init
Browse files- main_s2s.sh +7 -1
- tokenize_dataset_s2s.py +15 -0
main_s2s.sh
CHANGED
@@ -19,7 +19,13 @@ do
|
|
19 |
python fetch_dataset_s2s.py
|
20 |
done
|
21 |
# tokenize
|
22 |
-
for i in $(seq 1
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
do
|
24 |
export DATASET_ID=${i}
|
25 |
export DIRECTION="enA-jaA"
|
|
|
19 |
python fetch_dataset_s2s.py
|
20 |
done
|
21 |
# tokenize
|
22 |
+
for i in $(seq 1 30);
|
23 |
+
do
|
24 |
+
export DATASET_ID=${i}
|
25 |
+
export DIRECTION="enA-jaA"
|
26 |
+
python tokenize_dataset_s2s.py
|
27 |
+
done
|
28 |
+
for i in $(seq 30 60);
|
29 |
do
|
30 |
export DATASET_ID=${i}
|
31 |
export DIRECTION="enA-jaA"
|
tokenize_dataset_s2s.py
CHANGED
@@ -3,6 +3,7 @@ from os.path import expanduser
|
|
3 |
|
4 |
import shutil
|
5 |
import torch
|
|
|
6 |
from datasets import load_dataset, DatasetDict
|
7 |
from encodec_audio_tokenizer import EncodecTokenizer
|
8 |
|
@@ -18,6 +19,20 @@ dataset = load_dataset(f"{hf_org}/{hf_dataset}", f"subset_{dataset_id}", split="
|
|
18 |
tokenizer = EncodecTokenizer.from_pretrained()
|
19 |
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def tokenize(example):
|
22 |
for side in sides:
|
23 |
wav = torch.as_tensor(example[f"{side}.audio"]["array"].reshape(1, 1, -1), dtype=torch.float32)
|
|
|
3 |
|
4 |
import shutil
|
5 |
import torch
|
6 |
+
from soundfile import LibsndfileError
|
7 |
from datasets import load_dataset, DatasetDict
|
8 |
from encodec_audio_tokenizer import EncodecTokenizer
|
9 |
|
|
|
19 |
tokenizer = EncodecTokenizer.from_pretrained()
|
20 |
|
21 |
|
22 |
+
def error_file(example):
|
23 |
+
for side in sides:
|
24 |
+
try:
|
25 |
+
example[f"{side}.audio"]
|
26 |
+
except LibsndfileError:
|
27 |
+
return False
|
28 |
+
return True
|
29 |
+
|
30 |
+
|
31 |
+
print(f"Num examples: {len(dataset)}")
|
32 |
+
dataset = dataset.filter(error_file)
|
33 |
+
print(f"Num examples (after filtering): {len(dataset)}")
|
34 |
+
|
35 |
+
|
36 |
def tokenize(example):
|
37 |
for side in sides:
|
38 |
wav = torch.as_tensor(example[f"{side}.audio"]["array"].reshape(1, 1, -1), dtype=torch.float32)
|