analysis suggests an expansion of the pickpocket class V gene family in crickets, which we speculate might play a role in the evolution of cricket courtship, including their characteristic chirping.
| 34,127,782 |
1 | A genome-wide Drosophila screen for heat nociception identifies alpha2delta3 as an evolutionarily conserved pain gene.
Worldwide, acute, and chronic pain affects 20% of the adult population and represents an enormous financial and emotional burden. Using genome-wide neuronal-specific RNAi knockdown in Drosophila, we report a global screen for an innate behavior and identify hundreds of genes implicated in heat nociception, including the alpha2delta family calcium channel subunit straightjacket (stj). Mice mutant for the stj ortholog CACNA2D3 (alpha2delta3) also exhibit impaired behavioral heat pain sensitivity. In addition, in humans, alpha2delta3 SNP variants associate with reduced sensitivity to acute noxious heat and chronic back pain. Functional imaging in alpha2delta3 mutant mice revealed impaired transmission of thermal pain-evoked signals from the thalamus to higher-order pain centers. Intriguingly, in alpha2delta3 mutant mice, thermal pain and tactile stimulation triggered strong cross-activation, or synesthesia, of brain regions involved in vision, olfaction, and hearing.
| 21,074,052 |
1 | Evolutionary conservation and changes in insect TRP channels.
BACKGROUND: TRP (Transient Receptor Potential) channels respond to diverse stimuli and thus function as the primary integrators of varied sensory information. They are also activated by various compounds and secondary messengers to mediate cell-cell interactions as well as to detect changes in the local environment. Their physiological roles have been primarily characterized only in mice and fruit flies, and evolutionary studies are limited. To understand the evolution of insect TRP channels and the mechanisms of integrating sensory inputs in insects, we have identified and compared TRP channel genes in Drosophila melanogaster, Bombyx mori, Tribolium castaneum, Apis mellifera, Nasonia vitripennis, and Pediculus humanus genomes as part of genome sequencing efforts. RESULTS: All the insects examined have 2 TRPV, 1 TRPN, 1 TRPM, 3 TRPC, and 1 TRPML subfamily members, demonstrating that these channels have the ancient origins in insects. The common pattern also suggests that the mechanisms for detecting mechanical and visual stimuli and maintaining lysosomal functions may be evolutionarily well conserved in insects. However, a TRPP channel, the most ancient TRP channel, is missing in B. mori, A. mellifera, and N. vitripennis. Although P. humanus and D. melanogaster contain 4 TRPA subfamily members, the other insects have 5 TRPA subfamily members. T. castaneum, A. mellifera, and N. vitripennis contain TRPA5 channels, which have been specifically retained or gained in Coleoptera and Hymenoptera. Furthermore, TRPA1, which functions for thermotaxis in Drosophila, is missing in A. mellifera and N. vitripennis; however, they have other Hymenoptera-specific TRPA channels (AmHsTRPA and NvHsTRPA). NvHsTRPA expressed in HEK293 cells is activated by temperature increase, demonstrating that HsTRPAs function as novel thermal sensors in Hymenoptera. CONCLUSION: The total number of insect TRP family members is 13-14, approximately half that of mammalian TRP family members. As shown for mammalian TRP channels, this may suggest that single TRP channels are responsible for integrating diverse sensory inputs to maintain the insect sensory systems. The above results demonstrate that there are both evolutionary conservation and changes in insect TRP channels. In particular, the evolutionary processes have been accelerated in the TRPA subfamily, indicating divergence in the mechanisms that insects use to detect environmental temperatures.
| 19,740,447 |
1 | Honey bee thermal/chemical sensor, AmHsTRPA, reveals neofunctionalization and loss of transient receptor potential channel genes.
Insects are relatively small heterothermic animals, thus they are highly susceptible to changes in ambient temperature. However, a group of honey bees is able to maintain the brood nest temperature between 32 C and 36 C by either cooling or heating the nest. Nevertheless, how honey bees sense the ambient temperature is not known. We identified a honey bee Hymenoptera-specific transient receptor potential A (HsTRPA) channel (AmHsTRPA), which is activated by heat with an apparent threshold temperature of 34 C and insect antifeedants such as camphor in vitro. AmHsTRPA is expressed in the antennal flagellum, and ablation of the antennal flagella and injection of AmHsTRPA inhibitors impair warmth avoidance of honey bees. Gustatory responses of honey bees to sucrose are suppressed by noxious heat and insect antifeedants, but are relieved in the presence of AmHsTRPA inhibitors. These results suggest that AmHsTRPA may function as a thermal/chemical sensor in vivo. As shown previously, Hymenoptera has lost the ancient chemical sensor TRPA1; however, AmHsTRPA is able to complement the function of Drosophila melanogaster TRPA1. These results demonstrate that HsTRPA, originally arisen by the duplication of Water witch, has acquired thermal- and chemical-responsive properties, which has resulted in the loss of ancient TRPA1. Thus, this is an example of neofunctionalization of the duplicated ion channel gene followed by the loss of the functionally equivalent ancient gene.
| 20,844,118 |
1 | The TRP Channels Pkd2, NompC, and Trpm Act in Cold-Sensing Neurons to Mediate Unique Aversive Behaviors to Noxious Cold in Drosophila.
The basic mechanisms underlying noxious cold perception are not well understood. We developed Drosophila assays for noxious cold responses. Larvae respond to near-freezing temperatures via a mutually exclusive set of singular behaviors-in particular, a full-body contraction (CT). Class III (CIII) multidendritic sensory neurons are specifically activated by cold and optogenetic activation of these neurons elicits CT. Blocking synaptic transmission in CIII neurons inhibits CT. Genetically, the transient receptor potential (TRP) channels Trpm, NompC, and Polycystic kidney disease 2 (Pkd2) are expressed in CIII neurons, where each is required for CT. Misexpression of Pkd2 is sufficient to confer cold responsiveness. The optogenetic activation level of multimodal CIII neurons determines behavioral output, and visualization of neuronal activity supports this conclusion. Coactivation of cold- and heat-responsive sensory neurons suggests that the cold-evoked response circuitry is dominant. Our Drosophila model will enable a sophisticated molecular genetic dissection of cold nociceptive genes and circuits.
| 27,818,173 |
1 | Development and organization of a nitric-oxide-sensitive peripheral neural plexus in larvae of the moth, Manduca sexta.
Each hemisegment of the Manduca sexta larva is supplied with a subepidermal plexus of approximately 350 multidendritic neurons. An initial set of neurons, the primary plexus neurons, arise at 35-45% of embryogenesis. These neurons comprise 12-16 uniquely identifiable neurons per hemisegment that have homologues in other insect larvae. Each spreads processes across a characteristic portion of the body wall and has an axon that projects into the central nervous system. Secondary plexus neurons are born in two waves: the first between 70% and 80% of embryogenesis and the second during the molt to the second larval stage. The secondary plexus neurons are multidendritic, spread uniformly across the body wall, and appear to make contacts with the primary plexus neurons. Each secondary plexus cell arises as part of a five-cell cluster; the other cells produce a sensory bristle and socket along with the bristle sensory neuron and a glial cell. Application of nitric oxide (NO) donors induces plexus neurons to produce cyclic 3',5' guanosine monophosphate (cGMP), suggesting the presence of soluble guanylate cyclase. With few exceptions, plexus neurons become sensitive to NO stimulation approximately 10 hours after their birth and remain so throughout larval life. Cyclic GMP is detected primarily in the cytoplasm of plexus neurons and extends into the finest peripheral dendrites. Our results suggest that cGMP participates in the development and/or physiology of this peripheral neural plexus.
| 9,886,030 |
1 | Altered heat nociception in cockroach Periplaneta americana L. exposed to capsaicin.
Some natural alkaloids, e.g. capsaicin and camphor, are known to induce a desensitization state, causing insensitivity to pain or noxious temperatures in mammals by acting on TRP receptors. Our research, for the first time, demonstrated that a phenomenon of pharmacological blockade of heat sensitivity may operate in American cockroach, Periplaneta americana (L.). We studied the escape reaction time from 50 C for American cockroaches exposed to multiple doses of different drugs affecting thermo-TRP. Capsaicin, capsazepine, and camphor induced significant changes in time spent at noxious ambient temperatures. Moreover, we showed that behavioral thermoregulation in normal temperature ranges (10-40 C) is altered in treated cockroaches, which displayed a preference for warmer regions compared to non-treated insects. We also measured the levels of malondialdehyde (MDA) and catalase activity to exclude the secondary effects of the drugs on these processes. Our results demonstrated that increase in time spent at 50 C (five versus one trial at a heat plate) induced oxidative stress, but only in control and vehicle-treated groups. In capsaicin, capsazepine, menthol, camphor and AITC-treated cockroaches the number of exposures to heat had no effect on the levels of MDA. Additionally, none of the tested compounds affected catalase activity. Our results demonstrate suppression of the heat sensitivity by repeated capsazepine, camphor and capsaicin administration in the American cockroach.
| 29,518,142 |
1 | Ripped pocket and pickpocket, novel Drosophila DEG/ENaC subunits expressed in early development and in mechanosensory neurons.
Drosophila melanogaster has proven to be a good model for understanding the physiology of ion channels. We identified two novel Drosophila DEG/ ENaC proteins, Pickpocket (PPK) and Ripped Pocket (RPK). Both appear to be ion channel subunits. Expression of RPK generated multimeric Na+ channels that were dominantly activated by a mutation associated with neurodegeneration. Amiloride and gadolinium, which block mechanosensation in vivo, inhibited RPK channels. Although PPK did not form channels on its own, it associated with and reduced the current generated by a related human brain Na+ channel. RPK transcripts were abundant in early stage embryos, suggesting a role in development. In contrast, PPK was found in sensory dendrites of a subset of peripheral neurons in late stage embryos and early larvae. In insects, such multiple dendritic neurons play key roles in touch sensation and proprioception and their morphology resembles human mechanosensory free nerve endings. These results suggest that PPK may be a channel subunit involved in mechanosensation.
| 9,425,162 |
1 | Enhanced locomotion caused by loss of the Drosophila DEG/ENaC protein Pickpocket1.
Coordination of rhythmic locomotion depends upon a precisely balanced interplay between central and peripheral control mechanisms. Although poorly understood, peripheral proprioceptive mechanosensory input is thought to provide information about body position for moment-to-moment modifications of central mechanisms mediating rhythmic motor output. Pickpocket1 (PPK1) is a Drosophila subunit of the epithelial sodium channel (ENaC) family displaying limited expression in multiple dendritic (md) sensory neurons tiling the larval body wall and a small number of bipolar neurons in the upper brain. ppk1 null mutant larvae had normal external touch sensation and md neuron morphology but displayed striking alterations in crawling behavior. Loss of PPK1 function caused an increase in crawling speed and an unusual straight path with decreased stops and turns relative to wild-type. This enhanced locomotion resulted from sustained peristaltic contraction wave cycling at higher frequency with a significant decrease in pause period between contraction cycles. The mutant phenotype was rescued by a wild-type PPK1 transgene and duplicated by expressing a ppk1RNAi transgene or a dominant-negative PPK1 isoform. These results demonstrate that the PPK1 channel plays an essential role in controlling rhythmic locomotion and provide a powerful genetic model system for further analysis of central and peripheral control mechanisms and their role in movement disorders.
| 12,956,960 |
1 | Drosophila painless is a Ca2+-requiring channel activated by noxious heat.
