File size: 2,352 Bytes
4a04b75
cd99ff8
4a04b75
cd99ff8
4a04b75
f7fa594
a0302d0
7309f64
4a04b75
 
 
 
 
 
 
96a44aa
a5f4f1e
4a04b75
1324dc3
a0302d0
 
4a04b75
f7fa594
 
 
1af401f
1324dc3
1af401f
f7fa594
 
 
 
 
 
a0302d0
 
 
 
 
f7fa594
 
 
cad4a7b
4a04b75
d318a22
1af401f
 
cad4a7b
238451f
d318a22
cad4a7b
4a04b75
 
 
 
 
 
 
 
d318a22
bb3ef72
cd99ff8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import os
from os.path import expanduser

import shutil
import torch
from soundfile import LibsndfileError
from datasets import load_dataset, DatasetDict, Audio
from tokenizer_encodec import EncodecTokenizer


direction = os.getenv("DIRECTION", "enA-jaA")
sides = set(direction.split("-"))
dataset_id = os.getenv("DATASET_ID", 0)
num_proc = int(os.getenv("NUM_PROC", 1))
hf_org = os.getenv("HF_ORG", "asahi417")
hf_dataset = f"seamless-align-{direction}"
dataset = load_dataset(f"{hf_org}/{hf_dataset}", f"subset_{dataset_id}", split="train")
tokenizer = EncodecTokenizer.from_pretrained()
max_seq_length = 130000000
audio_loader = Audio()


def error_file(example):
    for side in sides:
        try:
            wav = audio_loader.decode_example(example[f"{side}.audio"])
            if len(wav["array"]) == 0 or len(wav["array"]) > max_seq_length:
                return False
        except LibsndfileError:
            return False
    return True


print(f"Num examples: {len(dataset)}")
for s in sides:
    dataset = dataset.cast_column(f"{s}.audio", Audio(decode=False))
dataset = dataset.filter(error_file, num_proc=num_proc, desc="drop broken audio")
for s in sides:
    dataset = dataset.cast_column(f"{s}.audio", Audio())
print(f"Num examples (after filtering): {len(dataset)}")


def tokenize(example):
    for side in sides:
        wav = torch.as_tensor(example[f"{side}.audio"]["array"].reshape(1, 1, -1), dtype=torch.float32)
        if len(wav) == 0:
            return None
        example[f"{side}.audio.tokens"] = tokenizer.wav_to_tokens(
            wav=wav, sample_rate=example[f"{side}.audio"]["sampling_rate"]
        ).numpy().tolist()[0]
    return example


dataset = dataset.map(
    function=tokenize,
    remove_columns=[f"{s}.audio" for s in sides] + [f"{s}.url" for s in sides] + [f"{s}.duration_start" for s in sides] + [f"{s}.duration_end" for s in sides],
    num_proc=num_proc,
    desc="tokenize dataset"
)
DatasetDict({"train": dataset}).push_to_hub(f"{hf_org}/{hf_dataset}.tokenized", config_name=f"subset_{dataset_id}")
# DatasetDict({"train": dataset}).push_to_hub(f"{hf_org}/{hf_dataset}.tokenized.encodec", config_name=f"subset_{dataset_id}")
cache_dir = f"{expanduser('~')}/.cache/huggingface/datasets/{hf_org}___{hf_dataset}/subset_{dataset_id}"
if os.path.exists(cache_dir):
    shutil.rmtree(cache_dir)