Dataset Viewer
Auto-converted to Parquet
question_id
stringlengths
8
35
subject
stringclasses
1 value
chapter
stringclasses
32 values
topic
stringclasses
178 values
question
stringlengths
26
9.64k
options
stringlengths
2
1.63k
correct_option
stringclasses
5 values
answer
stringclasses
293 values
explanation
stringlengths
13
9.38k
question_type
stringclasses
3 values
paper_id
stringclasses
149 values
kt4Qsk8Vq7TCfuAU
maths
3d-geometry
direction-cosines-and-direction-ratios-of-a-line
The two lines $$x=ay+b,z=cy+d$$ and $$x = a'y + b',z = c'y + d'$$ will be perpendicular, if and only if :
[{"identifier": "A", "content": "$$aa' + cc' + 1 = 0$$ "}, {"identifier": "B", "content": "$$aa' + bb'cc' + 1 = 0$$ "}, {"identifier": "C", "content": "$$aa' + bb'cc' = 0$$ "}, {"identifier": "D", "content": "$$\\left( {a + a'} \\right)\\left( {b + b'} \\right) + \\left( {c + c'} \\right) = 0$$ "}]
["A"]
null
$${{x - b} \over a} = {y \over 1} = {{z - d} \over c};$$ <br/><br/>$${{x - b'} \over {a'}}$$ $$ = {y \over 1} = {{z - d'} \over c'}$$ <br><br>For perpenedicularity of lines $$aa' + 1 + cc' = 0$$
mcq
aieee-2003
UTyglZ3FzG2VUgaZ
maths
3d-geometry
direction-cosines-and-direction-ratios-of-a-line
A line makes the same angle $$\theta $$, with each of the $$x$$ and $$z$$ axis. <br/><br/>If the angle $$\beta \,$$, which it makes with y-axis, is such that $$\,{\sin ^2}\beta = 3{\sin ^2}\theta ,$$ then $${\cos ^2}\theta $$ equals :
[{"identifier": "A", "content": "$${2 \\over 5}$$ "}, {"identifier": "B", "content": "$${1 \\over 5}$$"}, {"identifier": "C", "content": "$${3 \\over 5}$$"}, {"identifier": "D", "content": "$${2 \\over 3}$$"}]
["C"]
null
<b>Concept :</b> If a line makes the angle $$\alpha ,\beta ,\gamma $$ with x, y, z axis respectively then $$${\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma = 1$$$ <br><br>In this question given that the line makes angle θ with x and z-axis and β with y−axis. <br><br>$$\therefore\: cos^2\theta+cos^2\beta+cos^2\theta=1$$ <br><br>$$\Rightarrow\:2cos^2\theta=1-cos^2\beta$$ <br><br>$$ \Rightarrow 2{\cos ^2}\theta = {\sin ^2}\beta $$ <br><br>But given that $$sin^2\beta=3sin^2\theta$$ <br><br>$$\therefore$$ $$2{\cos ^2}\theta = 3{\sin ^2}\theta $$ <br><br>$$ \Rightarrow 2{\cos ^2}\theta = 3\left( {1 - {{\cos }^2}\theta } \right)$$ <br><br>$$ \Rightarrow 2{\cos ^2}\theta = 3 - 3{\cos ^2}\theta $$ <br><br>$$ \Rightarrow 5{\cos ^2}\theta = 3$$ <br><br>$$ \Rightarrow {\cos ^2}\theta = {3 \over 5}$$
mcq
aieee-2004
YwetrlhmGeDvUihA
maths
3d-geometry
direction-cosines-and-direction-ratios-of-a-line
If a line makes an angle of $$\pi /4$$ with the positive directions of each of $$x$$-axis and $$y$$-axis, then the angle that the line makes with the positive direction of the $$z$$-axis is :
[{"identifier": "A", "content": "$${\\pi \\over 4}$$"}, {"identifier": "B", "content": "$${\\pi \\over 2}$$ "}, {"identifier": "C", "content": "$${\\pi \\over 6}$$"}, {"identifier": "D", "content": "$${\\pi \\over 3}$$"}]
["B"]
null
Let the angle of line makes with the positive direction of $$z$$-axis is $$\alpha $$ direction cosines of line with the $$+ve$$ directions of $$x$$-axis, $$y$$-axis, and $$z$$-axis is $$l,$$ $$m,$$ $$n$$ respectively. <br><br>$$\therefore$$ $$l = \cos {\pi \over 4},m = \cos {\pi \over 4},\,\,n = cos\,\alpha $$ <br><br>as we know that, $${l^2} + {m^2} + {n^2} = 1$$ <br><br>$$\therefore$$ $${\cos ^2}{\pi \over 4} + {\cos ^2}{\pi \over 4} + {\cos ^2}\alpha = 1$$ <br><br>$$ \Rightarrow {1 \over 2} + {1 \over 2} + {\cos ^2}\alpha = 1$$ <br><br>$$ \Rightarrow {\cos ^2}\alpha = 0 \Rightarrow \alpha = {\pi \over 2}$$ <br><br>Hence, angle with positive direction of the $$z$$-axis is $${\pi \over 2}$$
mcq
aieee-2007
6XCk3G13gwVOzXa9
maths
3d-geometry
direction-cosines-and-direction-ratios-of-a-line
Let $$L$$ be the line of intersection of the planes $$2x+3y+z=1$$ and $$x+3y+2z=2.$$ If $$L$$ makes an angle $$\alpha $$ with the positive $$x$$-axis, then cos $$\alpha $$ equals
[{"identifier": "A", "content": "$$1$$ "}, {"identifier": "B", "content": "$${1 \\over {\\sqrt 2 }}$$ "}, {"identifier": "C", "content": "$${1 \\over {\\sqrt 3 }}$$"}, {"identifier": "D", "content": "$${1 \\over 2}$$ "}]
["C"]
null
Let the direction cosines of line $$L$$ be $$l,m,n,$$ <br><br>then $$2l+3m+n=0$$ $$\,\,\,\,\,\,\,....\left( i \right)$$ <br><br>and $$l + 3m + 2n = 0\,\,\,\,\,\,\,\,\,\,....\left( {ii} \right)$$ <br><br>on solving equation $$(i)$$ and $$(ii),$$ we get <br><br>$${l \over {6 - 3}} = {m \over {1 - 4}} = {n \over {6 - 3}}$$ <br><br>$$\,\,\,\,\,\,\,\,\,\, \Rightarrow {l \over 3} = {m \over { - 3}} = {n \over 3}$$ <br><br>Now $$ \Rightarrow {l \over 3} = {m \over { - 3}} = {n \over 3} = {{\sqrt {{l^2} + {m^2} + {n^2}} } \over {\sqrt {{3^2} + {{\left( { - 3} \right)}^2} + {3^2}} }}$$ <br><br>As $${l^2} + {m^2} + {n^2} = 1$$ <br><br>$$\therefore$$ $${l \over 3} = {m \over { - 3}} = {n \over 3} = {1 \over {\sqrt {27} }}$$ <br><br>$$ \Rightarrow l = {3 \over {\sqrt {27} }} = {1 \over {\sqrt 3 }},\,\,m = - {1 \over {\sqrt 3 }},n = {1 \over {\sqrt 3 }}$$ <br><br>Line $$L,$$ makes an angle $$\alpha $$ with $$+ve$$ $$x$$-axis <br><br>$$\therefore$$ $$l = \cos \,\alpha \,\,\,\, \Rightarrow \,\,\,\cos \alpha \,\, = {1 \over {\sqrt 3 }}$$
mcq
aieee-2007
liW5CBWFat8KJOch
maths
3d-geometry
direction-cosines-and-direction-ratios-of-a-line
The projections of a vector on the three coordinate axis are $$6,-3,2$$ respectively. The direction cosines of the vector are :
[{"identifier": "A", "content": "$${6 \\over 5},{{ - 3} \\over 5},{2 \\over 5}$$ "}, {"identifier": "B", "content": "$${6 \\over 7 },{{ - 3} \\over 7},{2 \\over 7}$$"}, {"identifier": "C", "content": "$${- 6 \\over 7 },{{ - 3} \\over 7},{2 \\over 7}$$ "}, {"identifier": "D", "content": "$$6, -3, 2$$ "}]
["B"]
null
Let $$P\left( {{x_1},{y_1},{z_1}} \right)$$ and $$Q\left( {{x_2},{y_2},{z_2}} \right)$$ be the initial and final points of the vector whose projections on the three coordinates axes are $${6, - 3,2}$$ then <br><br>$${x_2} - {x_1}, = 6;\,\,{y_2} - {y_1} = - 3;\,\,{z_2} - {z_1} = 2$$ <br><br>So that directions ratios of $$\overrightarrow {PQ} $$ are $${6, - 3,2}$$ <br><br>$$\therefore$$ Direction cosines of $$\overrightarrow {PQ} $$ are <br><br>$${6 \over {\sqrt {{6^2} + {{\left( { - 3} \right)}^2} + {2^2}} }},{{ - 3} \over {\sqrt {{6^2} + {{\left( { - 3} \right)}^2} + {2^2}} }},$$ <br><br>$$\,\,\,\,\,\,\,\,$$ $${2 \over {\sqrt {{6^2} + {{\left( { - 3} \right)}^2} + {2^2}} }} = {6 \over 7},{{ - 3} \over 7},{2 \over 7}$$
mcq
aieee-2009
aHh6mgnU6ToKRQPj
maths
3d-geometry
direction-cosines-and-direction-ratios-of-a-line
A line $$AB$$ in three-dimensional space makes angles $${45^ \circ }$$ and $${120^ \circ }$$ with the positive $$x$$-axis and the positive $$y$$-axis respectively. If $$AB$$ makes an acute angle $$\theta $$ with the positive $$z$$-axis, then $$\theta $$ equals :
[{"identifier": "A", "content": "$${45^ \\circ }$$"}, {"identifier": "B", "content": "$${60^ \\circ }$$ "}, {"identifier": "C", "content": "$${75^ \\circ }$$"}, {"identifier": "D", "content": "$${30^ \\circ }$$"}]
["B"]
null
Direction cosines of the line : <br><br>$$\ell = \cos {45^ \circ } = {1 \over {\sqrt 2 }},m = \cos {120^ \circ } = {{ - 1} \over 2},\pi = \cos \theta $$ <br><br>where $$\theta $$ is the angle, which line makes with positive $$z$$-axis. <br><br>Now $${\ell ^2} + {m^2} + {n^2} = 1$$ <br><br>$$ \Rightarrow {1 \over 2} + {1 \over 4} + {\cos ^2}\theta = 1,\,\,{\cos ^2}\theta = {1 \over 4}$$ <br><br>$$ \Rightarrow \cos \theta = {1 \over 2}\,\,\,\,\left( \theta \right.$$ being acute) <br><br>$$ \Rightarrow 0 = {\pi \over 3}$$
mcq
aieee-2010
xarDenvP2mwduBif
maths
3d-geometry
direction-cosines-and-direction-ratios-of-a-line
The angle between the lines whose direction cosines satisfy the equations $$l+m+n=0$$ and $${l^2} = {m^2} + {n^2}$$ is :
[{"identifier": "A", "content": "$${\\pi \\over 6}$$"}, {"identifier": "B", "content": "$${\\pi \\over 2}$$"}, {"identifier": "C", "content": "$${\\pi \\over 3}$$ "}, {"identifier": "D", "content": "$${\\pi \\over 4}$$"}]
["C"]
null
Given <br><br>$$l + m + n = 0$$ and $${l^2} = {m^2} + {n^2}$$ <br><br>Now, $${\left( { - m - n} \right)^2} = {m^2} + {n^2}$$ <br><br>$$ \Rightarrow mn = 0 \Rightarrow m = 0\,\,$$ or $$\,\,n = 0$$ <br><br>If $$m=0$$ then $$l=-n$$ <br><br>We know <br><br>$${l^2} + {m^2} + {n^2} = 1 \Rightarrow n = \pm {1 \over {\sqrt 2 }}$$ <br><br>i.e.$$\left( {{l_1},{m_1},{n_1}} \right) = \left( { - {1 \over {\sqrt 2 }},0,{1 \over {\sqrt 2 }}} \right)$$ <br><br>If $$n=0$$ then $$l=-m$$ <br><br>$${l^2} + {m^2} + {n^2} = 1\,\,\, \Rightarrow 2{m^2} = 1$$ <br><br>$$ \Rightarrow m = \pm {1 \over {\sqrt 2 }}$$ <br><br>Let $$m = {1 \over {\sqrt 2 }} \Rightarrow l = - {1 \over {\sqrt 2 }}$$ <br><br>and $$n=0$$ <br><br>$$\left( {{l_2},{m_2},{n_2}} \right) = \left( { - {1 \over {\sqrt 2 }},{1 \over {\sqrt 2 }},0} \right)$$ <br><br>$$\therefore$$ $$\cos \theta = {1 \over 2} \Rightarrow \theta = {\pi \over 3}$$
mcq
jee-main-2014-offline
4yK9enk8xtYf7Hy4fE6wX
maths
3d-geometry
direction-cosines-and-direction-ratios-of-a-line