Thermal changes activate some members of the transient receptor potential (TRP) ion channel super family. They are primary sensors for detecting environmental temperatures. The Drosophila TRP channel Painless is believed responsible for avoidance of noxious heat because painless mutant flies display defects in heat sensing. However, no studies have proven its heat responsiveness. We show that Painless expressed in human embryonic kidney-derived 293 (HEK293) cells is a noxious heat-activated, Ca(2+)-permeable channel, and the function is mostly dependent on Ca(2+). In Ca(2+)-imaging, Painless mediated a robust intracellular Ca(2+) (Ca(2+)(i)) increase during heating, and it showed heat-evoked inward currents in whole-cell patch-clamp mode. Ca(2+) permeability was much higher than that of other cations. Heat-evoked currents were negligible in the absence of extracellular Ca(2+) (Ca(2+)(o)) and Ca(2+)(i), whereas 200 nm Ca(2+)(i) enabled heat activation of Painless. Activation kinetics were significantly accelerated in the presence of Ca(2+)(i). The temperature threshold for Painless activation was 42.6 degrees C in the presence of Ca(2+)(i), whereas the threshold was significantly increased to 44.1 degrees C when only Ca(2+)(o) was present. Temperature thresholds were further reduced after repetitive heating in a Ca(2+)-dependent manner. Ca(2+)-dependent heat activation of Painless was observed at the single-channel level in excised membranes. We found that a Ca(2+)-regulatory site is located in the N-terminal region of Painless. Painless-expressing HEK293 cells were insensitive to various thermosensitive TRP channel activators including allyl isothiocyanate, whereas mammalian TRPA1 inhibitors, ruthenium red, and camphor, reversibly blocked heat activation of Painless. Our results demonstrate that Painless is a direct sensor for noxious heat in Drosophila.
| 18,829,951 |
1 | Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception.
Chemical nociception, the detection of tissue-damaging chemicals, is important for animal survival and causes human pain and inflammation, but its evolutionary origins are largely unknown. Reactive electrophiles are a class of noxious compounds humans find pungent and irritating, such as allyl isothiocyanate (in wasabi) and acrolein (in cigarette smoke). Diverse animals, from insects to humans, find reactive electrophiles aversive, but whether this reflects conservation of an ancient sensory modality has been unclear. Here we identify the molecular basis of reactive electrophile detection in flies. We demonstrate that Drosophila TRPA1 (Transient receptor potential A1), the Drosophila melanogaster orthologue of the human irritant sensor, acts in gustatory chemosensors to inhibit reactive electrophile ingestion. We show that fly and mosquito TRPA1 orthologues are molecular sensors of electrophiles, using a mechanism conserved with vertebrate TRPA1s. Phylogenetic analyses indicate that invertebrate and vertebrate TRPA1s share a common ancestor that possessed critical characteristics required for electrophile detection. These findings support emergence of TRPA1-based electrophile detection in a common bilaterian ancestor, with widespread conservation throughout vertebrate and invertebrate evolution. Such conservation contrasts with the evolutionary divergence of canonical olfactory and gustatory receptors and may relate to electrophile toxicity. We propose that human pain perception relies on an ancient chemical sensor conserved across approximately 500 million years of animal evolution.
| 20,237,474 |
1 | Identification, Characterization and Expression Analysis of TRP Channel Genes in the Vegetable Pest, Pieris rapae.
Transient receptor potential (TRP) channels are critical for insects to detect environmental stimuli and regulate homeostasis. Moreover, this superfamily has become potential molecular targets for insecticides or repellents. Pieris rapae is one of the most common and widely spread pests of Brassicaceae plants. Therefore, it is necessary to study TRP channels (TRPs) in P. rapae. In this study, we identified 14 TRPs in P. rapae, including two Water witch (Wtrw) genes. By contrast, only one Wtrw gene exists in Drosophila and functions in hygrosensation. We also found splice isoforms of Pyrexia (Pyx), TRPgamma (TRPgamma) and TRP-Melastatin (TRPM). These three genes are related to temperature and gravity sensation, fine motor control, homeostasis regulation of Mg2+ and Zn2+ in Drosophila, respectively. Evolutionary analysis showed that the TRPs of P. rapae were well clustered into their own subfamilies. Real-time quantitative PCR (qPCR) showed that PrTRPs were widely distributed in the external sensory organs, including antennae, mouthparts, legs, wings and in the internal physiological organs, including brains, fat bodies, guts, Malpighian tubules, ovaries, as well as testis. Our study established a solid foundation for functional studies of TRP channels in P. rapae, and would be benefit to developing new approaches to control P. rapae targeting these important ion channels.
| 32,197,450 |
1 | Heat Perception and Aversive Learning in Honey Bees: Putative Involvement of the Thermal/Chemical Sensor AmHsTRPA.
The recent development of the olfactory conditioning of the sting extension response (SER) has provided new insights into the mechanisms of aversive learning in honeybees. Until now, very little information has been gained concerning US detection and perception. In the initial version of SER conditioning, bees learned to associate an odor CS with an electric shock US. Recently, we proposed a modified version of SER conditioning, in which thermal stimulation with a heated probe is used as US. This procedure has the advantage of allowing topical US applications virtually everywhere on the honeybee body. In this study, we made use of this possibility and mapped thermal responsiveness on the honeybee body, by measuring workers' SER after applying heat on 41 different structures. We then show that bees can learn the CS-US association even when the heat US is applied on body structures that are not prominent sensory organs, here the vertex (back of the head) and the ventral abdomen. Next, we used a neuropharmalogical approach to evaluate the potential role of a recently described Transient Receptor Potential (TRP) channel, HsTRPA, on peripheral heat detection by bees. First, we applied HsTRPA activators to assess if such activation is sufficient for triggering SER. Second, we injected HsTRPA inhibitors to ask whether interfering with this TRP channel affects SER triggered by heat. These experiments suggest that HsTRPA may be involved in heat detection by bees, and represent a potential peripheral detection system in thermal SER conditioning.
| 26,635,613 |
0 | How commensal microbes shape the physiology of Drosophila melanogaster.
The interactions between animals and their commensal microbes profoundly influence the host's physiology. In the last decade, Drosophila melanogaster has been extensively used as a model to study host-commensal microbes interactions. Here, we review the most recent advances in this field. We focus on studies that extend our understanding of the molecular mechanisms underlying the effects of commensal microbes on Drosophila's development and lifespan. We emphasize how commensal microbes influence nutrition and the intestinal epithelium homeostasis; how they elicit immune tolerance mechanisms and how these physiological processes are interconnected. Finally, we discuss the importance of diets and microbial strains and show how they can be confounding factors of microbe mediated host phenotypes.
| 32,836,177 |
0 | Molecular genetics of Drosophila vision.
The fruitfly, Drosophila melanogaster, is an excellent organism for dissecting the components of vision genetically. Many mutations have been generated that affect a diversity of processes important in vision. Through a combined application of molecular and genetic approaches many of the genes important in Drosophila vision are now being identified.
| 2,511,836 |
0 | Aegilips chilensis (Hymenoptera: Cynipoidea: Figitidae: Anacharitinae): Redescription and Biogeographic Considerations.
Aegilips chilensis Brethes, 1918 is redescribed and illustrated. Aegilips chilensis is considered an endemic species of the Andean region, characterized for having anteroposterior cephalic processes, resembling spines, formed from the postgenal carina. This and other diagnostic characters are diagnosed and illustrated, and morphological affinities of Aegilips Haliday, 1835 with other Anacharitinae genera are discussed. Redescription and photographs of Aegilips chilensis are given.
| 30,924,050 |
0 | Orchidophaga gastrodiacola Kato, 2006, is Chyliza vittata Meigen, 1826 (Diptera: Psilidae): discussion on its taxonomy and biology.
Morphological features of a Japanese fly that developes in orchids, Orchidophaga gastrodiacola Kato, 2006, assigned to the family Scathophagidae, are reviewed and this species is proposed as a junior synonym of Chyliza vittata Meigen, 1826, of the family Psilidae. Morphological features of specimens from Japan correspond well with those from European. Japanese specimens of this transpalaearctic species utilize buds and stems of the achlorophyllous mycoheterotrophic Gastrodia elata Blume. This association is an exceptional habitat in comparisons to other congeners and European specimens of the same species.
| 26,120,718 |
0 | Gryllus bimaculatus extract ameliorates high-fat diet-induced hyperglycemia and hyperlipidemia by inhibiting hepatic lipogenesis through AMPK activation.
Insect-based food is increasingly used and is a sustainable protein source provided by eco-friendly breeding respecting the animal welfare. The cricket Gryllus bimaculatus is an approved edible insect. In this paper, the effects of G. bimaculatus extracts (AE-GBE) on hepatic insulin resistance and the underlying mechanisms were investigated in high fat diet (HFD)-fed C57BL/6J mice. Mice were fed HFD for 6 weeks and some were concomitantly given AE-GBE orally (100 mg/kg/day). AE-GBE significantly improved glucose tolerance and insulin sensitivity by attenuating hepatic lipid accumulation measured by the reduced serum and hepatic lipid contents. Moreover, AE-GBE significantly downregulated the expression of hepatic lipogenesis-related genes and activated the AMPK signaling pathway. Therefore, AE-GBE might improve fatty liver and glucose metabolism disorders as well as insulin resistance by inhibiting the expression of proteins involved in hepatic fatty acid synthesis through AMPK activation. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01117-9.
| 35,992,315 |
0 | Temperature and the Ventilatory Response to Hypoxia in Gromphadorhina portentosa (Blattodea: Blaberidae).
In general, insects respond to hypoxia by increasing ventilation frequency, as seen in most other animals. Higher body temperatures usually also increase ventilation rates, likely due to increases in metabolic rates. In ectothermic air-breathing vertebrates, body temperatures and hypoxia tend to interact significantly, with an increasing responsiveness of ventilation to hypoxia at higher temperatures. Here, we tested whether the same is true in insects, using the Madagascar hissing cockroach, Gromphadorhina portentosa (Schaum) (Blattodea: Blaberidae). We equilibrated individuals to a temperature (beginning at 20 C), and animals were exposed to step-wise decreases in PO2 (21, 15, 10, and 5 kPa, in that order), and we measured ventilation frequencies from videotapes of abdominal pumping after 15 min of exposure to the test oxygen level. We then raised the temperature by 5 C, and the protocol was repeated, with tests run at 20, 25, 30, and 35 C. The 20 C animals had high initial ventilation rates, possibly due to handling stress, so these animals were excluded from subsequent analyses. Across all temperatures, ventilation increased in hypoxia, but only significantly at 5 kPa PO2 Surprisingly, there was no significant interaction between temperature and oxygen, and no significant effect of temperature on ventilation frequency from 25 to 35 C. Plausibly, the rise in metabolic rates at higher temperatures in insects is made possible by increasing other aspects of gas exchange, such as decreasing internal PO2, or increases in tidal volume, spiracular opening (duration or amount), or removal of fluid from the tracheoles.
| 26,721,296 |
0 | Parasites and RNA viruses in wild and laboratory reared bumble bees Bombus pauloensis (Hymenoptera: Apidae) from Uruguay.
Bumble bees (Bombus spp.) are important pollinators insects involved in the maintenance of natural ecosystems and food production. Bombus pauloensis is a widely distributed species in South America, that recently began to be managed and commercialized in this region. The movement of colonies within or between countries may favor the dissemination of parasites and pathogens, putting into risk while populations of B. pauloensis and other native species. In this study, wild B. pauloensis queens and workers, and laboratory reared workers were screened for the presence of phoretic mites, internal parasites (microsporidia, protists, nematodes and parasitoids) and RNA viruses (Black queen cell virus (BQCV), Deformed wing virus (DWV), Acute paralysis virus (ABCV) and Sacbrood virus (SBV)). Bumble bee queens showed the highest number of mite species, and it was the only group where Conopidae and S. bombi were detected. In the case of microsporidia, a higher prevalence of N. ceranae was detected in field workers. Finally, the bumble bees presented the four RNA viruses studied for A. mellifera, in proportions similar to those previously reported in this species. Those results highlight the risks of spillover among the different species of pollinators.
| 33,901,226 |
0 | Consequences of chronic bacterial infection in Drosophila melanogaster.
Even when successfully surviving an infection, a host often fails to eliminate a pathogen completely and may sustain substantial pathogen burden for the remainder of its life. Using systemic bacterial infection in Drosophila melanogaster, we characterize chronic infection by three bacterial species from different genera - Providencia rettgeri, Serratia marcescens, and Enterococcus faecalis-following inoculation with a range of doses. To assess the consequences of these chronic infections, we determined the expression of antimicrobial peptide genes, survival of secondary infection, and starvation resistance after one week of infection. While higher infectious doses unsurprisingly lead to higher risk of death, they also result in higher chronic bacterial loads among the survivors for all three infections. All three chronic infections caused significantly elevated expression of antimicrobial peptide genes at one week post-infection and provided generalized protection again secondary bacterial infection. Only P. rettgeri infection significantly influenced resistance to starvation, with persistently infected flies dying more quickly under starvation conditions relative to controls. These results suggest that there is potentially a generalized mechanism of protection against secondary infection, but that other impacts on host physiology may depend on the specific pathogen. We propose that chronic infections in D. melanogaster could be a valuable tool for studying tolerance of infection, including impacts on host physiology and behavior.
| 31,648,237 |
0 | Description of a new species of Neorhinotora Lopes, 1934 (Diptera: Heleomyzidae) from Central America.
