Datasets:

Modalities:
Audio
Text
Formats:
parquet
Size:
< 1K
ArXiv:
DOI:
Libraries:
Datasets
pandas
jam-alt / README.md
cifkao's picture
Version 1.1.0
db8d621
|
raw
history blame
6.63 kB
---
task_categories:
- automatic-speech-recognition
multilinguality:
- multilingual
language:
- en
- fr
- de
- es
tags:
- music
- lyrics
- evaluation
- benchmark
- transcription
pretty_name: 'JamALT: A Readability-Aware Lyrics Transcription Benchmark'
paperswithcode_id: jam-alt
dataset_info:
- config_name: all
features:
- name: name
dtype: string
- name: text
dtype: string
- name: language
dtype: string
- name: license_type
dtype: string
- name: audio
dtype: audio
splits:
- name: test
num_bytes: 409411912.0
num_examples: 79
download_size: 409150043
dataset_size: 409411912.0
- config_name: de
features:
- name: name
dtype: string
- name: text
dtype: string
- name: language
dtype: string
- name: license_type
dtype: string
- name: audio
dtype: audio
splits:
- name: test
num_bytes: 107962802.0
num_examples: 20
download_size: 107942102
dataset_size: 107962802.0
- config_name: en
features:
- name: name
dtype: string
- name: text
dtype: string
- name: language
dtype: string
- name: license_type
dtype: string
- name: audio
dtype: audio
splits:
- name: test
num_bytes: 105135091.0
num_examples: 20
download_size: 105041371
dataset_size: 105135091.0
- config_name: es
features:
- name: name
dtype: string
- name: text
dtype: string
- name: language
dtype: string
- name: license_type
dtype: string
- name: audio
dtype: audio
splits:
- name: test
num_bytes: 105024257.0
num_examples: 20
download_size: 104979012
dataset_size: 105024257.0
- config_name: fr
features:
- name: name
dtype: string
- name: text
dtype: string
- name: language
dtype: string
- name: license_type
dtype: string
- name: audio
dtype: audio
splits:
- name: test
num_bytes: 91289764.0
num_examples: 19
download_size: 91218543
dataset_size: 91289764.0
configs:
- config_name: all
data_files:
- split: test
path: parquet/all/test-*
default: true
- config_name: de
data_files:
- split: test
path: parquet/de/test-*
- config_name: en
data_files:
- split: test
path: parquet/en/test-*
- config_name: es
data_files:
- split: test
path: parquet/es/test-*
- config_name: fr
data_files:
- split: test
path: parquet/fr/test-*
---
# JamALT: A Readability-Aware Lyrics Transcription Benchmark
## Dataset description
* **Project page:** https://audioshake.github.io/jam-alt/
* **Source code:** https://github.com/audioshake/alt-eval
* **Paper (ISMIR 2024):** https://www.arxiv.org/abs/2408.06370
* **Extended abstract (ISMIR 2023 LBD):** https://arxiv.org/abs/2311.13987
JamALT is a revision of the [JamendoLyrics](https://github.com/f90/jamendolyrics) dataset (80 songs in 4 languages), adapted for use as an automatic lyrics transcription (ALT) benchmark.
The lyrics have been revised according to the newly compiled [annotation guidelines](GUIDELINES.md), which include rules about spelling, punctuation, and formatting.
The audio is identical to the JamendoLyrics dataset.
However, only 79 songs are included, as one of the 20 French songs (`La_Fin_des_Temps_-_BuzzBonBon`) has been removed due to concerns about potentially harmful content.
**Note:** The dataset is not time-aligned as it does not easily map to the timestamps from JamendoLyrics. To evaluate automatic lyrics alignment (ALA), please use JamendoLyrics directly.
See the [project website](https://audioshake.github.io/jam-alt/) for details.
## Loading the data
```python
from datasets import load_dataset
dataset = load_dataset("audioshake/jam-alt", split="test")
```
A subset is defined for each language (`en`, `fr`, `de`, `es`);
for example, use `load_dataset("audioshake/jam-alt", "es")` to load only the Spanish songs.
To control how the audio is decoded, cast the `audio` column using `dataset.cast_column("audio", datasets.Audio(...))`.
Useful arguments to `datasets.Audio()` are:
- `sampling_rate` and `mono=True` to control the sampling rate and number of channels.
- `decode=False` to skip decoding the audio and just get the MP3 file paths and contents.
The `load_dataset` function also accepts a `columns` parameter, which can be useful for example if you want to skip downloading the audio (see the example below).
## Running the benchmark
The evaluation is implemented in our [`alt-eval` package](https://github.com/audioshake/alt-eval):
```python
from datasets import load_dataset
from alt_eval import compute_metrics
dataset = load_dataset("audioshake/jam-alt", revision="v1.1.0", split="test")
# transcriptions: list[str]
compute_metrics(dataset["text"], transcriptions, languages=dataset["language"])
```
For example, the following code can be used to evaluate Whisper:
```python
dataset = load_dataset("audioshake/jam-alt", revision="v1.1.0", split="test")
dataset = dataset.cast_column("audio", datasets.Audio(decode=False)) # Get the raw audio file, let Whisper decode it
model = whisper.load_model("tiny")
transcriptions = [
"\n".join(s["text"].strip() for s in model.transcribe(a["path"])["segments"])
for a in dataset["audio"]
]
compute_metrics(dataset["text"], transcriptions, languages=dataset["language"])
```
Alternatively, if you already have transcriptions, you might prefer to skip loading the `audio` column:
```python
dataset = load_dataset("audioshake/jam-alt", revision="v1.1.0", split="test", columns=["name", "text", "language", "license_type"])
```
## Citation
When using the benchmark, please cite [our paper](https://www.arxiv.org/abs/2408.06370) as well as the original [JamendoLyrics paper](https://arxiv.org/abs/2306.07744):
```bibtex
@misc{cifka-2024-jam-alt,
author = {Ond\v{r}ej C\'ifka and
Hendrik Schreiber and
Luke Miner and
Fabian-Robert St\"oter},
title = {Lyrics Transcription for Humans: A Readability-Aware Benchmark},
booktitle = {Proceedings of the 25th International Society for
Music Information Retrieval Conference},
year = 2024,
publisher = {ISMIR},
note = {to appear; preprint arXiv:2408.06370}
}
@inproceedings{durand-2023-contrastive,
author={Durand, Simon and Stoller, Daniel and Ewert, Sebastian},
booktitle={2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
title={Contrastive Learning-Based Audio to Lyrics Alignment for Multiple Languages},
year={2023},
pages={1-5},
address={Rhodes Island, Greece},
doi={10.1109/ICASSP49357.2023.10096725}
}
```