Datasets:

ArXiv:
DOI:
File size: 4,381 Bytes
f3bad19
 
 
dcb71db
 
f3bad19
 
 
 
 
 
 
8b477b5
 
 
 
7393bce
804df9b
d23c839
 
7393bce
d23c839
5767e79
43e58a9
5767e79
ba4f51d
 
962c210
 
dcb71db
891a66b
d23c839
8b477b5
8bfdf6b
 
8b477b5
c85dae1
 
8b477b5
f78bf44
 
 
 
 
d017675
f78bf44
 
 
 
1282903
122ef43
 
 
b0df395
d872576
8b477b5
265a800
8b477b5
265a800
8b477b5
265a800
8b477b5
265a800
 
 
 
 
 
 
 
3c97952
 
 
265a800
 
 
 
 
ba23be3
265a800
 
 
 
2a620a4
 
 
 
1b71b3f
2a620a4
1b71b3f
2a620a4
 
 
 
1b71b3f
 
 
 
 
 
2a620a4
 
 
 
 
 
 
 
 
 
8b477b5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
task_categories:
- automatic-speech-recognition
multilinguality:
- multilingual
language:
- en
- fr
- de
- es
tags:
- music
- lyrics
- evaluation
- benchmark
- transcription
pretty_name: 'JamALT: A Readability-Aware Lyrics Transcription Benchmark'
paperswithcode_id: jam-alt
---

# JamALT: A Readability-Aware Lyrics Transcription Benchmark


## Dataset description

* **Project page:** https://audioshake.github.io/jam-alt/
* **Source code:** https://github.com/audioshake/alt-eval
* **Paper (ISMIR 2024):** https://www.arxiv.org/abs/2408.06370
* **Extended abstract (ISMIR 2023 LBD):** https://arxiv.org/abs/2311.13987

JamALT is a revision of the [JamendoLyrics](https://github.com/f90/jamendolyrics) dataset (80 songs in 4 languages), adapted for use as an automatic lyrics transcription (ALT) benchmark.

The lyrics have been revised according to the newly compiled [annotation guidelines](GUIDELINES.md), which include rules about spelling, punctuation, and formatting.
The audio is identical to the JamendoLyrics dataset.
However, only 79 songs are included, as one of the 20 French songs (`La_Fin_des_Temps_-_BuzzBonBon`) has been removed due to concerns about potentially harmful content.

**Note:** The dataset is not time-aligned as it does not easily map to the timestamps from JamendoLyrics. To evaluate automatic lyrics alignment (ALA), please use JamendoLyrics directly.

See the [project website](https://audioshake.github.io/jam-alt/) for details.

## Loading the data

```python
from datasets import load_dataset
dataset = load_dataset("audioshake/jam-alt")["test"]
```

A subset is defined for each language (`en`, `fr`, `de`, `es`);
for example, use `load_dataset("audioshake/jam-alt", "es")` to load only the Spanish songs.

By default, the dataset comes with audio. To skip loading the audio, use `with_audio=False`.
To control how the audio is decoded, cast the `audio` column using `dataset.cast_column("audio", datasets.Audio(...))`.
Useful arguments to `datasets.Audio()` are:
- `sampling_rate` and `mono=True` to control the sampling rate and number of channels.
- `decode=False` to skip decoding the audio and just get the MP3 file paths.

## Running the benchmark

The evaluation is implemented in our [`alt-eval` package](https://github.com/audioshake/alt-eval):
```python
from datasets import load_dataset
from alt_eval import compute_metrics

dataset = load_dataset("audioshake/jam-alt", revision="v1.0.0")["test"]
# transcriptions: list[str]
compute_metrics(dataset["text"], transcriptions, languages=dataset["language"])
```

For example, the following code can be used to evaluate Whisper:
```python
dataset = load_dataset("audioshake/jam-alt", revision="v1.0.0")["test"]
dataset = dataset.cast_column("audio", datasets.Audio(decode=False))  # Get the raw audio file, let Whisper decode it

model = whisper.load_model("tiny")
transcriptions = [
  "\n".join(s["text"].strip() for s in model.transcribe(a["path"])["segments"])
  for a in dataset["audio"]
]
compute_metrics(dataset["text"], transcriptions, languages=dataset["language"])
```
Alternatively, if you already have transcriptions, you might prefer to skip loading the audio:
```python
dataset = load_dataset("audioshake/jam-alt", revision="v1.0.0", with_audio=False)["test"]
```

## Citation

When using the benchmark, please cite [our paper](https://www.arxiv.org/abs/2408.06370) as well as the original [JamendoLyrics paper](https://arxiv.org/abs/2306.07744):
```bibtex
@misc{cifka-2024-jam-alt,
  author       = {Ond\v{r}ej C\'ifka and
                  Hendrik Schreiber and
                  Luke Miner and
                  Fabian-Robert St\"oter},
  title        = {Lyrics Transcription for Humans: A Readability-Aware Benchmark},
  booktitle    = {Proceedings of the 25th International Society for 
                  Music Information Retrieval Conference},
  year         = 2024,
  publisher    = {ISMIR},
  note         = {to appear; preprint arXiv:2408.06370}
}
@inproceedings{durand-2023-contrastive,
  author={Durand, Simon and Stoller, Daniel and Ewert, Sebastian},
  booktitle={2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, 
  title={Contrastive Learning-Based Audio to Lyrics Alignment for Multiple Languages}, 
  year={2023},
  pages={1-5},
  address={Rhodes Island, Greece},
  doi={10.1109/ICASSP49357.2023.10096725}
}
```