ABC is a triangle in a plane with vertices <br/><br> A(2, 3, 5), B(−1, 3, 2) and C($$\lambda $$, 5, $$\mu $$). <br/><br/>If the median through A is equally inclined to the coordinate axes, then the value of ($$\lambda $$<sup>3</sup> + $$\mu $$<sup>3</sup> + 5) is : </br>
[{"identifier": "A", "content": "1130"}, {"identifier": "B", "content": "1348"}, {"identifier": "C", "content": "676"}, {"identifier": "D", "content": "1077"}]
["B"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267089/exam_images/rmtgi7eihcbphpv9sdfi.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2016 (Online) 10th April Morning Slot Mathematics - 3D Geometry Question 270 English Explanation"> <br><br>DR's of AD are <br><br>$${{\lambda - 1} \over 2} - 2,{{5 + 3} \over 2} - 3,{{\mu + 2} \over 2} - 5$$ <br><br>i.e.&nbsp;&nbsp;$${{\lambda - 5} \over 2},\,\,1,\,\,{{\mu - 8} \over 2}$$ <br><br>As medium is making equal angles with coordinate axes, <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;$${{\lambda - 5} \over 2} = 1 = {{\mu - 8} \over 2}$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;$$\lambda $$ = 7, &nbsp;&nbsp;$$\mu $$ = 10 <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;$$\lambda $$<sup>3</sup> + $$\mu $$<sup>3</sup> + 5 = 7<sup>3</sup> + 10<sup>3</sup> + 5 = 1348
mcq
jee-main-2016-online-10th-april-morning-slot
jUxJqw5CxzEzFWDDqXW8u
maths
3d-geometry
direction-cosines-and-direction-ratios-of-a-line
An angle between the lines whose direction cosines are gien by the equations, <br/>$$l$$ + 3m + 5n = 0 and 5$$l$$m $$-$$ 2mn + 6n$$l$$ = 0, is :
[{"identifier": "A", "content": "$${\\cos ^{ - 1}}\\left( {{1 \\over 3}} \\right)$$"}, {"identifier": "B", "content": "$${\\cos ^{ - 1}}\\left( {{1 \\over 4}} \\right)$$"}, {"identifier": "C", "content": "$${\\cos ^{ - 1}}\\left( {{1 \\over 6}} \\right)$$"}, {"identifier": "D", "content": "$${\\cos ^{ - 1}}\\left( {{1 \\over 8}} \\right)$$"}]
["C"]
null
Given <br><br>l + 3m + 5n = 0 <br><br>and 5$$l$$m $$-$$ 2mn + 6n$$l$$ = 0 <br><br>From eq. (1) we have <br><br>$$l$$ = $$-$$ 3m $$-$$ 5n <br><br>Put the value of $$l$$ in eq. (2), we get ; <br><br>5 ($$-$$3m $$-$$5n) m $$-$$ 2mn + 6n ($$-$$ 3m $$-$$ 5n) = 0 <br><br>$$ \Rightarrow $$&nbsp; 15m<sup>2</sup> + 45mn + 30n<sup>2</sup> = 0 <br><br>$$ \Rightarrow $$&nbsp;m<sup>2</sup> + 3mn + 2n<sup>2</sup> = 0 <br><br>$$ \Rightarrow $$&nbsp; m<sup>2</sup> + 2mn + mn + 2n<sup>2</sup> = 0 <br><br>$$ \Rightarrow $$ $$\,\,\,$$ (m + n) (m + 2n) = 0 <br><br>$$ \therefore $$&nbsp; m = $$-$$ n &nbsp;&nbsp;or&nbsp;&nbsp; m = $$-$$ 2n <br><br>For m = $$-n, $$ $$l$$ = $$-$$ 2n <br><br>And for m = $$-$$ 2n, $$l$$ = n <br><br>$$ \therefore $$&nbsp;&nbsp; ($$l$$, m, n) = ($$-$$2n, $$-$$n, n) Or ($$l$$, m, n) = (n, $$-$$ 2n, n) <br><br>$$ \Rightarrow $$&nbsp; ($$l$$, m, n) = ($$-$$2, $$-$$1, 1) Or ($$l$$, m, n) = (1, $$-$$ 2, 1) <br><br>Therefore, angle between the lines is given as : <br><br>cos ($$\theta $$) = $${{\left( { - 2} \right)\left( 1 \right) + \left( { - 1} \right).\left( { - 2} \right) + \left( 1 \right)\left( 1 \right)} \over {\sqrt 6 .\sqrt 6 }}$$ <br><br>$$ \Rightarrow $$ cos ($$\theta $$) = $${1 \over 6}$$ $$ \Rightarrow $$&nbsp; $$\theta $$ =cos<sup>$$-$$1</sup> $$\left( {{1 \over 6}} \right)$$
mcq
jee-main-2018-online-15th-april-evening-slot
3FhkSd7tirtXKNl5jLwyP
maths
3d-geometry
direction-cosines-and-direction-ratios-of-a-line
If a point R(4, y, z) lies on the line segment joining the points P(2, –3, 4) and Q(8, 0, 10), then the distance of R from the origin is :
[{"identifier": "A", "content": "$$2 \\sqrt {14}$$"}, {"identifier": "B", "content": "$$ \\sqrt {53}$$"}, {"identifier": "C", "content": "$$2 \\sqrt {21}$$"}, {"identifier": "D", "content": "6"}]
["A"]
null
Equation of PQ is <br><br> $${{x - 2} \over {8 - 2}} = {{y + 3} \over {0 - \left( { - 3} \right)}} = {{z - 4} \over {10 - 4}}$$ <br><br>$$ \Rightarrow $$ $${{x - 2} \over 6} = {{y + 3} \over 3} = {{z - 4} \over 6}$$ <br><br>Point R (4, y, z) lies on this <br><br>$$ \therefore $$ $${{4 - 2} \over 6} = {{y + 3} \over 3} = {{z - 4} \over 6}$$ <br><br>$$ \Rightarrow $$ $${1 \over 3} = {{y + 3} \over 3} = {{z - 4} \over 6}$$ <br><br>y = -2 and y = 6 <br><br>$$ \therefore $$ R = (4, -2, 6) <br><br>Distance of R(4, -2, 6) from the origin O(0, 0, 0) is <br><br>RO = $$\sqrt {{4^2} + {{\left( { - 2} \right)}^2} + {6^2}} $$ <br><br>= $$\sqrt {56} = 2\sqrt {14} $$
mcq
jee-main-2019-online-8th-april-evening-slot
5BKZvRMs9hDCERctl67k9k2k5iu7qri
maths
3d-geometry
direction-cosines-and-direction-ratios-of-a-line
The projection of the line segment joining the points (1, –1, 3) and (2, –4, 11) on the line joining the points (–1, 2, 3) and (3, –2, 10) is ____________.
[]
null
8
Let A (1, – 1, 3), B(2, – 4, 11), C (–1, 2, 3) &amp; D (3, –2, 10) <br><br>$$ \therefore $$ $$\overrightarrow {AB} = \widehat i - 3\widehat j + 8\widehat k$$ <br><br>$$ \Rightarrow $$ $$\overrightarrow {CD} = 4\widehat i - 4\widehat j + 7\widehat k$$ <br><br>Projection of $$\overrightarrow {AB} $$ on $$\overrightarrow {CD} $$ = $${{\overrightarrow {AB} .\overrightarrow {CD} } \over {\left| {\overrightarrow {CD} } \right|}}$$ <br><br> = $${{4 + 12 + 56} \over {\sqrt {16 + 16 + 49} }}$$ <br><br> = $${{72} \over 9}$$ <br><br> = 8
integer
jee-main-2020-online-9th-january-morning-slot
rAho8VIbIc91mUekGJ1kls51pef
maths
3d-geometry
direction-cosines-and-direction-ratios-of-a-line
Let $$\alpha$$ be the angle between the lines whose direction cosines satisfy the equations l + m $$-$$ n = 0 and l<sup>2</sup> + m<sup>2</sup> $$-$$ n<sup>2</sup> = 0. Then the value of sin<sup>4</sup>$$\alpha$$ + cos<sup>4</sup>$$\alpha$$ is :
[{"identifier": "A", "content": "$${{3 \\over 8}}$$"}, {"identifier": "B", "content": "$${{3 \\over 4}}$$"}, {"identifier": "C", "content": "$${{1 \\over 2}}$$"}, {"identifier": "D", "content": "$${{5 \\over 8}}$$"}]
["D"]
null
$${l^2} + {m^2} + {n^2} = 1$$<br><br>$$ \therefore $$ $$2{n^2} = 1 $$ ($$ \because $$ l<sup>2</sup> + m<sup>2</sup> $$-$$ n<sup>2</sup> = 0) <br><br>$$\Rightarrow n = \pm {1 \over {\sqrt 2 }}$$<br><br>$$ \therefore $$ $${l^2} + {m^2} = {1 \over 2}$$ &amp; $$l + m = {1 \over {\sqrt 2 }}$$<br><br>$$ \Rightarrow {1 \over 2} - 2lm = {1 \over 2}$$<br><br>$$ \Rightarrow lm = 0$$ or $$m = 0$$<br><br>$$ \therefore $$ $$l = 0,m = {1 \over {\sqrt 2 }}$$ or $$l = {1 \over {\sqrt 2 }}$$<br><br>$$ &lt; 0,{1 \over {\sqrt 2 }},{1 \over {\sqrt 2 }} &gt; $$ or $$ &lt; {1 \over {\sqrt 2 }},0,{1 \over {\sqrt 2 }} &gt; $$<br><br>$$ \therefore $$ $$\cos \alpha = 0 + 0 + {1 \over 2} = {1 \over 2}$$<br><br>$$ \therefore $$ $${\sin ^4}\alpha + {\cos ^4}\alpha = 1 - {1 \over 2}{\sin ^2}(2\alpha ) = 1 - {1 \over 2}.{3 \over 4} = {5 \over 8}$$
mcq
jee-main-2021-online-25th-february-morning-slot
1ktfvxn17
maths
3d-geometry
direction-cosines-and-direction-ratios-of-a-line
The angle between the straight lines, whose direction cosines are given by the equations 2l + 2m $$-$$ n = 0 and mn + nl + lm = 0, is :
[{"identifier": "A", "content": "$${\\pi \\over 2}$$"}, {"identifier": "B", "content": "$$\\pi - {\\cos ^{ - 1}}\\left( {{4 \\over 9}} \\right)$$"}, {"identifier": "C", "content": "$${\\cos ^{ - 1}}\\left( {{8 \\over 9}} \\right)$$"}, {"identifier": "D", "content": "$${\\pi \\over 3}$$"}]
["A"]
null
n = 2 (l + m)<br><br>lm + n(l + m) = 0<br><br>lm + 2(l + m)<sup>2</sup> = 0<br><br>2l<sup>2</sup> + 2m<sup>2</sup> + 5ml = 0<br><br>$$2{\left( {{l \over m}} \right)^2} + 2 + 5\left( {{l \over m}} \right) = 0$$<br><br>2t<sup>2</sup> + 5t + 2 = 0<br><br>(t + 2)(2t + 1) = 0<br><br>$$ \Rightarrow t = - 2; - {1 \over 2}$$<br><br>(i) $${l \over m} = - 2$$<br><br>$${n \over m} = - 2$$<br><br>($$-$$2m, m, $$-$$2m)<br><br>($$-$$2, 1, $$-$$2)<br><br>(ii) $${l \over m} = - {1 \over 2}$$<br><br>n = $$-$$2l<br><br>(l, $$-$$2l, $$-$$2l)<br><br>(1, $$-$$2, $$-$$2)<br><br>$$\cos \theta = {{ - 2 - 2 + 4} \over {\sqrt 9 \sqrt 9 }} = 0 \Rightarrow 0 = {\pi \over 2}$$
mcq
jee-main-2021-online-27th-august-evening-shift
1l57oj6hy
maths
3d-geometry
direction-cosines-and-direction-ratios-of-a-line
<p>If two straight lines whose direction cosines are given by the relations $$l + m - n = 0$$, $$3{l^2} + {m^2} + cnl = 0$$ are parallel, then the positive value of c is :</p>
[{"identifier": "A", "content": "6"}, {"identifier": "B", "content": "4"}, {"identifier": "C", "content": "3"}, {"identifier": "D", "content": "2"}]
["A"]
null
<p>Given that the direction cosines satisfy $l + m - n = 0$, we find that $n = l + m$.</p> <p>The other equation is $3l^2 + m^2 + cnl = 0$, and substituting $n = l + m$ gives $3l^2 + m^2 + cl(l + m) = 0$.</p> <p>This simplifies to $(3 + c)l^2 + clm + m^2 = 0$.</p> <p>As the lines are parallel, they share the same direction ratios, so we can express $l$ in terms of $m$, say $l = km$. Substituting this into our equation gives $(3 + c)(km)^2 + ckm^2 + m^2 = 0$.</p> <p>This simplifies to $m^2[k^2(3 + c) + kc + 1] = 0$.</p> <p>Since $m \neq 0$, we must have $k^2(3 + c) + kc + 1 = 0$. Here, we consider the ratio $k = \frac{l}{m}$ to be constant, since the lines are parallel. The equation then becomes a quadratic equation in $k$.</p> <p>As the lines are parallel, the discriminant of the quadratic equation must be equal to zero for the equation to have equal roots. Hence, the discriminant $D = (c^2 - 4(3 + c)) = 0$.</p> <p>Solving this quadratic equation gives $c^2 - 4c - 12 = 0$. </p> <p>Factoring this equation gives $(c - 6)(c + 2) = 0$.</p> <p>Solving for $c$ gives $c = 6, -2$. </p> <p>However, we are looking for the positive value of $c$, so $c = 6$.</p> <p>Therefore, the correct answer is 6</p>