A new species of Neorhinotora Lopes, 1934 (Diptera, Heleomyzidae) is described: Neorhinotora elsalvadorensis sp. nov., from El Salvador, Central America, with illustrations of external and internal morphological characters and update of the identification key.
| 34,186,912 |
0 | [Ethological-physiological effects of hypoxia on the honeybee Apis mellifera L].
Information on the effect of hypoxia on the behavior and physiological state of the honeybee was compiled and systematized. It was shown that, in the course of colonization of temperate and cold climate zones by the honeybee, natural selection favored the acquisition of an effective mechanism of thermoregulation and high tolerance to hypoxia. It was noted that bees can develop under conditions when the CO2 concentration exceeds the content of this gas in the surface layer of the Earth by more than three orders of magnitude; however, this leads to deviations in the morphometric traits from the norm. At the adult stage, anesthesia with carbon dioxide was found to reduce the body weight and the water content in it. It was shown that the effect of anesthesia in adult bees increases with temperature and that hypoxia in adult bees and queens accelerates their senescence and reduces viability.
| 26,021,162 |
0 | Organophosphorus insecticides in honey, pollen and bees (Apis mellifera L.) and their potential hazard to bee colonies in Egypt.
There is no clear single factor to date that explains colony loss in bees, but one factor proposed is the wide-spread application of agrochemicals. Concentrations of 14 organophosphorous insecticides (OPs) in honey bees (Apis mellifera) and hive matrices (honey and pollen) were measured to assess their hazard to honey bees. Samples were collected during spring and summer of 2013, from 5 provinces in the middle delta of Egypt. LC/MS-MS was used to identify and quantify individual OPs by use of a modified Quick Easy Cheap Effective Rugged Safe (QuEChERS) method. Pesticides were detected more frequently in samples collected during summer. Pollen contained the greatest concentrations of OPs. Profenofos, chlorpyrifos, malation and diazinon were the most frequently detected OPs. In contrast, ethoprop, phorate, coumaphos and chlorpyrifos-oxon were not detected. A toxic units approach, with lethality as the endpoint was used in an additive model to assess the cumulative potential for adverse effects posed by OPs. Hazard quotients (HQs) in honey and pollen ranged from 0.01-0.05 during spring and from 0.02-0.08 during summer, respectively. HQs based on lethality due to direct exposure of adult worker bees to OPs during spring and summer ranged from 0.04 to 0.1 for best and worst case respectively. It is concluded that direct exposure and/or dietary exposure to OPs in honey and pollen pose little threat due to lethality of bees in Egypt.
| 25,574,845 |
0 | The morphology of the eggs of three species of Zoraptera (Insecta).
The egg structure of Zorotypus magnicaudelli, Zorotypus hubbardi and Zorotypus impolitus was examined and described in detail. Major characteristics of zorapteran eggs previously reported were confirmed in these species, with the partial exception of Z. impolitus: 1) a pair of micropyles at the equator of the egg's ventral side, 2) a honeycomb pattern on the egg surface, 3) a two-layered chorion, 4) micropylar canals running laterally, 5) a flap covering the inner opening of the micropylar canal and 6) no region specialized for hatching. These features are probably part of the groundplan of the order. Three groups (A-C) and two subgroups (A1 and A2) of Zoraptera can be distinguished based on characters of the reproductive apparatus including eggs. However, information for more species is needed for a reliable interpretation of the complex and apparently fast evolving character system. The egg of Z. impolitus presumably shows apomorphic characteristics not occurring in other species, a chorion without layered construction and polygonal surface compartments with different sculptures on the dorsal and ventral sides of the egg. Another feature found in this species, distinct enlargement of the micropyles, is also found in Z. hubbardi. The increased micropylar size is likely correlated with the giant spermatozoa produced by males of these two species. These two features combined with the large size of the spermatheca are arguably a complex synapomorphy of Z. hubbardi and Z. impolitus. The phylogenetic placement of Zoraptera is discussed based on the egg structure. A clade of Zoraptera + Eukinolabia appears most plausible, but the issue remains an open question.
| 26,431,636 |
0 | The three-dimensional structure and recognition mechanism of Manduca sexta peptidoglycan recognition protein-1.
Peptidoglycan recognition proteins (PGRPs) recognize bacteria through their unique cell wall constituent, peptidoglycans (PGs). PGRPs are conserved from insects to mammals and all function in antibacterial defense. In the tobacco hornworm Manduca sexta, PGRP1 and microbe binding protein (MBP) interact with PGs and hemolymph protease-14 precursor (proHP14) to yield active HP14. HP14 triggers a serine protease network that produces active phenoloxidase (PO), Spatzle, and other cytokines to stimulate immune responses. PGRP1 binds preferentially to diaminopimelic acid (DAP)-PGs of Gram-negative bacteria and Gram-positive Bacillus and Clostridium species than Lys-PGs of other Gram-positive bacteria. In this study, we synthesized DAP- and Lys-muramyl pentapeptide (MPP) and monitored their associations with M. sexta PGRP1 by surface plasmon resonance. The Kd values (0.57 muM for DAP-MPP and 45.6 muM for Lys-MPP) agree with the differential recognition of DAP- and Lys-PGs. To reveal its structural basis, we produced the PGRP1 in insect cells and determined its structure at a resolution of 2.1 A. The protein adopts a fold similar to those from other PGRPs with a classical L-shaped PG-binding groove. A unique loop lining the shallow groove suggests a different ligand-binding mechanism. In summary, this study provided new insights into the PG recognition by PGRPs, a critical first step that initiates the serine protease cascade.
| 30,905,759 |
0 | Taxonomic and numerical resolutions of nepomorpha (insecta: heteroptera) in cerrado streams.
Transformations of natural landscapes and their biodiversity have become increasingly dramatic and intense, creating a demand for rapid and inexpensive methods to assess and monitor ecosystems, especially the most vulnerable ones, such as aquatic systems. The speed with which surveys can collect, identify, and describe ecological patterns is much slower than that of the loss of biodiversity. Thus, there is a tendency for higher-level taxonomic identification to be used, a practice that is justified by factors such as the cost-benefit ratio, and the lack of taxonomists and reliable information on species distributions and diversity. However, most of these studies do not evaluate the degree of representativeness obtained by different taxonomic resolutions. Given this demand, the present study aims to investigate the congruence between species-level and genus-level data for the infraorder Nepomorpha, based on taxonomic and numerical resolutions. We collected specimens of aquatic Nepomorpha from five streams of first to fourth order of magnitude in the Pindaiba River Basin in the Cerrado of the state of Mato Grosso, Brazil, totaling 20 sites. A principal coordinates analysis (PCoA) applied to the data indicated that species-level and genus-level abundances were relatively similar (>80% similarity), although this similarity was reduced when compared with the presence/absence of genera (R = 0.77). The presence/absence ordinations of species and genera were similar to those recorded for their abundances (R = 0.95 and R = 0.74, respectively). The results indicate that analyses at the genus level may be used instead of species, given a loss of information of 11 to 19%, although congruence is higher when using abundance data instead of presence/absence. This analysis confirms that the use of the genus level data is a safe shortcut for environmental monitoring studies, although this approach must be treated with caution when the objectives include conservation actions, and faunal complementarity and/or inventories.
| 25,083,770 |
0 | The ant genus Polyrhachis F. Smith in sub-Saharan Africa, with descriptions of ten new species. (Hymenoptera: Formicidae).
Ten new sub-Saharan species of the ant genus Polyrhachis are described: P. gibbula n. sp. and P. omissa n. sp. belonging in the viscosa-group; P. brevipilosa n. sp., P. dubia n. sp., P. longiseta n. sp., P. luteipes n. sp., P. submarginata n. sp., and P. terminata n. sp. in the revoili-group; P. doudou n. sp. and P. fisheri n. sp. in the militaris-group. Also, P. epinotalis Santschi and P. kohli Forel are revived from synonymy with P. militaris (Fabr.) and P. volkarti Forel respectively. The type of P. cubaensis Mayr is described, changing the interpretation of the taxon and revalidating two of its synonyms, P. gerstaeckeri Forel and P. wilmsi Forel stat. n.. The examination of the type of Polyrhachis revoili Andre has proved this taxon to be different from previous interpretations; its position is reviewed and all of its synonyms are transferred to P. weissi Santschi. In addition, the first description of the worker of P. andrei Emery is provided, as well as some new records and taxonomic and morphological notes concerning other species. Finally, a synonymic list of the 61 currently known sub-Saharan species, a key to species-groups and an updated key to the workers are given.
| 27,394,324 |
0 | Molecular mechanisms underlying sex pheromone production in the silkmoth, Bombyx mori: characterization of the molecular components involved in bombykol biosynthesis.
Many species of female moths produce sex pheromones to attract conspecific males. To date, sex pheromones from more than 570 moth species have been chemically identified. Most moth species utilize Type I pheromones that consist of straight-chain compounds 10-18 carbons in length with a functional group of a primary alcohol, aldehyde, or acetate ester and usually with several double bonds. In contrast, some moth species use unsaturated hydrocarbons or hydrocarbon epoxides, classified as Type II lepidopteran pheromones, as sex pheromones. Studies over the past three decades have demonstrated that female moths usually produce sex pheromones as multi-component blends where the ratio of the individual components is precisely controlled, thus making it possible to generate species-specific pheromone blends. As for the biosynthesis of Type I pheromones, it is well established that they are de novo synthesized in the pheromone gland (PG) through modifications of fatty acid biosynthetic pathways. However, as many of the molecular components within the PG cells (i.e., enzymes, proteins, and small regulatory molecules) have not been functionally characterized, the molecular mechanisms underlying sex pheromone production in PG cells remain poorly understood. To address this, we have recently characterized some of the molecules involved in the biosynthesis of the sex pheromone bombykol in the silkmoth, Bombyx mori. Characterization of these, and other, key molecules will facilitate our understanding of the precise mechanisms underlying lepidopteran sex pheromone production.
| 17,448,494 |
0 | Costs of memory: lessons from 'mini' brains.
Variation in learning and memory abilities among closely related species, or even among populations of the same species, has opened research into the relationship between cognition, ecological context and the fitness costs, and benefits of learning and memory. Such research programmes have long been dominated by vertebrate studies and by the assumption of a relationship between cognitive abilities, brain size and metabolic costs. Research on these 'large brained' organisms has provided important insights into the understanding of cognitive functions and their adaptive value. In the present review, we discuss some aspects of the fitness costs of learning and memory by focusing on 'mini-brain' studies. Research on learning and memory in insects has challenged some traditional positions and is pushing the boundaries of our understanding of the evolution of learning and memory.
| 21,177,679 |
0 | Deep Sequencing Uncovers Caste-Associated Diversity of Symbionts in the Social Ant Camponotus japonicus.
Symbiotic microorganisms can have a profound impact on the host physiology and behavior, and novel relationships between symbionts and their hosts are continually discovered. A colony of social ants consists of various castes that exhibit distinct lifestyles and is, thus, a unique model for investigating how symbionts may be involved in host eusociality. Yet our knowledge of social ant-symbiont dynamics has remained rudimentary. Through 16S rRNA gene deep sequencing of the carpenter ant Camponotus japonicus symbiont community across various castes, we here report caste-dependent diversity of commensal gut microbiota and lineage divergence of "Candidatus Blochmannia," an obligate endosymbiont. While most prevalent gut-associated bacterial populations are found across all castes (Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes, and Cyanobacteria), we also discovered uncultured populations that are found only in males (belonging to Corynebacteriales, Alkanindiges, and Burkholderia). Most of those populations are not detected in laboratory-maintained queens and workers, suggesting that they are facultative gut symbionts introduced via environmental acquisition. Further inspection of "Ca. Blochmannia" endosymbionts reveals that two populations are dominant in all individuals across all castes but that males preferentially contain two different sublineages that are diversified from others. Clearly, each caste has distinct symbiont communities, suggesting an overlooked biological aspect of host-symbiont interaction in social insects.IMPORTANCE Social animals, such as primates and some insects, have been shown to exchange symbiotic microbes among individuals through sharing diet or habitats, resulting in increased consistency of microbiota among social partners. The ant is a representative of social insects exhibiting various castes within a colony; queens, males, and nonreproductive females (so-called workers) show distinct morphologies, physiologies, and behaviors but tightly interact with each other in the nest. However, how this social context affects their gut microbiota has remained unclear. In this study, we deeply sequenced the gut symbiont community across various castes of the carpenter ant Camponotus japonicus We report caste-dependent diversity of commensal gut microbial community and lineage divergence of the mutualistic endosymbiont "Candidatus Blochmannia." This report sheds light on the hidden diversity in microbial populations and community structure associated with guts of males in social ants.
| 32,317,320 |
0 | Isolation of ferritin and its interaction with BmNPV in the silkworm, Bombyx mori.
