Datasets:
Tasks:
Text Classification
Formats:
csv
Sub-tasks:
sentiment-classification
Languages:
English
Size:
10K - 100K
License:
Francisco Castillo
commited on
Commit
·
bdc2a7b
1
Parent(s):
cb52154
wip
Browse files- reviews_with_drift.py +46 -12
reviews_with_drift.py
CHANGED
@@ -106,14 +106,13 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
106 |
features=features, # Here we define them above because they are different between the two configurations
|
107 |
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
108 |
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
109 |
-
|
110 |
-
supervised_keys=None,
|
111 |
# Homepage of the dataset for documentation
|
112 |
# License for the dataset if available
|
113 |
license=_LICENSE,
|
114 |
# Citation for the dataset
|
115 |
citation=_CITATION,
|
116 |
-
|
117 |
)
|
118 |
|
119 |
def _split_generators(self, dl_manager):
|
@@ -123,39 +122,74 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
123 |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
124 |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
125 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
126 |
-
|
127 |
return [
|
128 |
datasets.SplitGenerator(
|
129 |
name=datasets.Split("training"),
|
130 |
# These kwargs will be passed to _generate_examples
|
131 |
gen_kwargs={
|
132 |
-
"
|
133 |
"split": "training",
|
134 |
},
|
135 |
),
|
136 |
datasets.SplitGenerator(
|
137 |
-
name=datasets.Split
|
138 |
# These kwargs will be passed to _generate_examples
|
139 |
gen_kwargs={
|
140 |
-
"
|
141 |
-
"split": "validation"
|
142 |
},
|
143 |
),
|
144 |
datasets.SplitGenerator(
|
145 |
name=datasets.Split("production"),
|
146 |
# These kwargs will be passed to _generate_examples
|
147 |
gen_kwargs={
|
148 |
-
"
|
149 |
"split": "production",
|
150 |
},
|
151 |
),
|
152 |
]
|
153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
155 |
def _generate_examples(self, filepath, split):
|
156 |
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
157 |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
158 |
with open(filepath, encoding="utf-8") as f:
|
159 |
-
|
160 |
-
|
161 |
-
|
|
|
106 |
features=features, # Here we define them above because they are different between the two configurations
|
107 |
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
108 |
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
109 |
+
supervised_keys=("text", "label"),
|
|
|
110 |
# Homepage of the dataset for documentation
|
111 |
# License for the dataset if available
|
112 |
license=_LICENSE,
|
113 |
# Citation for the dataset
|
114 |
citation=_CITATION,
|
115 |
+
task_templates=[TextClassification(text_column="text", label_column="label")],
|
116 |
)
|
117 |
|
118 |
def _split_generators(self, dl_manager):
|
|
|
122 |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
123 |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
124 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
125 |
+
extracted_paths = dl_manager.download_and_extract(_URLS)
|
126 |
return [
|
127 |
datasets.SplitGenerator(
|
128 |
name=datasets.Split("training"),
|
129 |
# These kwargs will be passed to _generate_examples
|
130 |
gen_kwargs={
|
131 |
+
"filepath": extracted_paths['training'],
|
132 |
"split": "training",
|
133 |
},
|
134 |
),
|
135 |
datasets.SplitGenerator(
|
136 |
+
name=datasets.Split("validation"),
|
137 |
# These kwargs will be passed to _generate_examples
|
138 |
gen_kwargs={
|
139 |
+
"filepath": extracted_paths['validation'],
|
140 |
+
"split": "validation"
|
141 |
},
|
142 |
),
|
143 |
datasets.SplitGenerator(
|
144 |
name=datasets.Split("production"),
|
145 |
# These kwargs will be passed to _generate_examples
|
146 |
gen_kwargs={
|
147 |
+
"filepath": extracted_paths['production'],
|
148 |
"split": "production",
|
149 |
},
|
150 |
),
|
151 |
]
|
152 |
|
153 |
+
# def _split_generators(self, dl_manager):
|
154 |
+
# # This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
155 |
+
# # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
156 |
+
|
157 |
+
# # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
158 |
+
# # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
159 |
+
# # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
160 |
+
# archive = dl_manager.download(_URLS)
|
161 |
+
# return [
|
162 |
+
# datasets.SplitGenerator(
|
163 |
+
# name=datasets.Split("training"),
|
164 |
+
# # These kwargs will be passed to _generate_examples
|
165 |
+
# gen_kwargs={
|
166 |
+
# "files": dl_manager.iter_archive(archive),
|
167 |
+
# "split": "training",
|
168 |
+
# },
|
169 |
+
# ),
|
170 |
+
# datasets.SplitGenerator(
|
171 |
+
# name=datasets.Split.VALIDATION,
|
172 |
+
# # These kwargs will be passed to _generate_examples
|
173 |
+
# gen_kwargs={
|
174 |
+
# "files": dl_manager.iter_archive(archive),
|
175 |
+
# "split": "validation",
|
176 |
+
# },
|
177 |
+
# ),
|
178 |
+
# datasets.SplitGenerator(
|
179 |
+
# name=datasets.Split("production"),
|
180 |
+
# # These kwargs will be passed to _generate_examples
|
181 |
+
# gen_kwargs={
|
182 |
+
# "files": dl_manager.iter_archive(archive),
|
183 |
+
# "split": "production",
|
184 |
+
# },
|
185 |
+
# ),
|
186 |
+
# ]
|
187 |
+
|
188 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
189 |
def _generate_examples(self, filepath, split):
|
190 |
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
191 |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
192 |
with open(filepath, encoding="utf-8") as f:
|
193 |
+
yield {
|
194 |
+
"text": f.read().decode("utf-8")
|
195 |
+
}
|