File size: 1,042 Bytes
65f033e 4325a58 b24d689 65f033e 855b061 2bafee2 855b061 fe9e72f 4325a58 65f033e 855b061 4325a58 855b061 4325a58 855b061 4325a58 855b061 4325a58 65f033e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import librosa
from model_clap import CLAPEmbedding
from model_meta_voice import MetaVoiceEmbedding
from model_pyannote_embedding import PyannoteEmbedding
from model_speaker_embedding import W2VBERTEmbedding, XLSR300MEmbedding, HuBERTXLEmbedding
def test():
wav, sr = librosa.load("sample.wav")
print("XLS-R")
model = XLSR300MEmbedding()
v = model.get_speaker_embedding(wav, sr)
print(v.shape)
print("CLAP")
model = CLAPEmbedding()
v = model.get_speaker_embedding(wav, sr)
print(v.shape)
print("MetaVoiceSE")
model = MetaVoiceEmbedding()
v = model.get_speaker_embedding(wav, sr)
print(v.shape)
print("PyannoteSE")
model = PyannoteEmbedding()
v = model.get_speaker_embedding(wav, sr)
print(v.shape)
print("W2VBertSE")
model = W2VBERTEmbedding()
v = model.get_speaker_embedding(wav, sr)
print(v.shape)
print("huBERT")
model = HuBERTXLEmbedding()
v = model.get_speaker_embedding(wav, sr)
print(v.shape)
if __name__ == '__main__':
test()
|