Ferritin is a ubiquitous iron storage protein that plays an important role in host defence against pathogen infections. In the present study, native ferritin was isolated from the hemolymph of Bombyx mori using native-polyacrylamide gel electrophoresis (native-PAGE) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The results revealed that ferritin consisted of two subunits, designated as BmFerHCH and BmFerLCH. Previously integrated previous transcriptome and iTRAQ data showed that the two subunits were down-regulated in resistant silkworm strain BC9 and there was no obvious change in the expression levels of the subunits in susceptible silkworm strain P50 after BmNPV infection. Virus overlay assays revealed that B. mori ferritin as the form of heteropolymer had an interaction with B. mori nucleopolyhedrovirus (BmNPV), but it can't interact with BmNPV after depolymerisation. What's more, reverse transcription quantitative PCR (RT-qPCR) analysis suggested that BmFerHCH and BmFerLCH could be induced by bacteria, virus and iron. This is the first study to extract B. mori ferritin successfully and confirms their roles in the process of BmNPV infection. All these results will lay a foundation for further research the function of B. mori ferritin.
| 29,793,044 |
0 | Heterologous expression and characterization of two chitinase 5 enzymes from the migratory locust Locusta migratoria.
Insect chitinases are involved in degradation of chitin from the exoskeleton or peritrophic metrix of midgut. In Locusta migratoria, two duplicated Cht5s (LmCht5-1 and LmCht5-2) have been shown to have distinct molecular characteristics and biological roles. To explore the protein properties of the two LmCht5s, we heterologously expressed both enzymes using baculovirus expression system in SF9 cells, and characterized kinetic and carbohydrate-binding properties of purified enzymes. LmCht5-1 and LmCht5-2 exhibited similar pH and temperature optimums. LmCht5-1 has lower Km value for the oligomeric substrate (4MU-(GlcNAc)3 ), and higher Km value for the longer substrate (CM-Chitin-RBV) compared with LmCht5-2. A comparison of amino acids and homology modeling of catalytic domain presented similar TIM barrel structures and differentiated amino acids between two proteins. LmCht5-1 has a chitin-binding domain (CBD) tightly bound to colloidal chitin, but LmCht5-2 does not have a CBD for binding to colloidal chitin. Our results suggested both LmCht5-1 and LmCht5-2, which have the critical glutamate residue in region II of catalytic domain, exhibited chitinolytic activity cleaving both polymeric and oligomeric substrates. LmCht5-1 had relatively higher activity against the oligomeric substrate, 4MU-(GlcNAc)3 , whereas LmCht5-2 exhibited higher activity toward the longer substrate, CM-Chitin-RBV. These findings are helpful for further research to clarify their different roles in insect growth and development.
| 26,792,119 |
0 | The bee Ruizanthedella mutabilis Spinola (Hymenoptera: Halictidae): a very common but poorly known species studied using integrative taxonomy.
Ruizanthedella mutabilis (Spinola) is a very abundant species in Chile and the northwest of Argentinean Patagonia. In this contribution, Halictus nigrocaeruleus Spinola 1851 is established as a junior synonym of R. mutabilis (Spinola 1851), after considering morphological data, DNA barcoding results, and biological observations. The variability in the colouration of the metasoma has been incorrectly used to distinguish these colour forms as valid species. New records enlarge the distribution of the species in Argentina, from the Andes to the Atlantic coast.
| 31,716,562 |
0 | External control of the Drosophila melanogaster lifespan by combination of 3D oscillating low-frequency electric and magnetic fields.
We demonstrate that the lifespan of Drosophila melanogaster population is controllable by a combination of external three-dimensional oscillating low-frequency electric and magnetic fields (3D OLFEMFs). The lifespan was decreased or increased in dependence of the parameters of the external 3D OLFEMFs. We propose that metabolic processes in D. melanogaster's body are either accelerated (in the case of reduced lifespan) or slowed down (in the case of increased lifespan) in function of 3D OLFEMFs that induce vibrational motions on sub-cellular and larger scales.
| 23,977,947 |
0 | N-containing compounds from Periplaneta americana and their activities against wound healing.
Three new compounds, periplanamides A (1) and B (2), periplanpyrazine A (3), a new naturally occurring compound salicyluric acid methyl ester (6), and seventeen known compounds were isolated from the medicinal insect Periplaneta americana. The structures of the new compounds were elucidated on the basis of spectroscopic methods. The absolute configurations of 2 were assigned by computational methods. Biological activities of these isolates except 1, 9, 11, and 13 toward nitric oxide (NO) production, cell proliferation in HDFs, cell migration and angiogenesis in HUVECs were evaluated.
| 29,595,067 |
0 | Molecular and functional analysis of UDP-N-acetylglucosamine Pyrophosphorylases from the Migratory Locust, Locusta migratoria.
UDP-N-acetylglucosamine pyrophosphorylases (UAP) function in the formation of extracellular matrix by producing N-acetylglucosamine (GlcNAc) residues needed for chitin biosynthesis and protein glycosylation. Herein, we report two UAP cDNA's derived from two different genes (LmUAP1 and LmUAP2) in the migratory locust Locusta migratoria. Both the cDNA and their deduced amino acid sequences showed about 70% identities between the two genes. Phylogenetic analysis suggests that LmUAP1 and LmUAP2 derive from a relatively recent gene duplication event. Both LmUAP1 and LmUAP2 were widely expressed in all the major tissues besides chitin-containing tissues. However, the two genes exhibited different developmental expression patterns. High expression of LmUAP1 was detected during early embryogenesis, then decreased greatly, and slowly increased before egg hatch. During nymphal development, the highest expression of LmUAP1 appeared just after molting but declined in each inter-molting period and then increased before molting to the next stage, whereas LmUAP2 was more consistently expressed throughout all these stages. When the early second- and fifth-instar nymphs (1-day-old) were injected with LmUAP1 double-stranded RNA (dsRNA), 100% mortality was observed 2 days after the injection. When the middle second- and fifth-instar nymphs (3- to 4-day-old) were injected with LmUAP1 dsRNA, 100% mortality was observed during their next molting process. In contrast, when the insects at the same stages were injected with LmUAP2 dsRNA, these insects were able to develop normally and molt to the next stage successfully. It is presumed that the lethality caused by RNAi of LmUAP1 is due to reduced chitin biosynthesis of the integument and midgut, whereas LmUAP2 is not essential for locust development at least in nymph stage. This study is expected to help better understand different functions of UAP1 and UAP2 in the locust and other insect species.
| 23,977,188 |
0 | The Circadian Clock of the Ant Camponotus floridanus Is Localized in Dorsal and Lateral Neurons of the Brain.
The circadian clock of social insects has become a focal point of interest for research, as social insects show complex forms of timed behavior and organization within their colonies. These behaviors include brood care, nest maintenance, foraging, swarming, defense, and many other tasks, of which several require social synchronization and accurate timing. Ants of the genus Camponotus have been shown to display a variety of daily timed behaviors such as the emergence of males from the nest, foraging, and relocation of brood. Nevertheless, circadian rhythms of isolated individuals have been studied in few ant species, and the circadian clock network in the brain that governs such behaviors remains completely uncharacterized. Here we show that isolated minor workers of Camponotus floridanus exhibit temperature overcompensated free-running locomotor activity rhythms under constant darkness. Under light-dark cycles, most animals are active during day and night, with a slight preference for the night. On the neurobiological level, we show that distinct cell groups in the lateral and dorsal brain of minor workers of C. floridanus are immunostained with an antibody against the clock protein Period (PER) and a lateral group additionally with an antibody against the neuropeptide pigment-dispersing factor (PDF). PER abundance oscillates in a daily manner, and PDF-positive neurites invade most parts of the brain, suggesting that the PER/PDF-positive neurons are bona fide clock neurons that transfer rhythmic signals into the relevant brain areas controlling rhythmic behavior.
| 29,589,522 |
0 | Insect wings: the world's smallest, smartest aerofoils.
Insect wings are extraordinary examples of small-scale biological engineering: smart, flexible aerofoils with virtually no parallels in technology--so far. This may well be about to change. Engineers are becoming increasingly aware of, and interested in, the remarkable qualities of insects as flying machines.
| 12,097,710 |
0 | New Cockroaches (Dictyoptera: Blattodea) from French Guiana and a Revised Checklist for the Region.
Although French Guiana is one of the greatest hotspots of cockroach biodiversity on Earth, there are still undocumented species. From both newly collected and museum specimens, we provide species descriptions for Buboblatta vlasaki sp. nov., Lamproblatta antoni sp. nov., and Euhypnorna bifuscina sp. nov. and report new geographic records for species in the genera Epilampra Burmeister, Euphyllodromia Shelford, Ischnoptera Burmeister, and Euhypnorna Hebard. Finally, we update the checklist of species known from the region to 163 total species records from French Guiana, making it the second greatest hotspot of known cockroach biodiversity on Earth.
| 30,891,709 |
0 | New World species of Asymphyloptera Collin (Diptera: Empididae: Clinocerinae).
Eight species are recognized among New World species of Asymphyloptera Collin, including seven new species (A. cajanuma sp. nov. (Ecuador), A. chilensis sp. nov. (Chile), A. chiricahua sp. nov. (USA: Arizona), A. dominica sp. nov. (Dominica), A. havasu sp. nov. (USA: Arizona), A. lutea sp. nov. (Costa Rica) and A. mexicana sp. nov. (Mexico)). The new species are described, male terminalia illustrated, distributions mapped and a key to species is presented. Two additional undescribed species based on single females, are known from Ecuador and Venezuela.
| 26,624,767 |
0 | Proteomic analysis of the venom of the predatory ant Pachycondyla striata (Hymenoptera: Formicidae).
The ants use their venom for predation, defense, and communication. The venom of these insects is rich in peptides and proteins, and compared with other animal venoms, ant venoms remain poorly explored. The objective of this study was to evaluate the protein content of the venom in the Ponerinae ant Pachycondyla striata. Venom samples were collected by manual gland reservoir dissection, and samples were submitted to two-dimensional gel electrophoresis and separation by ion-exchange and reverse-phase high-performance liquid chromatography followed by mass spectrometry using tanden matrix-assisted laser desorption/ionization with time-of-flight (MALDI-TOF/TOF) mass spectrometry and electrospray ionization-quadrupole with time-of-flight (ESI-Q/TOF) mass spectrometry for obtaining amino acid sequence. Spectra obtained were searched against the NCBInr and SwissProt database. Additional analysis was performed using PEAKS Studio 7.0 (Sequencing de novo). The venom of P. striata has a complex mixture of proteins from which 43 were identified. Within the identified proteins are classical venom proteins (phospholipase A, hyaluronidase, and aminopeptidase N), allergenic proteins (different venom allergens), and bioactive peptides (U10-ctenitoxin Pn1a). Venom allergens are among the most expressed proteins, suggesting that P. striata venom has high allergenic potential. This study discusses the possible functions of the proteins identified in the venom of P. striata.
| 29,024,043 |
0 | Neuropeptidomes of Tenebrio molitor L. and Zophobas atratus Fab. (Coleoptera, Polyphaga: Tenebrionidae).