mcq
jee-main-2022-online-27th-june-morning-shift
1l6m6hocr
maths
3d-geometry
direction-cosines-and-direction-ratios-of-a-line
<p>Let $$\mathrm{P}(-2,-1,1)$$ and $$\mathrm{Q}\left(\frac{56}{17}, \frac{43}{17}, \frac{111}{17}\right)$$ be the vertices of the rhombus PRQS. If the direction ratios of the diagonal RS are $$\alpha,-1, \beta$$, where both $$\alpha$$ and $$\beta$$ are integers of minimum absolute values, then $$\alpha^{2}+\beta^{2}$$ is equal to ____________.</p>
[]
null
450
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l7rb45xm/29b2975e-d397-4ba9-941a-4cc0bd7b15f1/c362a6a0-2e7f-11ed-8702-156c00ced081/file-1l7rb45xn.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l7rb45xm/29b2975e-d397-4ba9-941a-4cc0bd7b15f1/c362a6a0-2e7f-11ed-8702-156c00ced081/file-1l7rb45xn.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 28th July Morning Shift Mathematics - 3D Geometry Question 121 English Explanation"></p> <p>d.r's of $$RS = &lt; \alpha , - 1,\beta &gt; $$</p> <p>d.r's of $$PQ = &lt; {{90} \over {17}},{{60} \over {17}},{{94} \over {17}} &gt; \, = \, &lt; 45,30,47 &gt; $$</p> <p>as PQ and RS are diagonals of rhombus</p> <p>$$\alpha (45) + 30( - 1) + 47(\beta ) = 0$$</p> <p>$$ \Rightarrow 45\alpha + 47\beta = 30$$</p> <p>i.e., $$\alpha = {{30 - 47\beta } \over {45}}$$</p> <p>for minimum integral value $$\alpha = - 15$$ and $$\beta = 15$$</p> <p>$$ \Rightarrow {\alpha ^2} + {\beta ^2} = 450$$.</p>
integer
jee-main-2022-online-28th-july-morning-shift
lsam59tf
maths
3d-geometry
direction-cosines-and-direction-ratios-of-a-line
Consider a $\triangle A B C$ where $A(1,3,2), B(-2,8,0)$ and $C(3,6,7)$. If the angle bisector of $\angle B A C$ meets the line $B C$ at $D$, then the length of the projection of the vector $\overrightarrow{A D}$ on the vector $\overrightarrow{A C}$ is :
[{"identifier": "A", "content": "$\\frac{37}{2 \\sqrt{38}}$"}, {"identifier": "B", "content": "$\\sqrt{19}$"}, {"identifier": "C", "content": "$\\frac{39}{2 \\sqrt{38}}$"}, {"identifier": "D", "content": "$\\frac{\\sqrt{38}}{2}$"}]
["A"]
null
<img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lsqeg6dq/195e875b-1d41-47ba-b7a7-6f56da027c9a/8f22c6e0-cdc0-11ee-9f50-677e7e372eae/file-6y3zli1lsqeg6dr.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lsqeg6dq/195e875b-1d41-47ba-b7a7-6f56da027c9a/8f22c6e0-cdc0-11ee-9f50-677e7e372eae/file-6y3zli1lsqeg6dr.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 1st February Evening Shift Mathematics - 3D Geometry Question 43 English Explanation"> <br><br>$D$ divides $B C$ in ratio $1: 1$ <br><br>$$ D:\left(\frac{1}{2}, 7, \frac{7}{2}\right) $$ <br><br>$\begin{aligned} &amp; \overrightarrow{A D}=\left(\frac{1}{2}-1\right) \hat{i}+(7-3) \hat{j}+\left(\frac{7}{2}-2\right) \hat{k} \\\\ &amp; =-\frac{1}{2} \hat{i}+4 \hat{j}+\frac{3}{2} \hat{k} \\\\ &amp; \overrightarrow{A C}=2 \hat{i}+3 \hat{j}+5 \hat{k}\end{aligned}$ <br><br>Projection of $\overrightarrow{A D}$ on $\overrightarrow{A C}$ <br><br>$$ =\frac{-1+12+\frac{15}{2}}{\sqrt{4+9+25}}=\frac{37}{2 \sqrt{38}} $$
mcq
jee-main-2024-online-1st-february-evening-shift
jaoe38c1lseyroz7
maths
3d-geometry
direction-cosines-and-direction-ratios-of-a-line
<p>Let $$O$$ be the origin and the position vectors of $$A$$ and $$B$$ be $$2 \hat{i}+2 \hat{j}+\hat{k}$$ and $$2 \hat{i}+4 \hat{j}+4 \hat{k}$$ respectively. If the internal bisector of $$\angle \mathrm{AOB}$$ meets the line $$\mathrm{AB}$$ at $$\mathrm{C}$$, then the length of $$O C$$ is</p>
[{"identifier": "A", "content": "$$\\frac{3}{2} \\sqrt{34}$$\n"}, {"identifier": "B", "content": "$$\\frac{2}{3} \\sqrt{31}$$\n"}, {"identifier": "C", "content": "$$\\frac{2}{3} \\sqrt{34}$$\n"}, {"identifier": "D", "content": "$$\\frac{3}{2} \\sqrt{31}$$"}]
["C"]
null
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lt2yowkb/31073c70-5b0c-4f0f-80c0-62ea5ac61070/2035eab0-d4a9-11ee-bdd1-01c80c3e2d9a/file-1lt2yowkc.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lt2yowkb/31073c70-5b0c-4f0f-80c0-62ea5ac61070/2035eab0-d4a9-11ee-bdd1-01c80c3e2d9a/file-1lt2yowkc.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 29th January Morning Shift Mathematics - 3D Geometry Question 28 English Explanation"></p> <p>$$\text { length of } O C=\frac{\sqrt{136}}{3}=\frac{2 \sqrt{34}}{3}$$</p>
mcq
jee-main-2024-online-29th-january-morning-shift
jaoe38c1lsfkjy12
maths
3d-geometry
direction-cosines-and-direction-ratios-of-a-line
<p>Let $$\mathrm{P}(3,2,3), \mathrm{Q}(4,6,2)$$ and $$\mathrm{R}(7,3,2)$$ be the vertices of $$\triangle \mathrm{PQR}$$. Then, the angle $$\angle \mathrm{QPR}$$ is</p>
[{"identifier": "A", "content": "$$\\cos ^{-1}\\left(\\frac{7}{18}\\right)$$\n"}, {"identifier": "B", "content": "$$\\frac{\\pi}{6}$$\n"}, {"identifier": "C", "content": "$$\\cos ^{-1}\\left(\\frac{1}{18}\\right)$$\n"}, {"identifier": "D", "content": "$$\\frac{\\pi}{3}$$"}]
["D"]
null
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lsr8wgd3/6b24122f-fe39-4086-be4a-889687b965f8/a5aaee70-ce37-11ee-9412-cd4f9c6f2c40/file-6y3zli1lsr8wgd4.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lsr8wgd3/6b24122f-fe39-4086-be4a-889687b965f8/a5aaee70-ce37-11ee-9412-cd4f9c6f2c40/file-6y3zli1lsr8wgd4.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 29th January Evening Shift Mathematics - 3D Geometry Question 27 English Explanation"></p> <p>Direction ratio of $$\mathrm{PR}=(4,1,-1)$$</p> <p>Direction ratio of $$\mathrm{PQ}=(1,4,-1)$$</p> <p>Now, $$\cos \theta=\left|\frac{4+4+1}{\sqrt{18} \cdot \sqrt{18}}\right|$$</p> <p>$$\theta=\frac{\pi}{3}$$</p>
mcq
jee-main-2024-online-29th-january-evening-shift
lv5grw9p
maths
3d-geometry
direction-cosines-and-direction-ratios-of-a-line
<p>Let $$P(x, y, z)$$ be a point in the first octant, whose projection in the $$x y$$-plane is the point $$Q$$. Let $$O P=\gamma$$; the angle between $$O Q$$ and the positive $$x$$-axis be $$\theta$$; and the angle between $$O P$$ and the positive $$z$$-axis be $$\phi$$, where $$O$$ is the origin. Then the distance of $$P$$ from the $$x$$-axis is</p>
[{"identifier": "A", "content": "$$\\gamma \\sqrt{1-\\sin ^2 \\phi \\cos ^2 \\theta}$$\n"}, {"identifier": "B", "content": "$$\\gamma \\sqrt{1+\\cos ^2 \\theta \\sin ^2 \\phi}$$\n"}, {"identifier": "C", "content": "$$\\gamma \\sqrt{1+\\cos ^2 \\phi \\sin ^2 \\theta}$$\n"}, {"identifier": "D", "content": "$$\\gamma \\sqrt{1-\\sin ^2 \\theta \\cos ^2 \\phi}$$"}]
["A"]
null
<p>$$\begin{aligned} & \overrightarrow{O P}=x \hat{i}+y \hat{j}+z \hat{k} \\ & \overrightarrow{O Q}=x \hat{i}+y \hat{j} \\ & |O P|=\gamma=\sqrt{x^2+y^2+z^2} \\ & \cos \theta=\frac{x}{\sqrt{x^2+y^2}} \Rightarrow \cos ^2 \theta=\frac{x^2}{\gamma^2-z^2}=\frac{x^2}{\gamma^2-\gamma^2 \cos ^2 \phi} \\ & \cos \phi=\frac{z}{\sqrt{x^2+y^2+z^2}}=\frac{z}{\gamma} \\ & \text { Distance of } P \text { from } x \text {-axis }=\sqrt{y^2+z^2} \\ & d=\sqrt{\gamma^2-x^2} \\ & \Rightarrow x^2=\gamma^2 \sin ^2 \phi \cos ^2 \theta \\ & \Rightarrow d=\sqrt{\gamma^2-\gamma^2 \sin ^2 \phi \cos ^2 \theta} \\ & =\gamma \sqrt{1-\sin ^2 \phi \cos ^2 \theta} \end{aligned}$$</p>
mcq
jee-main-2024-online-8th-april-morning-shift
lv7v4fxr
maths
3d-geometry
direction-cosines-and-direction-ratios-of-a-line
<p>If the line $$\frac{2-x}{3}=\frac{3 y-2}{4 \lambda+1}=4-z$$ makes a right angle with the line $$\frac{x+3}{3 \mu}=\frac{1-2 y}{6}=\frac{5-z}{7}$$, then $$4 \lambda+9 \mu$$ is equal to :</p>
[{"identifier": "A", "content": "4"}, {"identifier": "B", "content": "13"}, {"identifier": "C", "content": "5"}, {"identifier": "D", "content": "6"}]
["D"]
null
<p>$$\begin{aligned} & L_1: \frac{x-2}{(-3)}=\frac{y-\frac{2}{3}}{\left(\frac{4 \lambda+1}{3}\right)}=\frac{}{(-1)} \\ & L_2: \frac{x+3}{3 \mu}=\frac{y-\frac{1}{2}}{-3}=\frac{z-5}{-7} \\ & \because L_1 \perp L_2 \\ & \Rightarrow(-3)(3 \mu)+\left(\frac{4 \lambda+1}{3}\right)(-3)+(-1)(-7)=0 \\ & -9 \mu-4 \lambda-1+7=0 \\ & \Rightarrow 4 \lambda+9 \mu=6 \\ & \end{aligned}$$</p>
mcq
jee-main-2024-online-5th-april-morning-shift
hW9Uid5rVNiUGULz
maths
3d-geometry
lines-and-plane
A plane which passes through the point $$(3,2,0)$$ and the line <br/><br>$${{x - 4} \over 1} = {{y - 7} \over 5} = {{z - 4} \over 4}$$ is :</br>
[{"identifier": "A", "content": "$$x-y+z=1$$"}, {"identifier": "B", "content": "$$x+y+z=5$$ "}, {"identifier": "C", "content": "$$x+2y-z=1$$ "}, {"identifier": "D", "content": "$$2x-y+z=5$$"}]
["A"]
null
As the point $$\left( {3,2,0} \right)$$ lies on the given line <br><br>$${{x - 4} \over 1} = {{y - 7} \over 5} = {{z - 4} \over 4}$$ <br><br>$$\therefore$$ There can be infinite many planes passing through this line. But here out of the four options only first option is satisfied by the coordinates of both the points $$\left( {3,\,2,\,0} \right)$$ and $$\left( {4,\,7,\,4} \right)$$ <br><br>$$\therefore$$ $$x - y + z = 1$$ is the required plane.
