Datasets:
Tasks:
Text Classification
Formats:
csv
Sub-tasks:
sentiment-classification
Languages:
English
Size:
10K - 100K
License:
File size: 7,529 Bytes
b94a097 325e2c4 b94a097 fc6af0b b94a097 0f84598 b94a097 0cc8a74 b94a097 8eac2ab b94a097 8eac2ab b94a097 0f84598 b94a097 2b47d64 e68dd09 b94a097 61c6c9e b94a097 bdc2a7b b94a097 bdc2a7b b94a097 bdc2a7b b94a097 cb52154 b94a097 bdc2a7b b94a097 fc6af0b bdc2a7b fc6af0b bdc2a7b fc6af0b cb52154 fc6af0b bdc2a7b fc6af0b b94a097 bdc2a7b b94a097 d4ce05f b94a097 f1b48da 42ed38f c305f1b d4ededc 40398d7 61c6c9e 42ed38f e1f213c 42ed38f d4ededc 42ed38f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""IMDb movie revies dataset mixed with Trip Advisor Hotel Reviews to simulate drift accross time."""
import csv
import json
import os
import datasets
from datasets.tasks import TextClassification
# TODO: Add BibTeX citation to our BLOG
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = ""
# _CITATION = """\
# @InProceedings{huggingface:dataset,
# title = {A great new dataset},
# author={huggingface, Inc.
# },
# year={2020}
# }
# """
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URL = "https://huggingface.co/datasets/arize-ai/reviews_with_drift/resolve/main/"
_URLS = {
"training": _URL + "training.csv",
"validation": _URL + "validation.csv",
"production": _URL + "production.csv",
}
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class ReviewsWithDrift(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.0.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="default", version=VERSION, description="Default"),
]
DEFAULT_CONFIG_NAME = "default" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
class_names = ["Negative", "Positive"]
# This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
features = datasets.Features(
# These are the features of your dataset like images, labels ...
{
"prediction_ts": datasets.Value("float"),
"age":datasets.Value("int16"),
"gender":datasets.Value("string"),
"context":datasets.Value("string"),
"text":datasets.Value("string"),
"label":datasets.ClassLabel(names=class_names),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
supervised_keys=("text", "label"),
# Homepage of the dataset for documentation
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
task_templates=[TextClassification(text_column="text", label_column="label")],
)
def _split_generators(self, dl_manager):
# This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
extracted_paths = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split("training"),
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": extracted_paths['training'],
},
),
datasets.SplitGenerator(
name=datasets.Split("validation"),
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": extracted_paths['validation'],
},
),
datasets.SplitGenerator(
name=datasets.Split("production"),
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": extracted_paths['production'],
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath):
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
label_mapping = {"Positive": 1, "Negative": 0}
with open(filepath, encoding="utf-8") as csv_file:
csv_reader = csv.reader(csv_file)
for id_, row in enumerate(csv_reader):
prediction_ts,age,gender,context,text,label = row
print(prediction_ts)
print(type(prediction_ts))
print(float(prediction_ts))
print(type(float(prediction_ts)))
print(age)
print(type(label))
print(label)
yield id_, {
"prediction_ts":33.33,
"age":15,
"gender":gender,
"context":context,
"text": text,
"label":"Negative",
} |