Neuropeptides are signaling molecules that regulate almost all physiological processes in animals. Around 50 different genes for neuropeptides have been described in insects. In Coleoptera, which is the largest insect order based on numbers of described species, knowledge about neuropeptides and protein hormones is still limited to a few species. Here, we analyze the neuropeptidomes of two closely related tenebrionid beetles: Tenebrio molitor and Zophobas atratus both of which are model species in physiological and pharmacological research. We combined transcriptomic and mass spectrometry analyses of the central nervous system to identify neuropeptides and neuropeptide-like and protein hormones. Several precursors were identified in T. molitor and Z. atratus, of which 50 and 40, respectively, were confirmed by mass spectrometry. This study provides the basis for further functional studies of neuropeptides as well as for the design of environmentally friendly and species-specific peptidomimetics to be used as biopesticides. Furthermore, since T. molitor has become accepted by the European Food Safety Authority as a novel food, a deeper knowledge of the neuropeptidome of this species will prove useful for optimizing production programs at an industrial scale.
| 36,107,737 |
0 | Efficacy of entomopathogenic hypocrealean fungi against Periplaneta americana.
The American cockroach Periplaneta americana, one of the worlds' most important urban insect pests was tested with entomopathogenic fungi. Most promising Metarhizium anisopliae, Metarhizium robertsii and Beauveria bassiana killed nymphs (>= 81.7% mortality, 25 days after treatment), and these fungi developed on all dead insects. Other fungi tested were less virulent (Metarhizium frigidum and Purpureocillium lilacinum) or avirulent (Isaria cateniobliqua, Isaria farinosa, Simplicillium lanosoniveum, Sporothrix insectorum and Tolypocladium cylindrosporum). Intrageneric and intraspecific variability of fungal activity was detected. Adults were highly susceptible, and oothecae proved to be more resistant than nymphs and adults to infection with M. anisopliae IP 46. Findings of the study underscore the potential of fungi as biocontrol agents against this pest.
| 23,899,866 |
1 | Subdivisions of hymenopteran mushroom body calyces by their afferent supply.
The mushroom bodies are regions in the insect brain involved in processing complex multimodal information. They are composed of many parallel sets of intrinsic neurons that receive input from and transfer output to extrinsic neurons that connect the mushroom bodies with the surrounding neuropils. Mushroom bodies are particularly large in social Hymenoptera and are thought to be involved in the control of conspicuous orientation, learning, and memory capabilities of these insects. The present account compares the organization of sensory input to the mushroom body's calyx in different Hymenoptera. Tracer and conventional neuronal staining procedures reveal the following anatomic characteristics: The calyx comprises three subdivisions, the lip, collar, and basal ring. The lip receives antennal lobe afferents, and these olfactory input neurons can terminate in two or more segregated zones within the lip. The collar receives visual afferents that are bilateral with equal representation of both eyes in each calyx. Visual inputs provide two to three layers of processes in the collar subdivision. The basal ring is subdivided into two modality-specific zones, one receiving visual, the other antennal lobe input. Some overlap of modality exists between calycal subdivisions and within the basal ring, and the degree of segregation of sensory input within the calyx is species-specific. The data suggest that the many parallel channels of intrinsic neurons may each process different aspects of sensory input information.
| 11,406,827 |
1 | Ground plan of the insect mushroom body: functional and evolutionary implications.
In most insects with olfactory glomeruli, each side of the brain possesses a mushroom body equipped with calyces supplied by olfactory projection neurons. Kenyon cells providing dendrites to the calyces supply a pedunculus and lobes divided into subdivisions supplying outputs to other brain areas. It is with reference to these components that most functional studies are interpreted. However, mushroom body structures are diverse, adapted to different ecologies, and likely to serve various functions. In insects whose derived life styles preclude the detection of airborne odorants, there is a loss of the antennal lobes and attenuation or loss of the calyces. Such taxa retain mushroom body lobes that are as elaborate as those of mushroom bodies equipped with calyces. Antennal lobe loss and calycal regression also typify taxa with short nonfeeding adults, in which olfaction is redundant. Examples are cicadas and mayflies, the latter representing the most basal lineage of winged insects. Mushroom bodies of another basal taxon, the Odonata, possess a remnant calyx that may reflect the visual ecology of this group. That mushroom bodies persist in brains of secondarily anosmic insects suggests that they play roles in higher functions other than olfaction. Mushroom bodies are not ubiquitous: the most basal living insects, the wingless Archaeognatha, possess glomerular antennal lobes but lack mushroom bodies, suggesting that the ability to process airborne odorants preceded the acquisition of mushroom bodies. Archaeognathan brains are like those of higher malacostracans, which lack mushroom bodies but have elaborate olfactory centers laterally in the brain.
| 19,152,379 |
1 | Multimodal efferent and recurrent neurons in the medial lobes of cockroach mushroom bodies.
Previous electrophysiological studies of cockroach mushroom bodies demonstrated the sensitivity of efferent neurons to multimodal stimuli. The present account describes the morphology and physiology of several types of efferent neurons with dendrites in the medial lobes. In general, efferent neurons respond to a variety of modalities in a context-specific manner, responding to specific combinations or specific sequences of multimodal stimuli. Efferent neurons that show endogenous activity have dendritic specializations that extend to laminae of Kenyon cell axons equipped with many synaptic vesicles, termed "dark" laminae. Efferent neurons that are active only during stimulation have dendritic specializations that branch mainly among Kenyon cell axons having few vesicles and forming the "pale" laminae. A new category of "recurrent" efferent neuron has been identified that provides feedback or feedforward connections between different parts of the mushroom body. Some of these neurons are immunopositive to antibodies raised against the inhibitory transmitter gamma-aminobutyric acid. Feedback pathways to the calyces arise from satellite neuropils adjacent to the medial lobes, which receive axon collaterals of efferent neurons. Efferent neurons are uniquely identifiable. Each morphological type occurs at the same location in the mushroom bodies of different individuals. Medial lobe efferent neurons terminate in the lateral protocerebrum among the endings of antennal lobe projection neurons. It is suggested that information about the sensory context of olfactory (or other) stimuli is relayed by efferent neurons to the lateral protocerebrum where it is integrated with information about odors relayed by antennal lobe projection neurons.
| 10,376,745 |
1 | What insects can tell us about the origins of consciousness.
How, why, and when consciousness evolved remain hotly debated topics. Addressing these issues requires considering the distribution of consciousness across the animal phylogenetic tree. Here we propose that at least one invertebrate clade, the insects, has a capacity for the most basic aspect of consciousness: subjective experience. In vertebrates the capacity for subjective experience is supported by integrated structures in the midbrain that create a neural simulation of the state of the mobile animal in space. This integrated and egocentric representation of the world from the animal's perspective is sufficient for subjective experience. Structures in the insect brain perform analogous functions. Therefore, we argue the insect brain also supports a capacity for subjective experience. In both vertebrates and insects this form of behavioral control system evolved as an efficient solution to basic problems of sensory reafference and true navigation. The brain structures that support subjective experience in vertebrates and insects are very different from each other, but in both cases they are basal to each clade. Hence we propose the origins of subjective experience can be traced to the Cambrian.
| 27,091,981 |
1 | Evolution of complex higher brain centers and behaviors: behavioral correlates of mushroom body elaboration in insects.
Large, complex higher brain centers have evolved many times independently within the vertebrates, but the selective pressures driving these acquisitions have been difficult to pinpoint. It is well established that sensory brain centers become larger and more structurally complex to accommodate processing of a particularly important sensory modality. When higher brain centers such as the cerebral cortex become greatly expanded in a particular lineage, it is likely to support the coordination and execution of more complex behaviors, such as those that require flexibility, learning, and social interaction, in response to selective pressures that made these new behaviors advantageous. Vertebrate studies have established a link between complex behaviors, particularly those associated with sociality, and evolutionary expansions of telencephalic higher brain centers. Enlarged higher brain centers have convergently evolved in groups such as the insects, in which multimodal integration and learning and memory centers called the mushroom bodies have become greatly elaborated in at least four independent lineages. Is it possible that similar selective pressures acting on equivalent behavioral outputs drove the evolution of large higher brain centers in all bilaterians? Sociality has greatly impacted brain evolution in vertebrates such as primates, but it has not been a major driver of higher brain center enlargement in insects. However, feeding behaviors requiring flexibility and learning are associated with large higher brain centers in both phyla. Selection for the ability to support behavioral flexibility appears to be a common thread underlying the evolution of large higher brain centers, but the precise nature of these computations and behaviors may vary.
| 23,979,452 |
1 | The neurobiology of insect olfaction: sensory processing in a comparative context.
The simplicity and accessibility of the olfactory systems of insects underlie a body of research essential to understanding not only olfactory function but also general principles of sensory processing. As insect olfactory neurobiology takes advantage of a variety of species separated by millions of years of evolution, the field naturally has yielded some conflicting results. Far from impeding progress, the varieties of insect olfactory systems reflect the various natural histories, adaptations to specific environments, and the roles olfaction plays in the life of the species studied. We review current findings in insect olfactory neurobiology, with special attention to differences among species. We begin by describing the olfactory environments and olfactory-based behaviors of insects, as these form the context in which neurobiological findings are interpreted. Next, we review recent work describing changes in olfactory systems as adaptations to new environments or behaviors promoting speciation. We proceed to discuss variations on the basic anatomy of the antennal (olfactory) lobe of the brain and higher-order olfactory centers. Finally, we describe features of olfactory information processing including gain control, transformation between input and output by operations such as broadening and sharpening of tuning curves, the role of spiking synchrony in the antennal lobe, and the encoding of temporal features of encounters with an odor plume. In each section, we draw connections between particular features of the olfactory neurobiology of a species and the animal's life history. We propose that this perspective is beneficial for insect olfactory neurobiology in particular and sensory neurobiology in general.
| 21,963,552 |
1 | Tritocerebral tract input to the insect mushroom bodies.
Insect mushroom bodies, best known for their role in olfactory processing, also receive sensory input from other modalities. In crickets and grasshoppers, a tritocerebral tract containing afferents from palp mechanosensory and gustatory centers innervates the accessory calyx. The accessory calyx is uniquely composed of Class III Kenyon cells, and was shown by immunohistochemistry to be present sporadically across several insect orders. Neuronal tracers applied to the source of tritocerebral tract axons in several species of insects demonstrated that tritocerebral tract innervation of the mushroom bodies targeted the accessory calyx when present, the primary calyces when an accessory calyx was not present, or both. These results suggest that tritocerebral tract input to the mushroom bodies is likely ubiquitous, reflecting the importance of gustation for insect behavior. The scattered phylogenetic distribution of Class III Kenyon cells is also proposed to represent an example of generative homology, in which the developmental program for forming a structure is retained in all members of a lineage, but the program is not "run" in all branches.
| 18,590,832 |
1 | Organization and functional roles of the central complex in the insect brain.
The central complex is a group of modular neuropils across the midline of the insect brain. Hallmarks of its anatomical organization are discrete layers, an organization into arrays of 16 slices along the right-left axis, and precise inter-hemispheric connections via chiasmata. The central complex is connected most prominently with the adjacent lateral complex and the superior protocerebrum. Its developmental appearance corresponds with the appearance of compound eyes and walking legs. Distinct dopaminergic neurons control various forms of arousal. Electrophysiological studies provide evidence for roles in polarized light vision, sky compass orientation, and integration of spatial information for locomotor control. Behavioral studies on mutant and transgenic flies indicate roles in spatial representation of visual cues, spatial visual memory, directional control of walking and flight, and place learning. The data suggest that spatial azimuthal directions (i.e., where) are represented in the slices, and cue information (i.e., what) are represented in different layers of the central complex.
| 24,160,424 |
1 | Functional analysis of a higher olfactory center, the lateral horn.
The lateral horn (LH) of the insect brain is thought to play several important roles in olfaction, including maintaining the sparseness of responses to odors by means of feedforward inhibition, and encoding preferences for innately meaningful odors. Yet relatively little is known of the structure and function of LH neurons (LHNs), making it difficult to evaluate these ideas. Here we surveyed >250 LHNs in locusts using intracellular recordings to characterize their responses to sensory stimuli, dye-fills to characterize their morphologies, and immunostaining to characterize their neurotransmitters. We found a great diversity of LHNs, suggesting this area may play multiple roles. Yet, surprisingly, we found no evidence to support a role for these neurons in the feedforward inhibition proposed to mediate olfactory response sparsening; instead, it appears that another mechanism, feedback inhibition from the giant GABAergic neuron, serves this function. Further, all LHNs we observed responded to all odors we tested, making it unlikely these LHNs serve as labeled lines mediating specific behavioral responses to specific odors. Our results rather point to three other possible roles of LHNs: extracting general stimulus features such as odor intensity; mediating bilateral integration of sensory information; and integrating multimodal sensory stimuli.
| 22,699,895 |
1 | Development and evolution of the insect mushroom bodies: towards the understanding of conserved developmental mechanisms in a higher brain center.