mcq
aieee-2002
EbGhqY1JBAk9FShb
maths
3d-geometry
lines-and-plane
If the angel $$\theta $$ between the line $${{x + 1} \over 1} = {{y - 1} \over 2} = {{z - 2} \over 2}$$ and <br/><br/>the plane $$2x - y + \sqrt \lambda \,\,z + 4 = 0$$ is such that $$\sin \,\,\theta = {1 \over 3}$$ then value of $$\lambda $$ is :
[{"identifier": "A", "content": "$${5 \\over 3}$$"}, {"identifier": "B", "content": "$${-3 \\over 5}$$"}, {"identifier": "C", "content": "$${3 \\over 4}$$"}, {"identifier": "D", "content": "$${-4 \\over 3}$$"}]
["A"]
null
If $$\theta $$ is the angle between line and plane then $$\left( {{\pi \over 2} - 0} \right)$$ <br><br>is the angle between line and normal to plane given by <br><br>$$\cos \left( {{\pi \over 2} - 0} \right) = {{\left( {\widehat i + 2\widehat j + 2\widehat k} \right).\left( {2\widehat i - \widehat j + \sqrt \lambda \widehat k} \right)} \over {3\sqrt {4 + 1 + \lambda } }}$$ <br><br>$$\cos \left( {{\pi \over 2} - \theta } \right) = {{2 - 2 + 2\sqrt \lambda } \over {3 \times \sqrt 5 + \lambda }}$$ <br><br>$$ \Rightarrow \sin \theta = {{2\sqrt \lambda } \over {3\sqrt 5 + \lambda }} = {1 \over 3}$$ <br><br>$$ \Rightarrow 4\lambda = 5 + \lambda \Rightarrow \lambda = {5 \over 3}$$
mcq
aieee-2005
nTl94Fj4X6KBIr3k
maths
3d-geometry
lines-and-plane
If the plane $$2ax-3ay+4az+6=0$$ passes through the midpoint of the line joining the centres of the spheres <br/><br>$${x^2} + {y^2} + {z^2} + 6x - 8y - 2z = 13$$ and <br/><br>$${x^2} + {y^2} + {z^2} - 10x + 4y - 2z = 8$$ then a equals :</br></br>
[{"identifier": "A", "content": "$$-1$$"}, {"identifier": "B", "content": "$$1$$"}, {"identifier": "C", "content": "$$-2$$ "}, {"identifier": "D", "content": "$$2$$"}]
["C"]
null
Centers of given spheres are $$\left( { - 3,4,1} \right)$$ and $$\left( {5, - 2,1} \right).$$ <br><br>Mid point of centers is $$\left( {1,1,1} \right).$$ <br><br>Satisfying this in the equation of plane, we get <br><br>$$2a - 3a + 4a + 6 = 0$$ <br/><br/>$$ \Rightarrow a = - 2$$
mcq
aieee-2005
LrYeTFfhmmgV6ZGq
maths
3d-geometry
lines-and-plane
The distance between the line <br/><br>$$\overrightarrow r = 2\widehat i - 2\widehat j + 3\widehat k + \lambda \left( {i - j + 4k} \right),$$ and the plane <br/><br>$$\overrightarrow r .\left( {\widehat i + 5\widehat j + \widehat k} \right) = 5$$ is </br></br>
[{"identifier": "A", "content": "$${{10} \\over 9}$$ "}, {"identifier": "B", "content": "$${{10} \\over {3\\sqrt 3 }}$$ "}, {"identifier": "C", "content": "$${{3} \\over 10}$$"}, {"identifier": "D", "content": "$${{10} \\over 3}$$"}]
["B"]
null
A point on lines is $$\left( {2, - 2,3} \right)$$ its perpendicular distance <br><br>from the plane $$x + 5y + z - 5 = 0$$ is <br><br>$$ = \left| {{{2 - 10 + 3 - 5} \over {\sqrt {1 + 25 + 1} }}} \right| = {{10} \over {3\sqrt 3 }}$$
mcq
aieee-2005
JeLCqr5IqeCB7frm
maths
3d-geometry
lines-and-plane
The image of the point $$(-1, 3,4)$$ in the plane $$x-2y=0$$ is :
[{"identifier": "A", "content": "$$\\left( { - {{17} \\over 3}, - {{19} \\over 3},4} \\right)$$ "}, {"identifier": "B", "content": "$$(15,11,4)$$ "}, {"identifier": "C", "content": "$$\\left( { - {{17} \\over 3}, - {{19} \\over 3},1} \\right)$$"}, {"identifier": "D", "content": "None of these "}]
["D"]
null
<img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265452/exam_images/ibx2kf4tgkt5ewlrdikt.webp" loading="lazy" alt="AIEEE 2006 Mathematics - 3D Geometry Question 309 English Explanation"> <br><br>$$E{q^n}\,\,\,\,$$ of $$\,\,\,\,PN: $$- <br><br>$${{x + 1} \over 1} = {{y - 3} \over { - 2}} = {{z - 4} \over 0} = \lambda $$ <br><br>$$N\left( {\lambda - 1, - 2\lambda + 3 - 4} \right)$$ <br><br>It lies on $$x-2y=0$$ <br><br>$$ \Rightarrow \lambda - 1 + 4\lambda - 6 = 0$$ <br><br>$$ \Rightarrow \lambda = 7/5$$ <br><br>$$N\left( {{2 \over 5},{1 \over 5},4} \right)$$ <br><br>$$N$$ is mid point of $$PP'$$ <br><br>$$\therefore$$ $$\alpha - 1 = {4 \over 5},\beta + 3 = {2 \over 5},r + 4 = 8$$ <br><br>$$ \Rightarrow \alpha = {9 \over 5},\beta = {{ - 13} \over 5},r = 4$$ <br><br>$$\therefore$$ Image is $$\left( {{9 \over 5},{{ - 13} \over 5},4} \right)$$
mcq
aieee-2006
UvC5NyuvIjBty2fQ
maths
3d-geometry
lines-and-plane
Let the line $$\,\,\,\,\,$$ $${{x - 2} \over 3} = {{y - 1} \over { - 5}} = {{z + 2} \over 2}$$ lie in the plane $$\,\,\,\,\,$$ $$x + 3y - \alpha z + \beta = 0.$$ Then $$\left( {\alpha ,\beta } \right)$$ equals
[{"identifier": "A", "content": "$$(-6,7)$$ "}, {"identifier": "B", "content": "$$(5,-15)$$ "}, {"identifier": "C", "content": "$$(-5,5)$$ "}, {"identifier": "D", "content": "$$(6, -17)$$ "}]
["A"]
null
As the line $${{x - 2} \over 3} = {{y - 1} \over { - 5}} = {{z + 2} \over 2}$$ lie in the plane <br><br>$$x + 3y - \alpha z + \beta = 0$$ <br><br>$$\therefore$$ $$Pt\left( {2,1, - 2} \right)$$ lies on the plane <br><br>i.e. $$2 + 3 + 2\alpha + \beta = 0$$ <br><br>or $$\,\,\,\,2\alpha + \beta + 5 = 0\,\,\,\,\,\,\,\,\,\,\,\,\,....\left( i \right)$$ <br><br>Also normal to plane will be perpendicular to line, <br><br>$$\therefore$$ $$\,\,\,3 \times 1 - 5 \times 3 + 2 \times \left( { - \alpha } \right) = 0$$ <br><br>$$ \Rightarrow \alpha = - 6$$ <br><br>From equation $$(i)$$ then, $$\beta = 7$$ <br><br>$$\therefore$$ $$\left( {\alpha ,\beta } \right) = \left( { - 6,7} \right)$$
mcq
aieee-2009
eeoIaVQuoj4uNE1A
maths
3d-geometry
lines-and-plane
If the angle between the line $$x = {{y - 1} \over 2} = {{z - 3} \over \lambda }$$ and the plane <br/><br>$$x+2y+3z=4$$ is $${\cos ^{ - 1}}\left( {\sqrt {{5 \over {14}}} } \right),$$ then $$\lambda $$ equals :</br>
[{"identifier": "A", "content": "$${3 \\over 2}$$"}, {"identifier": "B", "content": "$${2 \\over 5}$$"}, {"identifier": "C", "content": "$${5 \\over 3}$$"}, {"identifier": "D", "content": "$${2 \\over 3}$$"}]
["D"]
null
If $$\theta $$ be the angle between the given line and plane, then <br><br>$$\sin \theta = {{1 \times 1 + 2 \times 2 + \lambda \times 3} \over {\sqrt {{1^2} + {2^2} + {\lambda ^2}} .\sqrt {{1^2} + {2^2} + {3^2}} }}$$ <br><br>$$ = {{5 + 3\lambda } \over {\sqrt {14} .\sqrt {5 + {\lambda ^2}} }}$$ <br><br>But it is given that <br><br>$$\theta = {\cos ^{ - 1}}\sqrt {{5 \over {14}}} \Rightarrow \sin \theta = {3 \over {\sqrt {14} }}$$ <br><br>$$\therefore$$ $${{5 + 3\lambda } \over {\sqrt {14} \sqrt {5 + {\lambda ^2}} }} = {3 \over {\sqrt {14} }} \Rightarrow \lambda = {2 \over 3}$$
mcq
aieee-2011
hFijuvylYi3GaK1R
maths
3d-geometry
lines-and-plane
The image of the line $${{x - 1} \over 3} = {{y - 3} \over 1} = {{z - 4} \over { - 5}}\,$$ in the plane $$2x-y+z+3=0$$ is the line :
[{"identifier": "A", "content": "$${{x - 3} \\over 3} = {{y + 5} \\over 1} = {{z - 2} \\over { - 5}}$$ "}, {"identifier": "B", "content": "$${{x - 3} \\over { - 3}} = {{y + 5} \\over { - 1}} = {{z - 2} \\over 5}\\,$$ "}, {"identifier": "C", "content": "$${{x + 3} \\over 3} = {{y - 5} \\over 1} = {{z - 2} \\over { - 5}}\\,$$ "}, {"identifier": "D", "content": "$${{x + 3} \\over { - 3}} = {{y - 5} \\over { - 1}} = {{z + 2} \\over 5}$$ "}]
