|
--- |
|
task_categories: |
|
- automatic-speech-recognition |
|
multilinguality: |
|
- multilingual |
|
language: |
|
- en |
|
- fr |
|
- de |
|
- es |
|
tags: |
|
- music |
|
- lyrics |
|
- evaluation |
|
- benchmark |
|
- transcription |
|
pretty_name: 'JamALT: A Readability-Aware Lyrics Transcription Benchmark' |
|
paperswithcode_id: jam-alt |
|
dataset_info: |
|
- config_name: all |
|
features: |
|
- name: name |
|
dtype: string |
|
- name: text |
|
dtype: string |
|
- name: language |
|
dtype: string |
|
- name: license_type |
|
dtype: string |
|
- name: audio |
|
dtype: audio |
|
splits: |
|
- name: test |
|
num_bytes: 409411912.0 |
|
num_examples: 79 |
|
download_size: 409150043 |
|
dataset_size: 409411912.0 |
|
- config_name: de |
|
features: |
|
- name: name |
|
dtype: string |
|
- name: text |
|
dtype: string |
|
- name: language |
|
dtype: string |
|
- name: license_type |
|
dtype: string |
|
- name: audio |
|
dtype: audio |
|
splits: |
|
- name: test |
|
num_bytes: 107962802.0 |
|
num_examples: 20 |
|
download_size: 107942102 |
|
dataset_size: 107962802.0 |
|
- config_name: en |
|
features: |
|
- name: name |
|
dtype: string |
|
- name: text |
|
dtype: string |
|
- name: language |
|
dtype: string |
|
- name: license_type |
|
dtype: string |
|
- name: audio |
|
dtype: audio |
|
splits: |
|
- name: test |
|
num_bytes: 105135091.0 |
|
num_examples: 20 |
|
download_size: 105041371 |
|
dataset_size: 105135091.0 |
|
- config_name: es |
|
features: |
|
- name: name |
|
dtype: string |
|
- name: text |
|
dtype: string |
|
- name: language |
|
dtype: string |
|
- name: license_type |
|
dtype: string |
|
- name: audio |
|
dtype: audio |
|
splits: |
|
- name: test |
|
num_bytes: 105024257.0 |
|
num_examples: 20 |
|
download_size: 104979012 |
|
dataset_size: 105024257.0 |
|
- config_name: fr |
|
features: |
|
- name: name |
|
dtype: string |
|
- name: text |
|
dtype: string |
|
- name: language |
|
dtype: string |
|
- name: license_type |
|
dtype: string |
|
- name: audio |
|
dtype: audio |
|
splits: |
|
- name: test |
|
num_bytes: 91289764.0 |
|
num_examples: 19 |
|
download_size: 91218543 |
|
dataset_size: 91289764.0 |
|
configs: |
|
- config_name: all |
|
data_files: |
|
- split: test |
|
path: parquet/all/test-* |
|
default: true |
|
- config_name: de |
|
data_files: |
|
- split: test |
|
path: parquet/de/test-* |
|
- config_name: en |
|
data_files: |
|
- split: test |
|
path: parquet/en/test-* |
|
- config_name: es |
|
data_files: |
|
- split: test |
|
path: parquet/es/test-* |
|
- config_name: fr |
|
data_files: |
|
- split: test |
|
path: parquet/fr/test-* |
|
--- |
|
|
|
# JamALT: A Readability-Aware Lyrics Transcription Benchmark |
|
|
|
|
|
## Dataset description |
|
|
|
* **Project page:** https://audioshake.github.io/jam-alt/ |
|
* **Source code:** https://github.com/audioshake/alt-eval |
|
* **Paper (ISMIR 2024):** https://www.arxiv.org/abs/2408.06370 |
|
* **Extended abstract (ISMIR 2023 LBD):** https://arxiv.org/abs/2311.13987 |
|
|
|
JamALT is a revision of the [JamendoLyrics](https://github.com/f90/jamendolyrics) dataset (80 songs in 4 languages), adapted for use as an automatic lyrics transcription (ALT) benchmark. |
|
|
|
The lyrics have been revised according to the newly compiled [annotation guidelines](GUIDELINES.md), which include rules about spelling, punctuation, and formatting. |
|
The audio is identical to the JamendoLyrics dataset. |
|
However, only 79 songs are included, as one of the 20 French songs (`La_Fin_des_Temps_-_BuzzBonBon`) has been removed due to concerns about potentially harmful content. |