The insect mushroom bodies are prominent higher order neuropils consisting of thousands of approximately parallel projecting intrinsic neurons arising from the minute basophilic perikarya of globuli cells. Early studies described these structures as centers for intelligence and other higher functions; at present, the mushroom bodies are regarded as important models for the neural basis of learning and memory. The insect mushroom bodies share a similar general morphology, and the same basic sequence of developmental events is observed across a wide range of insect taxa. Globuli cell progenitors arise in the embryo and proliferate throughout the greater part of juvenile development. Discrete morphological and functional subpopulations of globuli cells (or Kenyon cells, as they are called in insects) are sequentially produced at distinct periods of development. Kenyon cell somata are arranged by age around the center of proliferation, as are their processes in the mushroom body neuropil. Other aspects of mushroom body development are more variable from species to species, such as the origin of specific Kenyon cell populations and neuropil substructures, as well as the timing and pace of the general developmental sequence.
| 18,088,997 |
1 | Modality-specific segregation of input to ant mushroom bodies.
The mushroom bodies are central brain neuropils involved in the control of complex behavior. In ants, the mushroom bodies are relatively large compared to those of honey bees, whereas the optic lobes of ants are considerably smaller. The general morphology of ant mushroom bodies is similar to that of honey bees. As in other Hymenoptera, the main input region of the mushroom bodies, the calyx, is subdivided into three compartments: the lip, the collar, and the basal ring. In many ant species this compartmentalization is not obvious and can only be visualized using neuronal tracers. The lip region receives antennal input and is large in all ant species. It appears to be composed of at least two different regions that have not yet been characterized in detail. The collar is large in other Hymenoptera, yet in ant workers it varies in size and is always much smaller than the lip region. The collar receives visual input and is relatively larger in males, which generally are more dependant on vision than are workers. The basal ring receives input from both the optic and antennal lobes. In one ant tribe, the Ponerini, the collar region appears to have changed its position, but based on afferent input it appears to be homologous to the hymenopteran collar. Generally, the composition of the mushroom body calyx correlates with the living conditions of ants, reflecting the great importance of olfaction and the lesser and more variable significance of vision for workers of the observed ant species.
| 10,529,521 |
1 | Multimodal interactions in insect navigation.
Animals travelling through the world receive input from multiple sensory modalities that could be important for the guidance of their journeys. Given the availability of a rich array of cues, from idiothetic information to input from sky compasses and visual information through to olfactory and other cues (e.g. gustatory, magnetic, anemotactic or thermal) it is no surprise to see multimodality in most aspects of navigation. In this review, we present the current knowledge of multimodal cue use during orientation and navigation in insects. Multimodal cue use is adapted to a species' sensory ecology and shapes navigation behaviour both during the learning of environmental cues and when performing complex foraging journeys. The simultaneous use of multiple cues is beneficial because it provides redundant navigational information, and in general, multimodality increases robustness, accuracy and overall foraging success. We use examples from sensorimotor behaviours in mosquitoes and flies as well as from large scale navigation in ants, bees and insects that migrate seasonally over large distances, asking at each stage how multiple cues are combined behaviourally and what insects gain from using different modalities.
| 32,323,027 |
1 | Multimodal Information Processing and Associative Learning in the Insect Brain.
The study of sensory systems in insects has a long-spanning history of almost an entire century. Olfaction, vision, and gustation are thoroughly researched in several robust insect models and new discoveries are made every day on the more elusive thermo- and mechano-sensory systems. Few specialized senses such as hygro- and magneto-reception are also identified in some insects. In light of recent advancements in the scientific investigation of insect behavior, it is not only important to study sensory modalities individually, but also as a combination of multimodal inputs. This is of particular significance, as a combinatorial approach to study sensory behaviors mimics the real-time environment of an insect with a wide spectrum of information available to it. As a fascinating field that is recently gaining new insight, multimodal integration in insects serves as a fundamental basis to understand complex insect behaviors including, but not limited to navigation, foraging, learning, and memory. In this review, we have summarized various studies that investigated sensory integration across modalities, with emphasis on three insect models (honeybees, ants and flies), their behaviors, and the corresponding neuronal underpinnings.
| 35,447,774 |
1 | Development of laminar organization in the mushroom bodies of the cockroach: Kenyon cell proliferation, outgrowth, and maturation.
The mushroom bodies of the insect brain are lobed integration centers made up of tens of thousands of parallel-projecting axons of intrinsic (Kenyon) cells. Most of the axons in the medial and vertical lobes of adult cockroach mushroom bodies derive from class I Kenyon cells and are organized into regular, alternating pairs (doublets) of pale and dark laminae. Organization of Kenyon cell axons into the adult pattern of laminae occurs gradually over the course of nymphal development. Newly hatched nymphs possess tiny mushroom bodies with lobes containing a posterior lamina of ingrowing axons, followed by a single doublet, which is flanked anteriorly by a gamma layer composed of class II Kenyon cells. Golgi impregnations show that throughout nymphal development, regardless of the number of doublets present, the most posterior lamina serves as the "ingrowth lamina" for axons of newborn Kenyon cells. Axons of the ingrowth lamina are taurine- and synaptotagmin-immunonegative. They produce fine growth cone tipped filaments and long perpendicularly oriented collaterals along their length. The maturation of these Kenyon cells and the formation of a new lamina are marked by the loss of filaments and collaterals, as well as the onset of taurine and synaptotagmin expression. Class I Kenyon cells thus show plasticity in both morphology and transmitter expression during development. In a hemimetabolous insect such as the cockroach, juvenile stages are morphologically and behaviorally similar to the adult. The mushroom bodies of these insects must be functional from hatching onward, while thousands of new neurons are added to the existing structure. The observed developmental plasticity may serve as a mechanism by which extensive postembryonic development of the mushroom bodies can occur without disrupting function. This contrasts with the more evolutionarily derived holometabolous insects, such as the honey bee and the fruit fly, in which nervous system development is accomplished in a behaviorally simple larval stage and a quiescent pupal stage.
| 11,596,058 |
1 | Integrative properties of the Pe1 neuron, a unique mushroom body output neuron.
A mushroom body extrinsic neuron, the Pe1 neuron, connects the peduncle of the mushroom body (MB) with two areas of the protocerebrum in the honeybee brain, the lateral protocerebral lobe (LPL) and the ring neuropil around the alpha-lobe. Each side of the bee brain contains only one Pe1 neuron. Using a combination of intracellular recording and neuroanatomical techniques we analyzed its properties of integrative processing of the different sensory modalities. The Pe1 neuron responds to visual, mechanosensory, and olfactory stimuli. The responses are broadly tuned, consisting of a sustained increase of spike frequency to the onset and offset of light flashes, to horizontal and vertical movements of extended objects, to mechanical stimuli applied to the antennae or mouth parts, and to all olfactory stimuli tested (29 chemicals). These multisensory properties are reflected in its dendritic organization. Serial reconstructions of intracellularly stained Pe1 neurons using confocal microscopy reveal that the Pe1 neuron arborizes throughout all layers of MB peduncle with finger-like, vertically oriented dendrites. The peduncle of the MB is formed by the axons of Kenyon cells, whose dendritic inputs are organized in modality-specific subcompartments of the calyx region. The peduncular arborization indicates that the Pe1 neuron receives input from Kenyon cells of all calycal subcompartments. Because the Pe1 neuron changes its odor responses transiently as a consequence of olfactory learning, we hypothesize that the multimodal response properties might have a role in memory consolidation and help to establish contextual references in the long-term trace.
| 10,454,378 |
1 | Organization of olfactory and multimodal afferent neurons supplying the calyx and pedunculus of the cockroach mushroom bodies.
The mushroom bodies of neopteran insects are considered to be higher olfactory centers because their calyces receive abundant collaterals of projection neurons from the antennal lobes. However, intracellular recordings of mushroom body efferent neurons demonstrate that they respond to multimodal stimuli, implying that the mushroom bodies receive a variety of sensory cues. The present account describes new features of the organization of afferent neurons supplying the calyces of the cockroach Periplaneta americana. Afferent terminals segment the calyces into discrete zones, I, II, III, and IIIA, which receive afferents from 1) two discrete populations of sexually isomorphic olfactory glomeruli, 2) two types of male-specific olfactory glomeruli, 3) the optic lobes, and 4) multimodal interneurons that originate in protocerebral neuropils. In addition, intracellular recordings and dye fills show that at least four morphologically distinct GABAergic elements link many regions of the protocerebrum to the calyces. A new type of touch-sensitive centrifugal neuron has been identified terminating in the pedunculus. The dendrites of this afferent reside in satellite neuropil, beneath the mushroom body's medial lobe, which is supplied by collaterals from medial lobe efferent neurons and by terminals from the central complex. The role of this centrifugal cell in odorant sampling is considered. Golgi impregnation identifies other afferents in proximal regions of the calyx (zone IIIA) that also originate from satellite neuropils, suggesting major reafference from the medial lobes channeled through this region. The relevance of multimodal supply to the calyx in odorant discrimination is discussed as are comparisons between mushroom body organization in this phylogenetically basal neopteran and other taxa.
| 10,376,743 |
1 | Visual and olfactory input segregation in the mushroom body calyces in a basal neopteran, the American cockroach.
The cockroach Periplaneta americana is an evolutionary basal neopteran insect, equipped with one of the largest and most elaborate mushroom bodies among insects. Using intracellular recording and staining in the protocerebrum, we discovered two new types of neurons that receive direct input from the optic lobe in addition to the neuron previously reported. These neurons have dendritic processes in the optic lobe, projection sites in the optic tracts, and send axonal terminals almost exclusively to the innermost layer of the MB calyces (input site of MB). Their responses were excitatory to visual but inhibitory to olfactory stimuli, and weak excitation occurred in response to mechanosensory stimuli to cerci. In contrast, interneurons with dendrites mainly in the antennal lobe projection sites send axon terminals to the middle to outer layers of the calyces. These were excited by various olfactory stimuli and mechanosensory stimuli to the antenna. These results suggest that there is general modality-specific terminal segregation in the MB calyces and that this is an early event in insect evolution. Possible postsynaptic and presynaptic elements of these neurons are discussed.
| 22,001,372 |
1 | Morphology and sensory modality of mushroom body extrinsic neurons in the brain of the cockroach, Periplaneta americana.
Mushroom bodies are paired centers in insect brains that are thought to be crucial in olfactory learning and memory. Early neuroanatomical descriptions suggested that the mushroom bodies comprise rather simple arrangements of nerve cells. Intrinsic neurons within each mushroom body were believed to receive olfactory afferents and to supply long, branched axons to extrinsic neurons that lead from the mushroom body into the protocerebrum. More recent suggestions that the mushroom bodies integrate several sensory modalities find support from intracellular and extracellular recordings of extrinsic neurons in the brains of crickets, honey bees, and cockroaches. Here, we describe two major classes of extrinsic neurons, simple and complex cells, in the mushroom bodies of the cockroach Periplaneta americana. Each class is defined by its pattern of branching in the brain. Simple neurons correspond to extrinsic neurons described from other species that have one set of dendrites only within the mushroom bodies. Complex extrinsic neurons possess dendrite-like branches within and outside the mushroom bodies. This arrangement may account in part for their observed multimodality, as might newly identified afferent neurons that terminate in the mushroom body lobes among the dendrites of extrinsic neurons and that respond to multimodal stimuli. Organizational complexity within the mushroom bodies is suggested by the grouping of intrinsic cell axons into discrete laminae. These are intersected by the block-like arrangements of dendritic fields of extrinsic neurons in a manner reminiscent of Purkinje cell dendrites intersecting parallel fibers in the cerebellum. The present results demonstrate that the cockroach mushroom body processes multimodal sensory information and that its neural arrangements contribute to a precise architecture consisting of discrete longitudinal and transverse subdivisions.
| 9,373,016 |
1 | Widespread sensitivity to looming stimuli and small moving objects in the central complex of an insect brain.