["C"]
null
<img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266411/exam_images/lc7tycmcmkjqgjziprzg.webp" loading="lazy" alt="JEE Main 2014 (Offline) Mathematics - 3D Geometry Question 295 English Explanation"> <br><br>$${{a - 1} \over 2} = {{b - 3} \over { - 1}} = {{c - 4} \over 1} = \lambda \left( {let} \right)$$ <br><br>$$ \Rightarrow a = 2\lambda + 1,\,\,b = 3 - \lambda ,\,\,c = 4 + \lambda $$ <br><br>$$p = \left( {{{a + 1} \over 2},{{b + 3} \over 2},{{c + 4} \over 2}} \right)$$ <br><br>$$ = \left( {\lambda + 1,{{6 - \lambda } \over 2},{{\lambda + 8} \over 2}} \right)$$ <br><br>$$\therefore$$ $$2\left( {\lambda + 1} \right) - {{6 - \lambda } \over 2} + {{\lambda + 8} \over 2} + 3 = 0$$ <br><br>$$3\lambda + 6 = 0 \Rightarrow \lambda = - 2$$ <br><br>$$a = - 3,b = 5,c = 2$$ <br><br>Required line is $${{x + 3} \over 3} = {{y - 5} \over 1} = {{z - 2} \over { - 5}}$$
mcq
jee-main-2014-offline
pTa4dhxh07jnpFBx
maths
3d-geometry
lines-and-plane
The equation of the plane containing the line $$2x-5y+z=3; x+y+4z=5,$$ and parallel to the plane, $$x+3y+6z=1,$$ is :
[{"identifier": "A", "content": "$$x+3y+6z=7$$"}, {"identifier": "B", "content": "$$2x+6y+12z=-13$$"}, {"identifier": "C", "content": "$$2x+6y+12z=13$$ "}, {"identifier": "D", "content": "$$x+3y+6z=-7$$ "}]
["A"]
null
Equation of the plane containing the lines <br><br>$$2x - 5y + z = 3$$ and $$x + y + 4z = 5$$ is <br><br>$$2x - 5y + z - 3 + \lambda \left( {x + y + 4z - 5} \right) = 0$$ <br><br>$$ \Rightarrow \left( {2 + \lambda } \right)x + \left( { - 5 + \lambda } \right)y + \left( {1 + 4\lambda } \right)z + $$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( { - 3 - 5\lambda } \right) = 0....\left( i \right)$$ <br><br>Since the plane $$(i)$$ parallel to the given plane <br><br>$$x + 3y + 6z = 1$$ <br><br>$$\therefore$$ $$\,\,\,{{2 + \lambda } \over 1} = {{ - 5 + \lambda } \over 3} = {{1 + 4\lambda } \over 6}$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow \lambda = - {{11} \over 2}$$ <br><br>Hence equation of the required plane is <br><br>$$\left( {2 - {{11} \over 2}} \right)x + \left( { - 5 - {{11} \over 2}} \right)y + \left( {1 - {{44} \over 2}} \right)z + $$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( { - 3 + {{55} \over 2}} \right) = 0$$ <br><br>$$ \Rightarrow x + 3y + 6z = 7$$
mcq
jee-main-2015-offline
3n9s47wXddiAH8vV
maths
3d-geometry
lines-and-plane
The distance of the point $$(1, 0, 2)$$ from the point of intersection of the line $${{x - 2} \over 3} = {{y + 1} \over 4} = {{z - 2} \over {12}}$$ and the plane $$x - y + z = 16,$$ is :
[{"identifier": "A", "content": "$$3\\sqrt {21} $$ "}, {"identifier": "B", "content": "$$13$$"}, {"identifier": "C", "content": "$$2\\sqrt {14} $$"}, {"identifier": "D", "content": "$$8$$"}]
["B"]
null
General point on given line $$ \equiv P\left( {3r + 2,4r - 1,12r + 2} \right)$$ <br><br>Point $$P$$ must satisfy equation of plane <br><br>$$\left( {3r + 2} \right) - \left( {4r - 1} \right) + \left( {12r + 2} \right) = 16$$ <br><br>$$11r + 5 = 16$$ <br><br>$$r=1$$ <br><br>$$P\left( {3 \times 1 + 2,4 \times 1 - 1,12 \times 1 + 2} \right) = P\left( {5,3,14} \right)$$ <br><br>Distance between $$P$$ and $$(1,0,2)$$ <br><br>$$D = \sqrt {{{\left( {5 - 1} \right)}^2} + {3^2} + {{\left( {14 - 2} \right)}^2}} = 13$$
mcq
jee-main-2015-offline
hxfsFTp3VBUn9E8D
maths
3d-geometry
lines-and-plane
If the line, $${{x - 3} \over 2} = {{y + 2} \over { - 1}} = {{z + 4} \over 3}\,$$ lies in the planes, $$lx+my-z=9,$$ then $${l^2} + {m^2}$$ is equal to :
[{"identifier": "A", "content": "$$5$$ "}, {"identifier": "B", "content": "$$2$$ "}, {"identifier": "C", "content": "$$26$$"}, {"identifier": "D", "content": "$$18$$"}]
["B"]
null
Line lies in the plane $$ \Rightarrow \left( {3, - 2, - 4} \right)$$ lie in the plane <br><br>$$ \Rightarrow 3\ell - 2m + 4 = 9$$ or $$3\ell - 2m = 5....\left( 1 \right)$$ <br><br>Also, $$\ell ,$$ $$m, - 1$$ are dr's of line perpendicular to plane <br><br>and $$2, - 1,3$$ are dr's of line lying in the plane <br><br>$$ \Rightarrow 2\ell - m - 3 = 0\,\,\,$$ or $$\,\,\,2\ell - m = 3....\left( 2 \right)$$ <br><br>Solving $$(1)$$ and $$(2)$$ we get $$\ell = 1$$ and $$m=-1$$ <br><br>$$ \Rightarrow {\ell ^2} + {m^2} = 2.$$
mcq
jee-main-2016-offline
rvY5wvQqGsfmIoNI
maths
3d-geometry
lines-and-plane
The distance of the point $$(1,-5,9)$$ from the plane $$x-y+z=5$$ measured along the line $$x=y=z$$ is :
[{"identifier": "A", "content": "$${{10} \\over {\\sqrt 3 }}$$ "}, {"identifier": "B", "content": "$${20 \\over 3}$$"}, {"identifier": "C", "content": "$$3\\sqrt {10} $$"}, {"identifier": "D", "content": "$$10\\sqrt {3} $$"}]
["D"]
null
<img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264547/exam_images/fmk5f20pf8f2dnokx8xv.webp" loading="lazy" alt="JEE Main 2016 (Offline) Mathematics - 3D Geometry Question 288 English Explanation"> <br><br>$$e{q^n}\,\,$$ of $$\,\,PO:\,\,$$ $${{x - 1} \over 1} = {{y + 5} \over 1} = {{z - 9} \over 1} = \lambda $$ <br><br>$$ \Rightarrow x = \lambda + 1;\,\,y = \lambda - 5;\,\,z = \lambda + 9$$ <br><br>Putting these in $$e{q^n}$$ of plane :- <br><br>$$\lambda + 1 - \lambda + 5 + \lambda + 9 = 5$$ <br><br>$$ \Rightarrow \lambda = - 10$$ <br><br>$$ \Rightarrow O$$ is $$\left( { - 9, - 15, - 1} \right)$$ <br><br>$$ \Rightarrow $$ $$\,\,\,$$ Distance $$OP = 10\sqrt 3 .$$
mcq
jee-main-2016-offline
QThv7lwI00EXfX0gLpjI7
maths
3d-geometry
lines-and-plane
The number of distinct real values of $$\lambda $$ for which the lines <br/><br/>$${{x - 1} \over 1} = {{y - 2} \over 2} = {{z + 3} \over {{\lambda ^2}}}$$ and $${{x - 3} \over 1} = {{y - 2} \over {{\lambda ^2}}} = {{z - 1} \over 2}$$ are coplanar is :
[{"identifier": "A", "content": "4"}, {"identifier": "B", "content": "1"}, {"identifier": "C", "content": "2"}, {"identifier": "D", "content": "3"}]
["D"]
null
As lines are coplanar, so <br><br>$$\left| {\matrix{ {3 - 1} &amp; {2 - 2} &amp; {1 - \left( { - 3} \right)} \cr 1 &amp; 2 &amp; {{\lambda ^2}} \cr 1 &amp; {{\lambda ^2}} &amp; 2 \cr } } \right| $$ = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;$$\left| {\matrix{ 2 &amp; 0 &amp; 4 \cr 1 &amp; 2 &amp; {{\lambda ^2}} \cr 1 &amp; {{\lambda ^2}} &amp; 2 \cr } } \right| $$ = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;2(4 $$-$$ $$\lambda $$<sup>4</sup>) + 4($$\lambda $$<sup>2</sup> $$-$$ 2) = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;4 $$-$$ $$\lambda $$<sup>4</sup> + 2$$\lambda $$<sup>2</sup> $$-$$ 4 = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;$$\lambda $$<sup>2</sup>($$\lambda $$<sup>2</sup> $$-$$ 2) = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;$$\lambda $$ = 0, $$\sqrt 2 , - \sqrt 2 $$ <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;3 distinct real values are possible.