|
|
|
**Note:** The dataset is not time-aligned as it does not easily map to the timestamps from JamendoLyrics. To evaluate automatic lyrics alignment (ALA), please use JamendoLyrics directly. |
|
|
|
See the [project website](https://audioshake.github.io/jam-alt/) for details. |
|
|
|
## Loading the data |
|
|
|
```python |
|
from datasets import load_dataset |
|
dataset = load_dataset("audioshake/jam-alt", split="test") |
|
``` |
|
|
|
A subset is defined for each language (`en`, `fr`, `de`, `es`); |
|
for example, use `load_dataset("audioshake/jam-alt", "es")` to load only the Spanish songs. |
|
|
|
To control how the audio is decoded, cast the `audio` column using `dataset.cast_column("audio", datasets.Audio(...))`. |
|
Useful arguments to `datasets.Audio()` are: |
|
- `sampling_rate` and `mono=True` to control the sampling rate and number of channels. |
|
- `decode=False` to skip decoding the audio and just get the MP3 file paths and contents. |
|
|
|
The `load_dataset` function also accepts a `columns` parameter, which can be useful for example if you want to skip downloading the audio (see the example below). |
|
|
|
## Running the benchmark |
|
|
|
The evaluation is implemented in our [`alt-eval` package](https://github.com/audioshake/alt-eval): |
|
```python |
|
from datasets import load_dataset |
|
from alt_eval import compute_metrics |
|
|
|
dataset = load_dataset("audioshake/jam-alt", revision="v1.1.0", split="test") |
|
# transcriptions: list[str] |
|
compute_metrics(dataset["text"], transcriptions, languages=dataset["language"]) |
|
``` |
|
|
|
For example, the following code can be used to evaluate Whisper: |
|
```python |
|
dataset = load_dataset("audioshake/jam-alt", revision="v1.1.0", split="test") |
|
dataset = dataset.cast_column("audio", datasets.Audio(decode=False)) # Get the raw audio file, let Whisper decode it |
|
|
|
model = whisper.load_model("tiny") |
|
transcriptions = [ |
|
"\n".join(s["text"].strip() for s in model.transcribe(a["path"])["segments"]) |
|
for a in dataset["audio"] |
|
] |
|
compute_metrics(dataset["text"], transcriptions, languages=dataset["language"]) |
|
``` |
|
Alternatively, if you already have transcriptions, you might prefer to skip loading the `audio` column: |
|
```python |
|
dataset = load_dataset("audioshake/jam-alt", revision="v1.1.0", split="test", columns=["name", "text", "language", "license_type"]) |
|
``` |
|
|
|
## Citation |
|
|
|
When using the benchmark, please cite [our paper](https://www.arxiv.org/abs/2408.06370) as well as the original [JamendoLyrics paper](https://arxiv.org/abs/2306.07744): |
|
```bibtex |
|
@misc{cifka-2024-jam-alt, |
|
author = {Ond\v{r}ej C\'ifka and |
|
Hendrik Schreiber and |
|
Luke Miner and |
|
Fabian-Robert St\"oter}, |
|
title = {Lyrics Transcription for Humans: A Readability-Aware Benchmark}, |
|
booktitle = {Proceedings of the 25th International Society for |
|
Music Information Retrieval Conference}, |
|
year = 2024, |
|
publisher = {ISMIR}, |
|
note = {to appear; preprint arXiv:2408.06370} |
|
} |
|
@inproceedings{durand-2023-contrastive, |
|
author={Durand, Simon and Stoller, Daniel and Ewert, Sebastian}, |
|
booktitle={2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, |
|
title={Contrastive Learning-Based Audio to Lyrics Alignment for Multiple Languages}, |
|
year={2023}, |
|
pages={1-5}, |
|
address={Rhodes Island, Greece}, |
|
doi={10.1109/ICASSP49357.2023.10096725} |
|
} |
|
``` |
|
|