In many situations animals are confronted with approaching objects. Depending on whether the approach represents a potential threat or is intended during a goal-oriented approach, the adequate behavioral strategies differ. In all of these cases the visual system experiences an expanding or looming shape. The neuronal machinery mediating looming elicited behavioral responses has been studied most comprehensively in insects but is still far from being fully understood. It is particularly unknown how insects adjust their behavior to objects approaching from different directions. A brain structure that is thought to play an important role in spatial orientation in insects is the central complex (CC). We investigated whether CC neurons process information about approaching objects on a collision course. We recorded intracellularly from CC neurons in the locust Schistocerca gregaria during visual stimulation via lateral LCD screens. Many neurons in the locust CC, including columnar and tangential neurons, were sensitive to looming stimuli. Some of the neurons also responded to small moving targets. Several cell types showed binocular responses to looming objects, and some neurons were excited or inhibited depending on which eye was stimulated. These neurons may, therefore, detect the gross azimuthal direction of approaching objects and may mediate directional components of escape or steering movements.
| 23,658,153 |
1 | Neurons of the central complex of the locust Schistocerca gregaria are sensitive to polarized light.
The central complex is a topographically ordered neuropil structure in the center of the insect brain. It consists of three major subdivisions, the upper and lower divisions of the central body and the protocerebral bridge. To further characterize the role of this brain structure, we have recorded the responses of identified neurons of the central complex of the desert locust Schistocerca gregaria to visual stimuli. We report that particular types of central complex interneurons are sensitive to polarized light. Neurons showed tonic responses to linearly polarized light with spike discharge frequencies depending on e-vector orientation. For all neurons tested, e-vector response curves showed polarization opponency. Receptive fields of the recorded neurons were in the dorsal field of view with some neurons receiving input from both compound eyes and others, only from the ipsilateral eye. In addition to responses to polarized light, certain neurons showed tonic spike discharges to unpolarized light. Most polarization-sensitive neurons were associated with the lower division of the central body, but one type of neuron with arborizations in the upper division of the central body was also polarization-sensitive. Visual pathways signaling polarized light information to the central complex include projections via the anterior optic tubercle. Considering the receptive fields of the neurons and the biological significance of polarized light in insects, the central complex might serve a function in sky compass-mediated spatial navigation of the animals.
| 11,826,140 |
1 | The wiring diagram of a glomerular olfactory system.
The sense of smell enables animals to react to long-distance cues according to learned and innate valences. Here, we have mapped with electron microscopy the complete wiring diagram of the Drosophila larval antennal lobe, an olfactory neuropil similar to the vertebrate olfactory bulb. We found a canonical circuit with uniglomerular projection neurons (uPNs) relaying gain-controlled ORN activity to the mushroom body and the lateral horn. A second, parallel circuit with multiglomerular projection neurons (mPNs) and hierarchically connected local neurons (LNs) selectively integrates multiple ORN signals already at the first synapse. LN-LN synaptic connections putatively implement a bistable gain control mechanism that either computes odor saliency through panglomerular inhibition, or allows some glomeruli to respond to faint aversive odors in the presence of strong appetitive odors. This complete wiring diagram will support experimental and theoretical studies towards bridging the gap between circuits and behavior.
| 27,177,418 |
1 | The connectome of the adult Drosophila mushroom body provides insights into function.
Making inferences about the computations performed by neuronal circuits from synapse-level connectivity maps is an emerging opportunity in neuroscience. The mushroom body (MB) is well positioned for developing and testing such an approach due to its conserved neuronal architecture, recently completed dense connectome, and extensive prior experimental studies of its roles in learning, memory, and activity regulation. Here, we identify new components of the MB circuit in Drosophila, including extensive visual input and MB output neurons (MBONs) with direct connections to descending neurons. We find unexpected structure in sensory inputs, in the transfer of information about different sensory modalities to MBONs, and in the modulation of that transfer by dopaminergic neurons (DANs). We provide insights into the circuitry used to integrate MB outputs, connectivity between the MB and the central complex and inputs to DANs, including feedback from MBONs. Our results provide a foundation for further theoretical and experimental work.
| 33,315,010 |
1 | Neuroarchitecture and neuroanatomy of the Drosophila central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits.
Insects exhibit an elaborate repertoire of behaviors in response to environmental stimuli. The central complex plays a key role in combining various modalities of sensory information with an insect's internal state and past experience to select appropriate responses. Progress has been made in understanding the broad spectrum of outputs from the central complex neuropils and circuits involved in numerous behaviors. Many resident neurons have also been identified. However, the specific roles of these intricate structures and the functional connections between them remain largely obscure. Significant gains rely on obtaining a comprehensive catalog of the neurons and associated GAL4 lines that arborize within these brain regions, and on mapping neuronal pathways connecting these structures. To this end, small populations of neurons in the Drosophila melanogaster central complex were stochastically labeled using the multicolor flip-out technique and a catalog was created of the neurons, their morphologies, trajectories, relative arrangements, and corresponding GAL4 lines. This report focuses on one structure of the central complex, the protocerebral bridge, and identifies just 17 morphologically distinct cell types that arborize in this structure. This work also provides new insights into the anatomical structure of the four components of the central complex and its accessory neuropils. Most strikingly, we found that the protocerebral bridge contains 18 glomeruli, not 16, as previously believed. Revised wiring diagrams that take into account this updated architectural design are presented. This updated map of the Drosophila central complex will facilitate a deeper behavioral and physiological dissection of this sophisticated set of structures.
| 25,380,328 |
1 | How does the insect central complex use mushroom body output for steering?
Research on central brain areas in Drosophila and other insects is revealing the highly conserved neural circuitries in the central complex that are responsible for course control using visual, ideothetic and compass cues [1,2], and in the mushroom bodies that hold long-term visual and olfactory memories [3,4]. Interactions between these areas are likely to be particularly important for navigation in which long-term memories determine an insect's course. Many ants, for example, use long-term visual memories for guidance along routes between their nest and food sites. But the interactions remain a puzzle: both because there are no known direct connections between mushroom body and central complex, and because the output from the mushroom body, where the route memories are probably stored [5], may simply signal whether a sensory input is attractive or aversive [4]. Extrapolating from a recent behavioural finding [6], we propose one way that the long-term memories in the mushroom body may be transformed into central complex steering commands. This answer, if correct, may reconcile two apparently conflicting ways of thinking about route following - suggesting how steering along a route can use a feedback controller based on a few prominent features [7], while the route memories themselves are holistic memories of the entire panorama [5]. It also suggests how visual navigation is related to (and possibly evolved from) visual targeting and olfactory-based guidance.
| 29,990,452 |
1 | Neurogenetic dissection of the Drosophila lateral horn reveals major outputs, diverse behavioural functions, and interactions with the mushroom body.
Animals exhibit innate behaviours to a variety of sensory stimuli including olfactory cues. In Drosophila, one higher olfactory centre, the lateral horn (LH), is implicated in innate behaviour. However, our structural and functional understanding of the LH is scant, in large part due to a lack of sparse neurogenetic tools for this region. We generate a collection of split-GAL4 driver lines providing genetic access to 82 LH cell types. We use these to create an anatomical and neurotransmitter map of the LH and link this to EM connectomics data. We find ~30% of LH projections converge with outputs from the mushroom body, site of olfactory learning and memory. Using optogenetic activation, we identify LH cell types that drive changes in valence behavior or specific locomotor programs. In summary, we have generated a resource for manipulating and mapping LH neurons, providing new insights into the circuit basis of innate and learned olfactory behavior.
| 31,112,130 |
1 | Complete Connectomic Reconstruction of Olfactory Projection Neurons in the Fly Brain.
Nervous systems contain sensory neurons, local neurons, projection neurons, and motor neurons. To understand how these building blocks form whole circuits, we must distil these broad classes into neuronal cell types and describe their network connectivity. Using an electron micrograph dataset for an entire Drosophila melanogaster brain, we reconstruct the first complete inventory of olfactory projections connecting the antennal lobe, the insect analog of the mammalian olfactory bulb, to higher-order brain regions in an adult animal brain. We then connect this inventory to extant data in the literature, providing synaptic-resolution "holotypes" both for heavily investigated and previously unknown cell types. Projection neurons are approximately twice as numerous as reported by light level studies; cell types are stereotyped, but not identical, in cell and synapse numbers between brain hemispheres. The lateral horn, the insect analog of the mammalian cortical amygdala, is the main target for this olfactory information and has been shown to guide innate behavior. Here, we find new connectivity motifs, including axo-axonic connectivity between projection neurons, feedback, and lateral inhibition of these axons by a large population of neurons, and the convergence of different inputs, including non-olfactory inputs and memory-related feedback onto third-order olfactory neurons. These features are less prominent in the mushroom body calyx, the insect analog of the mammalian piriform cortex and a center for associative memory. Our work provides a complete neuroanatomical platform for future studies of the adult Drosophila olfactory system.
| 32,619,485 |
1 | Functional and anatomical specificity in a higher olfactory centre.
Most sensory systems are organized into parallel neuronal pathways that process distinct aspects of incoming stimuli. In the insect olfactory system, second order projection neurons target both the mushroom body, required for learning, and the lateral horn (LH), proposed to mediate innate olfactory behavior. Mushroom body neurons form a sparse olfactory population code, which is not stereotyped across animals. In contrast, odor coding in the LH remains poorly understood. We combine genetic driver lines, anatomical and functional criteria to show that the Drosophila LH has ~1400 neurons and >165 cell types. Genetically labeled LHNs have stereotyped odor responses across animals and on average respond to three times more odors than single projection neurons. LHNs are better odor categorizers than projection neurons, likely due to stereotyped pooling of related inputs. Our results reveal some of the principles by which a higher processing area can extract innate behavioral significance from sensory stimuli.
| 31,112,127 |
1 | The central complex of the flesh fly, Neobellieria bullata: recordings and morphologies of protocerebral inputs and small-field neurons.
The central complex in the brains of insects is a series of midline neuropils involved in motor control, sensory integration, and associative learning. To understand better the role of this center and its supply of sensory information, intracellular recordings and dye fills were made of central complex neurons in the fly, Neobellieria bullata. Recordings were obtained from 24 neurons associated with the ellipsoid body, fan-shaped body, and protocerebral bridge, all of which receive both visual and mechanosensory information from protocerebral centers. One neuron with dendrites in an area of the lateral protocerebrum associated with motion-sensitive outputs from the optic lobes invades the entire protocerebral bridge and was driven by visual motion. Inputs to the fan-shaped body and ellipsoid body responded both to visual stimuli and to air puffs directed at the head and abdomen. Intrinsic neurons in both of these structures respond to changes in illumination. A putative output neuron connecting the protocerebral bridge, the fan-shaped body, and one of the lateral accessory lobes showed opponent responses to moving visual stimuli. These recordings identify neurons with response properties previously known only from extracellular recordings in other species. Dye injections into neurons connecting the central complex with areas of the protocerebrum suggest that some classes of inputs into the central complex are electrically coupled.
| 22,528,883 |
1 | Parallel Processing of Olfactory and Mechanosensory Information in the Honey Bee Antennal Lobe.
In insects, neuronal responses to clean air have so far been reported only episodically in moths. Here we present results obtained by fast two-photon calcium imaging in the honey bee Apis mellifera, indicating a substantial involvement of the antennal lobe, the first olfactory neuropil, in the processing of mechanical stimuli. Clean air pulses generate a complex pattern of glomerular activation that provides a code for stimulus intensity and dynamics with a similar level of stereotypy as observed for the olfactory code. Overlapping the air pulses with odor stimuli reveals a superposition of mechanosensory and odor response codes with high contrast. On the mechanosensitive signal, modulations were observed in the same frequency regime as the oscillatory motion of the antennae, suggesting a possible way to detect odorless airflow directions. The transduction of mechanosensory information via the insect antennae has so far been attributed primarily to Johnston's organ in the pedicel of the antenna. The possibility that the antennal lobe activation by clean air originates from Johnston's organ could be ruled out, as the signal is suppressed by covering the surfaces of the otherwise freely moving and bending antennae, which should leave Johnston's organ unaffected. The tuning curves of individual glomeruli indicate increased sensitivity at low-frequency mechanical oscillations as produced by the abdominal motion in waggle dance communication, suggesting a further potential function of this mechanosensory code. The discovery that the olfactory system can sense both odors and mechanical stimuli has recently been made also in mammals. The results presented here give hope that studies on insects can make a fundamental contribution to the cross-taxa understanding of this dual function, as only a few thousand neurons are involved in their brains, all of which are accessible by in vivo optical imaging.
| 34,950,059 |
1 | Representation of the calyces in the medial and vertical lobes of cockroach mushroom bodies.