mcq
jee-main-2016-online-10th-april-morning-slot
u2D3Iv4j5JXG4jCJ
maths
3d-geometry
lines-and-plane
If the image of the point P(1, –2, 3) in the plane, 2x + 3y – 4z + 22 = 0 measured parallel to the line, <br/><br/>$${x \over 1} = {y \over 4} = {z \over 5}$$ is Q, then PQ is equal to:
[{"identifier": "A", "content": "$$2\\sqrt {42} $$"}, {"identifier": "B", "content": "$$\\sqrt {42} $$"}, {"identifier": "C", "content": "$$6\\sqrt 5 $$"}, {"identifier": "D", "content": "$$3\\sqrt 5 $$"}]
["A"]
null
Equation of line PQ is $${{x - 1} \over 1} = {{y + 2} \over 4} = {{z - 3} \over 5}$$ <br><br>Let F be ($$\lambda $$ + 1, 4$$\lambda $$ $$-$$ 2, 5$$\lambda $$ + 3) <br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265539/exam_images/j1l2cyuk0ctnijsktmb6.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2017 (Offline) Mathematics - 3D Geometry Question 284 English Explanation"> <br>Since F lies on the plane <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;2($$\lambda $$ + 1) + 3(4$$\lambda $$ $$-$$ 2) $$-$$ 4(5$$\lambda $$ + 3) + 22 $$=$$ 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;$$-$$ 6$$\lambda $$ + 6 = 0&nbsp;$$ \Rightarrow $$ &nbsp;$$\lambda $$&nbsp;=&nbsp;1 <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;F is (2, 2, 8) <br><br>PQ = 2 PF = 2$$\sqrt {{1^2} + {4^2} + {5^2}} $$ = 2$$\sqrt {42} $$
mcq
jee-main-2017-offline
Xs9FqdMNdzzpW5zC
maths
3d-geometry
lines-and-plane
The distance of the point (1, 3, – 7) from the plane passing through the point (1, –1, – 1), having normal perpendicular to both the lines <br/><br/>$${{x - 1} \over 1} = {{y + 2} \over { - 2}} = {{z - 4} \over 3}$$ <br/><br>and <br/><br/>$${{x - 2} \over 2} = {{y + 1} \over { - 1}} = {{z + 7} \over { - 1}}$$ is :</br>
[{"identifier": "A", "content": "$${{10} \\over {\\sqrt {83} }}$$"}, {"identifier": "B", "content": "$${{5} \\over {\\sqrt {83} }}$$"}, {"identifier": "C", "content": "$${{10} \\over {\\sqrt {74} }}$$"}, {"identifier": "D", "content": "$${{20} \\over {\\sqrt {74} }}$$"}]
["A"]
null
Let the plane be <br><br>a(x $$-$$ 1) + b(y + 1) + c (z + 1) = 0 <br><br>Normal vector <br><br>$$\left| {\matrix{ {\widehat i} &amp; {\widehat j} &amp; {\widehat k} \cr 1 &amp; { - 2} &amp; 3 \cr 2 &amp; { - 1} &amp; { - 1} \cr } } \right| = 5\widehat i + 7\widehat j + 3\widehat k$$ <br><br>So plane is 5(x $$-$$ 1) + 7(y + 1) + 3(z + 1) = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;5x + 7y + 3z + 5 = 0 <br><br>Distance of point (1, 3, $$-$$ 7) from the plane is <br><br>$${{5 + 21 - 21 + 5} \over {\sqrt {25 + 49 + 9} }} = {{10} \over {\sqrt {83} }}$$
mcq
jee-main-2017-offline
eOHV4R4qf5Fr8Dwl8tYJH
maths
3d-geometry
lines-and-plane
The coordinates of the foot of the perpendicular from the point (1, $$-$$2, 1) on the plane containing the lines, $${{x + 1} \over 6} = {{y - 1} \over 7} = {{z - 3} \over 8}$$ and $${{x - 1} \over 3} = {{y - 2} \over 5} = {{z - 3} \over 7},$$ is :
[{"identifier": "A", "content": "(2, $$-$$4, 2)"}, {"identifier": "B", "content": "($$-$$ 1, 2, $$-$$1)"}, {"identifier": "C", "content": "(0, 0, 0)"}, {"identifier": "D", "content": "(1, 1, 1)"}]
["C"]
null
$$\overrightarrow n $$ = $$\overrightarrow {{n_1}} \times \overrightarrow {{n_2}} $$ = $$\left| {\matrix{ {\widehat i} &amp; {\widehat j} &amp; {\widehat k} \cr 6 &amp; 7 &amp; 8 \cr 3 &amp; 5 &amp; 7 \cr } } \right|$$ <br><br>= (9, $$-$$ 18, 9) <br><br>= (1, $$-$$2, 1) <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;Equation of plane is <br><br>1(x + 1) $$-$$ 2(y $$-$$ 1) + (z $$-$$ 3) = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;x $$-$$ 2y + z = 0 <br><br>foot to z <br><br>$${{x - 1} \over 1}$$&nbsp;=&nbsp;$${{y + 2} \over { - 2}}$$&nbsp;=&nbsp;$${{z - 1} \over 1}$$&nbsp;=&nbsp;$$ - {{\left[ {1 + 4 + 1} \right]} \over 6}$$ <br><br><b>x = 0,</b> &nbsp;&nbsp;<b>y = 0,</b> &nbsp;&nbsp;<b>z = 0</b>
mcq
jee-main-2017-online-8th-april-morning-slot
qeI2oXKiRz35ggv6LQjaF
maths
3d-geometry
lines-and-plane
The line of intersection of the planes $$\overrightarrow r .\left( {3\widehat i - \widehat j + \widehat k} \right) = 1\,\,$$ and <br/>$$\overrightarrow r .\left( {\widehat i + 4\widehat j - 2\widehat k} \right) = 2,$$ is :
[{"identifier": "A", "content": "$${{x - {4 \\over 7}} \\over { - 2}} = {y \\over 7} = {{z - {5 \\over 7}} \\over {13}}$$"}, {"identifier": "B", "content": "$${{x - {4 \\over 7}} \\over 2} = {y \\over { - 7}} = {{z + {5 \\over 7}} \\over {13}}$$"}, {"identifier": "C", "content": "$${{x - {6 \\over {13}}} \\over 2} = {{y - {5 \\over {13}}} \\over { - 7}} = {z \\over { - 13}}$$"}, {"identifier": "D", "content": "$${{x - {6 \\over {13}}} \\over 2} = {{y - {5 \\over {13}}} \\over 7} = {z \\over { - 13}}$$"}]
["C"]
null
$$\overrightarrow n = \overrightarrow {{n_1}} \times \overrightarrow {{n_2}} $$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;$$\left| {\matrix{ {\widehat i} &amp; {\widehat j} &amp; {\widehat k} \cr 3 &amp; { - 1} &amp; 1 \cr 1 &amp; 4 &amp; { - 2} \cr } } \right| = \widehat i\left( { - 2} \right) - \widehat j\left( { - 7} \right) + \widehat k\left( {13} \right)$$ <br><br>$$\overrightarrow n = - 2\widehat i + 7\widehat j + 13\widehat k$$ <br><br>Now, <br><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;$$3x - y + z = 1$$ <br><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;$$x + 4y - 2z = 2$$ <br><br>but&nbsp;&nbsp;&nbsp;z $$=$$ 0 &amp; solving the given <br><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;x $$=$$ 6/13 &amp; y = 5/13 <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;required equation of a line is <br><br>$${{x - 6/13} \over 2} = {{y - 5/13} \over { - 7}} = {z \over { - 13}}$$
mcq
jee-main-2017-online-8th-april-morning-slot
TvlgxK9cJHYSO6FsebHnW
maths
3d-geometry
lines-and-plane
If the line, $${{x - 3} \over 1} = {{y + 2} \over { - 1}} = {{z + \lambda } \over { - 2}}$$ lies in the plane, 2x−4y+3z=2, then the shortest distance between this line and the line, $${{x - 1} \over {12}} = {y \over 9} = {z \over 4}$$ is :
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "1"}, {"identifier": "C", "content": "0"}, {"identifier": "D", "content": "3"}]
["C"]
null
Point (3, $$-$$ 2, $$-$$ $$\lambda $$) on p line 2x $$-$$ 4y + 3z $$-$$ 2 $$=$$ 0 <br><br>$$=$$ 6 + 8 $$-$$ 3$$\lambda $$ $$-$$ 2 = 0 <br><br>$$=$$ 3$$\lambda $$ $$=$$ 12 <br><br><b>$$\lambda $$ $$=$$ 4</b> <br><br>Now, <br><br>$${{x - 3} \over 1} = {{y + 2} \over { - 1}} = {{z + 4} \over { - 2}} = {k_1}$$&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;. . .(i) <br><br>$${{x - 1} \over {12}} = {y \over 9} = {z \over 4} = {k_2}$$&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;. . .(ii) <br><br>Point on equation (i) P (k<sub>1</sub> + 3, $$-$$ k<sub>1</sub> $$-$$ 2, $$-$$ 2k<sub>1</sub> $$-$$ 4) <br><br>Point on equation (ii) Q(12k<sub>2</sub> + 1, 9k<sub>2</sub>, 4k<sub>2</sub>) <br><br>k<sub>1</sub> + 3 $$=$$ 12k<sub>2</sub> + 1 $$\left| { - {k_1} - 2 = 9{k_2}} \right|$$ $$-$$ 2k<sub>1</sub> $$-$$ 4 $$=$$ 4k<sub>2</sub> <br><br>k<sub>2</sub>&nbsp;&nbsp;$$=$$&nbsp;&nbsp;0 <br><br>k<sub>1</sub> &nbsp;&nbsp;$$=$$&nbsp;&nbsp;$$-$$ 2 <br><br>p (1, 0, 0) lie on equation of a line 1 <br><br>gives shortest distance $$=$$ 0
mcq
jee-main-2017-online-9th-april-morning-slot
Hby8suwc7u2mMH1O
maths
3d-geometry
lines-and-plane
The length of the projection of the line segment joining the points (5, -1, 4) and (4, -1, 3) on the plane, x + y + z = 7 is :
[{"identifier": "A", "content": "$$\\sqrt {{2 \\over 3}} $$"}, {"identifier": "B", "content": "$${2 \\over {\\sqrt 3 }}$$"}, {"identifier": "C", "content": "$${2 \\over 3}$$"}, {"identifier": "D", "content": "$${1 \\over 3}$$"}]
["A"]
null
<img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266605/exam_images/sruywneq0jjxnahol5cq.webp" loading="lazy" alt="JEE Main 2018 (Offline) Mathematics - 3D Geometry Question 286 English Explanation"> <br><br>PQ is the projection of line segment AB on the plane x + y + z = 7 <br><br>P and Q are called foot of perpendicular on the plane x + y + z = 7 <br><br>Let P = (x, y, z) then <br><br>$${{x - 5} \over 1} = {{y + 1} \over 1} = {{z - 4} \over 1} = {{ - \left( {5 - 1 + 4} \right)} \over {{1^2} + {1^2} + {1^2}}}$$ <br><br>$$ \Rightarrow \,\,\,\,x - 5 = y + 1 = z - 4 = - {8 \over 3}$$ <br><br>$$\therefore\,\,\,$$ x = $${7 \over 3}$$ , y = $$-$$ $${{11} \over 3},$$ z = $${4 \over 3}$$ <br><br>$$\therefore\,\,\,$$ Point P = $$\left( {{7 \over 3}, - {{11} \over 3},{4 \over 3}} \right)$$ <br><br>Let Q = (x<sub>1</sub>, y<sub>1</sub>, z<sub>1</sub>) then <br><br>$${{{a_1} - 4} \over 1} = {{{y_1} + 1} \over 1} = {{{z_1} - 3} \over 1} = {{ - \left( {4 - 1 + 3} \right)} \over {{1^2} + {1^2} + {1^2}}}$$ <br><br>$$ \Rightarrow \,\,\,\,$$ x<sub>1</sub> $$-$$ 4 = y<sub>1</sub> +1= z<sub>1</sub> $$-$$ 3 = $$-$$ 2 <br><br>$$\therefore\,\,\,$$ x = 2, y = $$-$$ 3, z = 1 <br><br>$$\therefore\,\,\,$$ Point Q = (2, $$-$$ 3, 1) <br><br>Now length of PQ is <br><br>$$\sqrt {{{\left( {{7 \over 3} - 2} \right)}^2} + {{\left( { - {{11} \over 3} + 3} \right)}^2} + {{\left( {{4 \over 3} - 1} \right)}^2}} $$ <br><br>$$ = \sqrt {{1 \over 9} + {4 \over 9} + {1 \over 9}} $$ <br><br>$$ = \sqrt {{6 \over 9}} $$ <br><br>$$ = \sqrt {{2 \over 3}} $$
mcq
jee-main-2018-offline
IHWRS21qK99uEo6wdYXzx
maths
3d-geometry
lines-and-plane