Previous studies of honey bee and cockroach mushroom bodies have proposed that afferent terminals and intrinsic neurons (Kenyon cells) in the calyces are arranged according to polar coordinates. It has been suggested that there is a transformation by Kenyon cell axons of the polar arrangements of their dendrites in the calyces to laminar arrangements of their terminals in the lobes. Findings presented here show that cellular organization in the calyx of an evolutionarily basal neopteran, Periplaneta americana, is instead rectilinear, as it is in the lobes. It is shown that each calyx is divided into two halves (hemicalyces), each supplied by its own set of Kenyon cells. Each calyx is separately represented in the medial lobe where the dendritic trees of some efferent neurons receive inputs from one calyx only. Kenyon cell dendrites are arranged as narrow elongated fields, organized as rows in each hemicalyx. Dendritic fields arise from 14 to 16 sheets of Kenyon cell axons stacked on top of each other lining the inner surface of the calyx cup. A sheet consists of approximately 60 small bundles, each containing 5-15 axons that converge from the rim of the calyx to its neck. Each sheet contributes to a pair oflaminae, one dark one pale, called a doublet, that extends through the mushroom body. Dark laminae contain Kenyon cell axons packed with synaptic vesicles. Axons in pale laminae are sparsely equipped with vesicles. By analogy with photoreceptors, and with reference to field potential recordings, it is speculated that dark laminae are continuously active, being modulated by odor stimuli, whereas pale laminae are intermittently activated. Timm's silver staining and immunocytology reveal a second type of longitudinal division of the lobes. Five layers extend through the pedunculus and lobes, each composed of subsets of doublets. Four layers represent zones of afferent endings in the calyces. A fifth (the y layer) represents a specific type of Kenyon cell. It is concluded that the mushroom bodies comprise two independent modular systems, doublets and layers. Developmental studies show that new doublets are added at each instar to layers that are already present early in second instar nymphs. There are profound similarities between the mushroom bodies of Periplaneta, an evolutionarily basal taxon, and those of Drosophila melanogaster and the honey bee.
| 10,376,744 |
1 | Multimodal integration and stimulus categorization in putative mushroom body output neurons of the honeybee.
Flowers attract pollinating insects like honeybees by sophisticated compositions of olfactory and visual cues. Using honeybees as a model to study olfactory-visual integration at the neuronal level, we focused on mushroom body (MB) output neurons (MBON). From a neuronal circuit perspective, MBONs represent a prominent level of sensory-modality convergence in the insect brain. We established an experimental design allowing electrophysiological characterization of olfactory, visual, as well as olfactory-visual induced activation of individual MBONs. Despite the obvious convergence of olfactory and visual pathways in the MB, we found numerous unimodal MBONs. However, a substantial proportion of MBONs (32%) responded to both modalities and thus integrated olfactory-visual information across MB input layers. In these neurons, representation of the olfactory-visual compound was significantly increased compared with that of single components, suggesting an additive, but nonlinear integration. Population analyses of olfactory-visual MBONs revealed three categories: (i) olfactory, (ii) visual and (iii) olfactory-visual compound stimuli. Interestingly, no significant differentiation was apparent regarding different stimulus qualities within these categories. We conclude that encoding of stimulus quality within a modality is largely completed at the level of MB input, and information at the MB output is integrated across modalities to efficiently categorize sensory information for downstream behavioural decision processing.
| 29,515,886 |
1 | Different Roles for Honey Bee Mushroom Bodies and Central Complex in Visual Learning of Colored Lights in an Aversive Conditioning Assay.
The honey bee is an excellent visual learner, but we know little about how and why it performs so well, or how visual information is learned by the bee brain. Here we examined the different roles of two key integrative regions of the brain in visual learning: the mushroom bodies and the central complex. We tested bees' learning performance in a new assay of color learning that used electric shock as punishment. In this assay a light field was paired with electric shock. The other half of the conditioning chamber was illuminated with light of a different wavelength and not paired with shocks. The unrestrained bee could run away from the light stimulus and thereby associate one wavelength with punishment, and the other with safety. We compared learning performance of bees in which either the central complex or mushroom bodies had been transiently inactivated by microinjection of the reversible anesthetic procaine. Control bees learned to escape the shock-paired light field and to spend more time in the safe light field after a few trials. When ventral lobe neurons of the mushroom bodies were silenced, bees were no longer able to associate one light field with shock. By contrast, silencing of one collar region of the mushroom body calyx did not alter behavior in the learning assay in comparison to control treatment. Bees with silenced central complex neurons did not leave the shock-paired light field in the middle trials of training, even after a few seconds of being shocked. We discussed how mushroom bodies and the central complex both contribute to aversive visual learning with an operant component.
| 28,611,605 |
1 | Bumble bees display cross-modal object recognition between visual and tactile senses.
Many animals can associate object shapes with incentives. However, such behavior is possible without storing images of shapes in memory that are accessible to more than one sensory modality. One way to explore whether there are modality-independent internal representations of object shapes is to investigate cross-modal recognition-experiencing an object in one sensory modality and later recognizing it in another. We show that bumble bees trained to discriminate two differently shaped objects (cubes and spheres) using only touch (in darkness) or vision (in light, but barred from touching the objects) could subsequently discriminate those same objects using only the other sensory information. Our experiments demonstrate that bumble bees possess the ability to integrate sensory information in a way that requires modality-independent internal representations.
| 32,079,771 |
1 | Structural, functional and developmental convergence of the insect mushroom bodies with higher brain centers of vertebrates.
Convergence of higher processing centers has been proposed for insects and vertebrates, but the extent of these similarities remains controversial. The present study demonstrates that one higher brain center of insects, the mushroom bodies, displays a number of similarities with mammalian higher brain centers that are arguably the products of adaptation to common behavioral ecologies, despite their deeply divergent origins. Quantitative neuroanatomy, immunohistochemistry, fluorescent tract tracing and BrdU labeling are employed to investigate the relationships among behavioral ecology and mushroom body size, sensory input and mode of development in one taxon, the scarab beetles (Coleoptera: Scarabaeidae). Comparisons are extended to a taxon in which similar mushroom body architectures have arisen independently, the cockroaches (Dictyoptera), and to published accounts of vertebrate brain evolution. This study demonstrates that evolutionary increases in higher brain center size and intrinsic neuron number are associated with flexibility in food acquisition behaviors in both vertebrates and insects. These evolutionarily expanded higher brain centers are divided into novel structural subcompartments that acquire novel processing functions. Increased numbers of neurons comprising enlarged higher brain centers are generated by expanded neural precursor pools, and the time for development of these brain centers is protracted. Taken together, these findings extend our understanding of how evolutionarily constrained neural substrates might converge under shared adaptive landscapes, even after 600 million years of divergence, and even at the level of higher brain centers that generate complex behaviors.
| 18,560,208 |
1 | Multi-unit recording of antennal mechano-sensitive units in the central complex of the cockroach, Blaberus discoidalis.
The central complex (CC) is a group of midline neuropils in the protocerebrum of all insects (Williams, J Zool, 176:67-86, 1975; Strausfeld, Prog Brain Res, 123:273-284, 1999). Its columnar organization coupled with the anatomical tracts to and from this region suggests that the CC may supervise various forms of locomotion. In cockroach, lesions of the CC affect turning and controlled climbing over blocks (Ridgel et al., J Comp Physiol A, 193:385-402, 2007). Since these behaviors are largely directed by tactile cues detected by antennae, we predicted that some neurons in the CC respond to mechanical antennal stimulation. We used 16-channel probes to record from broad regions within the CC, while mechanically stimulating one or the other antenna. Using cluster cutting procedures, we examined 277 units in 31 preparations. Many of these units responded to mechanical stimulation of the antennae, and of these, most responded equally well to medial or lateral stimulation of either antenna. However, several units either responded to only one antenna or responded significantly more strongly to one of them. Most of the units responding to antennal stimulation were sensitive to changes in the velocity as well as changes in light. Our data reveal a large population of mult-sensory neurons in the CC that could contribute to locomotion control.
| 18,180,927 |
1 | Multimodal Integration Across Spatiotemporal Scales to Guide Invertebrate Locomotion.
Locomotion is a hallmark of organisms which has enabled adaptive radiation to an extraordinarily diverse class of ecological niches, and allows animals to move across vast distances. Sampling from multiple sensory modalities enables animals to acquire rich information to guide locomotion. Locomotion without sensory feedback is haphazard; therefore, sensory and motor systems have evolved complex interactions to generate adaptive behavior. Notably, sensory-guided locomotion acts over broad spatial and temporal scales to permit goal-seeking behavior, whether to localize food by tracking an attractive odor plume or to search for a potential mate. How does the brain integrate multimodal stimuli over different temporal and spatial scales to effectively control behavior? In this review, we classify locomotion into three ordinally ranked hierarchical layers that act over distinct spatiotemporal scales: stabilization, motor primitives, and higher-order tasks, respectively. We discuss how these layers present unique challenges and opportunities for sensorimotor integration. We focus on recent advances in invertebrate locomotion due to their accessible neural and mechanical signals from the whole brain, limbs, and sensors. Throughout, we emphasize neural-level description of computations for multimodal integration in genetic model systems, including the fruit fly, Drosophila melanogaster, and the yellow fever mosquito, Aedes aegypti. We identify that summation (e.g., gating) and weighting-which are inherent computations of spiking neurons-underlie multimodal integration across spatial and temporal scales, therefore suggesting collective strategies to guide locomotion.
| 34,009,312 |
1 | Convergence of multimodal sensory pathways to the mushroom body calyx in Drosophila melanogaster.
Detailed structural analyses of the mushroom body which plays critical roles in olfactory learning and memory revealed that it is directly connected with multiple primary sensory centers in Drosophila. Connectivity patterns between the mushroom body and primary sensory centers suggest that each mushroom body lobe processes information on different combinations of multiple sensory modalities. This finding provides a novel focus of research by Drosophila genetics for perception of the external world by integrating multisensory signals.
| 27,404,960 |
1 | Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera).
Insect mushroom bodies are brain regions that receive multisensory input and are thought to play an important role in learning and memory. In most neopteran insects, the mushroom bodies receive direct olfactory input. In addition, the calyces of Hymenoptera receive substantial direct input from the optic lobes. We describe visual inputs to the calyces of the mushroom bodies of the honeybee Apis mellifera, the neurons' dendritic fields in the optic lobes, the medulla and lobula, and the organization of their terminals in the calyces. Medulla neurons terminate in the collar region of the calyx, where they segregate into five layers that receive alternating input from the dorsal or ventral medulla, respectively. A sixth, innermost layer of the collar receives input from lobula neurons. In the basal ring region of the calyx, medulla neuron terminals are restricted to a small, distal part. Lobula neurons are more prominent in the basal ring, where they terminate in its outer half. Although the collar and basal ring layers generally receive segregated input from both optic neuropils, some overlap occurs at the borders of the layers. At least three different types of mushroom body input neurons originate from the medulla: (a) neurons with narrow dendritic fields mainly restricted to the vicinity of the medulla's serpentine layer and found throughout the medulla; (b) neurons restricted to the ventral half of the medulla and featuring long columnar dendritic branches in the outer medulla; and (c) a group of neurons whose dendrites are restricted to the most ventral part of the medulla and whose axons form the anterior inferior optic tract. Most medulla neurons (groups a and b) send their axons via the anterior superior optic tract to the mushroom bodies. Neurons connecting the lobula with the mushroom bodies have their dendrites in a defined dorsal part of the lobula. Their axons form a third tract to the mushroom bodies, here referred to as the lobula tract. Our findings match the anatomy of intrinsic mushroom body neurons (Strausfeld, 2002) and together indicate that the mushroom bodies may be composed of many more functional subsystems than previously suggested.
| 12,210,130 |
End of preview. Expand
in Dataset Viewer.
No dataset card yet
New: Create and edit this dataset card directly on the website!
Contribute a Dataset Card- Downloads last month
- 8