An angle between the plane, x + y + z = 5 and the line of intersection of the planes, 3x + 4y + z $$-$$ 1 = 0 and 5x + 8y + 2z + 14 =0, is :
[{"identifier": "A", "content": "$${\\sin ^{ - 1}}\\left( {\\sqrt {{\\raise0.5ex\\hbox{$\\scriptstyle 3$}\n\\kern-0.1em/\\kern-0.15em\n\\lower0.25ex\\hbox{$\\scriptstyle {17}$}}} } \\right)$$ "}, {"identifier": "B", "content": "$${\\cos ^{ - 1}}\\left( {\\sqrt {{\\raise0.5ex\\hbox{$\\scriptstyle 3$}\n\\kern-0.1em/\\kern-0.15em\n\\lower0.25ex\\hbox{$\\scriptstyle {17}$}}} } \\right)$$"}, {"identifier": "C", "content": "$${\\cos ^{ - 1}}\\left( {{\\raise0.5ex\\hbox{$\\scriptstyle 3$}\n\\kern-0.1em/\\kern-0.15em\n\\lower0.25ex\\hbox{$\\scriptstyle {17}$}}} \\right)$$"}, {"identifier": "D", "content": "$${\\sin ^{ - 1}}\\left( {{\\raise0.5ex\\hbox{$\\scriptstyle 3$}\n\\kern-0.1em/\\kern-0.15em\n\\lower0.25ex\\hbox{$\\scriptstyle {17}$}}} \\right)$$"}]
["A"]
null
Normal to $$3x + 4y + z = 1$$ &nbsp;&nbsp; is $$3\widehat i + 4\widehat j + \widehat k$$ <br><br>Normal to $$5x + 8y + 2z =$$ $$ - 14$$ is $$5\widehat i + 8\widehat j + 2\widehat k$$ <br><br>The line of intersection of the planes is perpendicular to both normals, so, direction ratios of the intersection line are directly proportional to the cross product of the normal vectors. <br><br>Therefore the direction ratios of the line is $$ - \widehat j + 4\widehat k$$ <br><br>Hence the angle between the plane x + y + z + 5 = 0 <br><br>and the intersection line is $${\sin ^{ - 1}}\left( {{{ - 1 + 4} \over {\sqrt {17} \sqrt 3 }}} \right) = {\sin ^{ - 1}}\left( {\sqrt {{3 \over {17}}} } \right)$$
mcq
jee-main-2018-online-15th-april-morning-slot
KhXrS1fo8yYoLcyUzbXUs
maths
3d-geometry
lines-and-plane
The equation of the line passing through (–4, 3, 1), parallel <br/><br>to the plane x + 2y – z – 5 = 0 and intersecting <br/><br>the line $${{x + 1} \over { - 3}} = {{y - 3} \over 2} = {{z - 2} \over { - 1}}$$ is :</br></br>
[{"identifier": "A", "content": "$${{x + 4} \\over 3} = {{y - 3} \\over {-1}} = {{z - 1} \\over 1}$$"}, {"identifier": "B", "content": "$${{x + 4} \\over 1} = {{y - 3} \\over {1}} = {{z - 1} \\over 3}$$"}, {"identifier": "C", "content": "$${{x + 4} \\over -1} = {{y - 3} \\over {1}} = {{z - 1} \\over 1}$$"}, {"identifier": "D", "content": "$${{x - 4} \\over 2} = {{y + 3} \\over {1}} = {{z + 1} \\over 4}$$"}]
["A"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264981/exam_images/ehep4l3pw7lbyi0lsu7d.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 9th January Morning Slot Mathematics - 3D Geometry Question 268 English Explanation"> <br><br>The line L is parallel to the plane P and intersect with line 4 at point R. <br><br>Let the coordinate of point R is, (x<sub>1</sub>, y<sub>1</sub>, z<sub>1</sub>) and it passes through L<sub>2</sub>. <br><br>$${{{x_1} + 1} \over { - 3}} = {{{y_1} - 3} \over 2} = {{{z_1} - 2} \over { - 1}} = t$$ <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;x<sub>1</sub> = $$-$$1 $$-$$ 3t, y<sub>1</sub> = 3 + 2t, z<sub>1</sub> = 2 $$-$$ t <br><br>$$\overrightarrow {AR} = \left( {3 - 3t} \right)\widehat i + \left( {2t} \right)\widehat j + \left( {1 - t} \right)\widehat k$$ <br><br>$$\overrightarrow n = \widehat i + 2\widehat j - \widehat k$$ <br><br>As $$\overrightarrow {AR} $$ and $$\overrightarrow n $$ are perpendicular to each other, So <br><br>$$\overrightarrow {AR} $$ $$ \cdot $$ $$\overrightarrow n $$ = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;(3 $$-$$ 3t) 1 + (2t)2 + (1 $$-$$ t) ($$-$$ 1) = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;3 $$-$$ 3t + 4t $$-$$ 1 + t = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;2 + 2t = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;t = $$-$$ 1 <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;point R = (2, 1, 3) <br><br>$$ \therefore $$&nbsp;&nbsp;DR of line L is <br><br>= (2 $$-$$ ($$-$$ 4), $$1$$ $$-$$ 3, 3 $$-$$ 1) <br><br>= (6, $$-$$ 2, 2) <br><br>$$ \therefore $$&nbsp;&nbsp;Equation of line is <br><br>$${{x + 4} \over 6} = {{y - 3} \over { - 2}} = {{z - 1} \over 2}$$ <br><br>or $${{x + 4} \over 3} = {{y - 3} \over { - 1}} = {{z - 1} \over 1}$$
mcq
jee-main-2019-online-9th-january-morning-slot
xFbNYocl8Ychr6fBoL3rsa0w2w9jxayhpcy
maths
3d-geometry
lines-and-plane
The length of the perpendicular drawn from the point (2, 1, 4) to the plane containing the lines <br/>$$\overrightarrow r = \left( {\widehat i + \widehat j} \right) + \lambda \left( {\widehat i + 2\widehat j - \widehat k} \right)$$ and $$\overrightarrow r = \left( {\widehat i + \widehat j} \right) + \mu \left( { - \widehat i + \widehat j - 2\widehat k} \right)$$ is :
[{"identifier": "A", "content": "$${1 \\over 3}$$"}, {"identifier": "B", "content": "$${1 \\over {\\sqrt 3 }}$$"}, {"identifier": "C", "content": "3"}, {"identifier": "D", "content": "$${\\sqrt 3 }$$"}]
["D"]
null
Vector of the plane is <br><br> $$\left| {\matrix{ {\hat i} &amp; {\hat j} &amp; {\hat k} \cr 1 &amp; 2 &amp; { - 1} \cr { - 1} &amp; 1 &amp; { - 2} \cr } } \right| = - 3\hat i + 3\hat j + 3\hat k$$<br><br> Now equation of plane is <br><br> $$ - 3x + 3y + 3z = c$$<br><br> (1, 1, 0) will satisfy the plane<br><br> $$ \Rightarrow - 3 + 3 + 0 = c$$<br><br> $$ \Rightarrow $$ c = 0<br><br> $$ - 3x + 3y + 3z = 0$$<br><br> distance from (2, 1, 4) is<br><br> $$ \Rightarrow \left| {{{ - 6 + 3 + 12} \over {\sqrt {27} }}} \right| = \left| {{9 \over {3\sqrt 3 }}} \right| = \sqrt 3 \,\,units$$
mcq
jee-main-2019-online-12th-april-evening-slot
klTd3ShmDde4vluBEB3rsa0w2w9jx6gsul6
maths
3d-geometry
lines-and-plane
If the line $${{x - 2} \over 3} = {{y + 1} \over 2} = {{z - 1} \over { - 1}}$$ intersects the plane 2x + 3y – z + 13 = 0 at a point P and the plane 3x + y + 4z = 16 at a point Q, then PQ is equal to :
[{"identifier": "A", "content": "$$2\\sqrt 7 $$"}, {"identifier": "B", "content": "14"}, {"identifier": "C", "content": "$$2\\sqrt {14} $$"}, {"identifier": "D", "content": "$$\\sqrt {14} $$"}]
["C"]
null
$${{x - 2} \over 3} = {{y + 1} \over 2} = {{z - 1} \over { - 1}} = \lambda $$<br><br> $$A(3\lambda + 2,2\lambda - 1, - \lambda + 1)$$ line on 2x + 3y -z + 13 = 0<br><br> $$ \Rightarrow 2(3\lambda + 2) + 3(2\lambda - 1) - ( - \lambda + 1) + 13 = 0$$<br><br> $$ \Rightarrow 13\lambda + 13 = 0 \Rightarrow \lambda = - 1$$<br><br> Now point P(-1, -3, 2) lie on 3x + y + 4z = 16<br><br> $$ \Rightarrow 3(3\lambda + 2) + (3\lambda + 2) + 4(3\lambda + 2) = 16$$<br><br> $$ \Rightarrow 9\lambda + 6 + 2\lambda - 4\lambda - 1 + 4 = 16$$<br><br> $$ \Rightarrow 7\lambda = 7 \Rightarrow \lambda = 1$$<br><br> $$ \Rightarrow $$ Q(5, 1, 0)<br><br> $$ \therefore $$ PQ = $$\sqrt {36 + 16 + 4} = \sqrt {56} = 2\sqrt {14} $$
mcq
jee-main-2019-online-12th-april-morning-slot
kvFqafTbB4SGPDJlq03rsa0w2w9jx2h1x8t
maths
3d-geometry
lines-and-plane
A perpendicular is drawn from a point on the line $${{x - 1} \over 2} = {{y + 1} \over { - 1}} = {z \over 1}$$ to the plane x + y + z = 3 such that the foot of the perpendicular Q also lies on the plane x – y + z = 3. Then the co-ordinates of Q are :
[{"identifier": "A", "content": "(4, 0, \u2013 1)"}, {"identifier": "B", "content": "(2, 0, 1)"}, {"identifier": "C", "content": "(1, 0, 2)"}, {"identifier": "D", "content": "(\u2013 1, 0, 4)"}]
["B"]
null
$${{x - 1} \over 2} = {{y + 1} \over { - 1}} = {z \over 1} = \lambda $$<br><br> Let a point P on the line is <br><br> (2$$\lambda $$ + 1, – $$\lambda $$ –1, + $$\lambda $$)<br><br> Foot of $${ \bot ^r}Q$$ is given by<br><br> $${{x - 2\lambda - 1} \over 1} = {{y + \lambda + 1} \over 1} = {{z - \lambda } \over 1} = - {{\left( {2\lambda - 3} \right)} \over 3}$$<br><br> $$ \therefore $$ Q lies on x + y + z = 3 &amp; x – y + z = 3<br><br> $$ \Rightarrow $$ x + z = 3 &amp; y = 0<br><br> $$ \therefore $$ $$y = 0 \Rightarrow \lambda + 1 = {{ - 2\lambda + 3} \over 3} \Rightarrow \lambda = 0$$<br><br> $$ \therefore $$ Q is (2, 0, 1)
mcq
jee-main-2019-online-10th-april-evening-slot
CdW7hr9rKHc4IjEEzC18hoxe66ijvwp23ys
maths
3d-geometry
lines-and-plane
If the line, $${{x - 1} \over 2} = {{y + 1} \over 3} = {{z - 2} \over 4}$$ meets the plane, x + 2y + 3z = 15 at a point P, then the distance of P from the origin is :
[{"identifier": "A", "content": "$${{\\sqrt 5 } \\over 2}$$"}, {"identifier": "B", "content": "2$$\\sqrt 5$$"}, {"identifier": "C", "content": "9/2"}, {"identifier": "D", "content": "7/2"}]
["C"]
null
Let $${{x - 1} \over 2} = {{y + 1} \over 3} = {{z - 2} \over 4}$$ = $$\lambda $$ <br><br>Any arbitary point on the line is P( 2$$\lambda $$ + 1, 3$$\lambda $$ - 1, 4$$\lambda $$ + 2). <br><br>This point also lies on the plane x + 2y + 3z = 15. <br><br>$$ \therefore $$ (2$$\lambda $$ + 1) + 2(3$$\lambda $$ - 1) + 3(4$$\lambda $$ + 2) = 15 <br><br>$$ \Rightarrow $$ 20$$\lambda $$ = 10 <br><br>$$ \Rightarrow $$ $$\lambda $$ = $${1 \over 2}$$ <br><br>So point P is (2, $${1 \over 2}$$, 4). <br><br>Distance from the origin(O) of point P(2, $${1 \over 2}$$, 4) is <br><br>OP = $$\sqrt {{{\left( 2 \right)}^2} + {{\left( {{1 \over 2}} \right)}^2} + {{\left( 4 \right)}^2}} $$ <br><br>= $$\sqrt {4 + {1 \over 4} + 16} $$ <br><br>= $$\sqrt {{{81} \over 4}} $$ <br><br>= $${9 \over 2}$$
mcq
jee-main-2019-online-9th-april-morning-slot
sG8EkXlzDW1GqEPMdLzTF
maths
3d-geometry
lines-and-plane
The equation of a plane containing the line of intersection of the planes 2x – y – 4 = 0 and y + 2z – 4 = 0 and passing through the point (1, 1, 0) is :
[{"identifier": "A", "content": "x \u2013 3y \u2013 2z = \u20132"}, {"identifier": "B", "content": "2x \u2013 z = 2"}, {"identifier": "C", "content": "x \u2013 y \u2013 z = 0"}, {"identifier": "D", "content": "x + 3y + z = 4"}]
["C"]
null
The equation of any plane passing through the intersection of the planes 2x – y – 4 = 0 and y + 2z – 4 = 0 is : <br><br>(2x – y – 4) + $$\lambda $$(y + 2z – 4) = 0 ........(1) <br><br>As this plane passes through (1, 1, 0) then this point satisfy the equation (1). <br><br>$$ \therefore $$ (2 – 1 – 4) + $$\lambda $$(1 + 0 – 4) = 0 <br><br>$$ \Rightarrow $$ $$\lambda $$ = -1 <br><br>Equation of required plane will be <br><br>(2x – y – 4) – (y + 2z – 4) = 0 <br><br>$$ \Rightarrow $$ 2x – 2y – 2z = 0 <br><br>$$ \Rightarrow $$ x – y – z = 0
mcq
jee-main-2019-online-8th-april-morning-slot
XPWSJ5jLrtku5PYAmM6MV
maths
3d-geometry
lines-and-plane
The vector equation of the plane through the line of intersection of the planes x + y + z = 1 and 2x + 3y+ 4z = 5 which is perpendicular to the plane x – y + z = 0 is :
[{"identifier": "A", "content": "$$\\mathop r\\limits^ \\to \\times \\left( {\\mathop i\\limits^ \\wedge - \\mathop k\\limits^ \\wedge } \\right) - 2 = 0$$"}, {"identifier": "B", "content": "$$\\mathop r\\limits^ \\to . \\left( {\\mathop i\\limits^ \\wedge + \\mathop k\\limits^ \\wedge } \\right) + 2 = 0$$"}, {"identifier": "C", "content": "$$\\mathop r\\limits^ \\to . \\left( {\\mathop i\\limits^ \\wedge - \\mathop k\\limits^ \\wedge } \\right) + 2 = 0$$"}, {"identifier": "D", "content": "$$\\mathop r\\limits^ \\to \\times \\left( {\\mathop i\\limits^ \\wedge - \\mathop k\\limits^ \\wedge } \\right) + 2 = 0$$"}]
["C"]
null
Given, <br/><br/>P<sub>1</sub> : x + y + z = 1 <br><br>P<sub>1</sub> : 2x + 3y + 4z = 5 <br><br>Equation of the plane passing through the line of intersection of the plane P<sub>1</sub> and P<sub>2</sub> is : <br><br>P<sub>1</sub> + $$\lambda $$P<sub>2</sub> = 0 <br><br>$$ \Rightarrow $$ (x + y + z –1) + $$\lambda $$(2x + 3y + 4z – 5) = 0 <br><br>$$ \Rightarrow $$ x(1 + 2$$\lambda $$) + y(1 + 3$$\lambda $$) + z(1 + 4$$\lambda $$) - 5$$\lambda $$ - 1 = 0 .....(1) <br><br>Direction Ratio (D.R) of this plane = (1 + 2$$\lambda $$, 1 + 3$$\lambda $$, 1 + 4$$\lambda $$) <br><br>Plane (1) is perpendicular to x - y + z = 0, whose D.R = (1, -1, 1) <br><br>As they are perpendicular so dot product of D.R = 0 <br><br>$$ \therefore $$ (1) (1 + 2$$\lambda $$) + (–1) (1 + 3$$\lambda $$) + (1) (1 + 4$$\lambda $$) = 0 <br><br>$$ \Rightarrow $$ 1 + 2$$\lambda $$ –1 – 3$$\lambda $$ + 1 + 4$$\lambda $$ = 0 <br><br>$$ \Rightarrow $$ $$\lambda $$ = $$ - {1 \over 3}$$ <br><br>Putting the value of $$\lambda $$ in equation (1), we get <br><br>$$ \Rightarrow $$ $${x \over 3} - {z \over 3} + {2 \over 3} = 0$$ <br><br>$$ \Rightarrow $$ x - z + 2 = 0 <br><br>Vector form of this plane, <br><br>$$\mathop r\limits^ \to . \left( {\mathop i\limits^ \wedge - \mathop k\limits^ \wedge } \right) + 2 = 0$$
mcq
jee-main-2019-online-8th-april-evening-slot
INBHKvgfzgvl3QVAjDdYB
maths
3d-geometry
lines-and-plane
If an angle between the line, $${{x + 1} \over 2} = {{y - 2} \over 1} = {{z - 3} \over { - 2}}$$ and the plane, $$x - 2y - kz = 3$$ is $${\cos ^{ - 1}}\left( {{{2\sqrt 2 } \over 3}} \right),$$ then a value of k is :
[{"identifier": "A", "content": "$$\\sqrt {{3 \\over 5}} $$"}, {"identifier": "B", "content": "$$ - {5 \\over 2}$$"}, {"identifier": "C", "content": "$$ - {3 \\over 2}$$"}, {"identifier": "D", "content": "$$\\sqrt {{5 \\over 3}} $$"}]
["D"]
null
DR's of line are 2, 1, $$-$$2 <br><br>normal vector of plane is $$\widehat i$$ $$-$$ 2$$\widehat j$$ $$-$$ k$$\widehat k$$ <br><br>sin$$\alpha $$ = $${{\left( {2\widehat i + \widehat j - 2\widehat k} \right).\left( {\widehat i - 2\widehat j - k\widehat k} \right)} \over {3\sqrt {1 + 4 + {k^2}} }}$$ <br><br>sin $$\alpha $$ = $${{2k} \over {3\sqrt {{k^2} + 5} }}$$ &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;. . . . . . (1) <br><br>cos $$\alpha $$ =$${{2\sqrt 2 } \over 3}$$ &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;. . . . .. . (2) <br><br>(1)<sup>2</sup> + (2)<sup>2</sup> = 1 $$ \Rightarrow $$ k<sup>2</sup> = $${5 \over 3}$$
mcq
jee-main-2019-online-12th-january-evening-slot
Yf8eyIaJz6x0Vp1iYcFpM
maths
3d-geometry
lines-and-plane
Two lines $${{x - 3} \over 1} = {{y + 1} \over 3} = {{z - 6} \over { - 1}}$$ and $${{x + 5} \over 7} = {{y - 2} \over { - 6}} = {{z - 3} \over 4}$$ intersect at the point R. The reflection of R in the xy-plane has coordinates :
[{"identifier": "A", "content": "(2, 4, 7)"}, {"identifier": "B", "content": "(2, $$-$$ 4, $$-$$7)"}, {"identifier": "C", "content": "(2, $$-$$ 4, 7)"}, {"identifier": "D", "content": "($$-$$ 2, 4, 7)"}]
["B"]
null
Point on L<sub>1</sub> ($$\lambda $$ + 3, 3$$\lambda $$ $$-$$ 1, $$-$$$$\lambda $$ + 6) <br><br>Point on L<sub>2</sub> (7$$\mu $$ $$-$$ 5, $$-$$6$$\mu $$ + 2, 4$$\mu $$ + 3 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$$\lambda $$ + 3 = 7$$\mu $$ $$-$$ 5&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;. . . . (i) <br><br>3$$\lambda $$ $$-$$ 1 = $$-$$6$$\mu $$ + 2 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;. . . .(ii) <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$$\lambda $$ = $$-$$1, $$\mu $$ = 1 <br><br>point R(2, $$-$$ 4, 7) <br><br>Reflection is (2, $$-$$4, $$-$$ 7)
mcq
jee-main-2019-online-11th-january-evening-slot
j3rxTjeh5YBNG4T1B1C5X
maths
3d-geometry
lines-and-plane
The plane containing the line $${{x - 3} \over 2} = {{y + 2} \over { - 1}} = {{z - 1} \over 3}$$ and also containing its projection on the plane 2x + 3y $$-$$ z = 5, contains which one of the following points ?
[{"identifier": "A", "content": "($$-$$ 2, 2, 2)"}, {"identifier": "B", "content": "(2, 2, 0)"}, {"identifier": "C", "content": "(2, 0, $$-$$ 2)"}, {"identifier": "D", "content": "(0, $$-$$ 2, 2)"}]
["C"]
null
The normal vector of required plane <br><br>$$ = \left( {2\widehat i - \widehat j + 3\widehat k} \right) \times \left( {2\widehat i + 3\widehat j - \widehat k} \right)$$ <br><br>$$ = - 8\widehat i + 8\widehat j + 8\widehat k$$ <br><br>So, direction ratio of normal is $$\left( { - 1,1,1} \right)$$ <br><br>So required plane is <br><br>$$ - \left( {x - 3} \right) + \left( {y + 2} \right) + \left( {z - 1} \right) = 0$$ <br><br>$$ \Rightarrow - x + y + z + 4 = 0$$ <br><br>Which is satisfied by $$\left( {2,0, - 2} \right)$$
mcq
jee-main-2019-online-11th-january-morning-slot
kGwIvanvC36NRfACAH6nl
maths
3d-geometry
lines-and-plane
On which of the following lines lies the point of intersection of the line,   $${{x - 4} \over 2} = {{y - 5} \over 2} = {{z - 3} \over 1}$$  and the plane, x + y + z = 2 ?
[{"identifier": "A", "content": "$${{x - 4} \\over 1} = {{y - 5} \\over 1} = {{z - 5} \\over { - 1}}$$"}, {"identifier": "B", "content": "$${{x - 2} \\over 2} = {{y - 3} \\over 2} = {{z + 3} \\over 3}$$"}, {"identifier": "C", "content": "$${{x - 1} \\over 1} = {{y - 3} \\over 2} = {{z + 4} \\over { - 5}}$$"}, {"identifier": "D", "content": "$${{x + 3} \\over 3} = {{4 - y} \\over 3} = {{z + 1} \\over { - 2}}$$"}]
["C"]
null
General point on the given line is <br><br>x = 2$$\lambda $$ + 4 <br><br>y = 2$$\lambda $$ + 5 <br><br>z = $$\lambda $$ + 3 <br><br>Solving with plane, <br><br>2$$\lambda $$ + 4 + 2$$\lambda $$ + 5 + $$\lambda $$ + 3 = 2 <br><br>5$$\lambda $$ + 12 = 2 <br><br>5$$\lambda $$ = $$-$$ 10 <br><br>$$\lambda $$ = $$-$$ 2
mcq
jee-main-2019-online-10th-january-evening-slot
8CSQaPFHmG0GHfXGEg7dU
maths
3d-geometry
lines-and-plane
The plane through the intersection of the planes x + y + z = 1 and 2x + 3y – z + 4 = 0 and parallel to y-axis also passes through the point :
[{"identifier": "A", "content": "(\u20133, 0, -1) "}, {"identifier": "B", "content": "(3, 2, 1) "}, {"identifier": "C", "content": "(3, 3, -1)"}, {"identifier": "D", "content": "(\u20133, 1, 1)"}]
["B"]
null
The equation of plane <br><br>(x + y + z $$-$$ 1) + $$\lambda $$ (2x + 3y $$-$$ z + 4) = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;(1 + 2$$\lambda $$)x + (1 + 3$$\lambda $$)y + (1 $$-$$ $$\lambda $$)z + 4$$\lambda $$ $$-$$ 1 = 0 <br><br>As plane is parallel to y axis so the normal vector of plane and dot product of $$\widehat j$$ is zero. <br><br>$$ \therefore $$&nbsp;&nbsp;1 + 3$$\lambda $$ = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$$\lambda $$ = $$-$$ $${1 \over 3}$$ <br><br>$$ \therefore $$&nbsp;&nbsp;So the equation of the plane is <br><br>x(1 $$-$$ $${2 \over 3}$$) + (1 $$-$$ $${3 \over 3}$$) y + (1 + $${1 \over 3}$$) $$-$$ $${4 \over 3}$$ $$-$$ 1 = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;x ($${1 \over 3}$$) + z($${4 \over 3}$$) $$-$$ $${7 \over 3}$$ = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;x + 4z $$-$$ 7 = 0 <br><br>By checking each options you can see only point (3, 2, 1) lies on the plane.
mcq
jee-main-2019-online-9th-january-morning-slot
X9jCkBVS5S2zXHqiFo7k9k2k5ki7wil
maths
3d-geometry
lines-and-plane
If the distance between the plane, 23x – 10y – 2z + 48 = 0 and the plane<br/><br/> containing the lines $${{x + 1} \over 2} = {{y - 3} \over 4} = {{z + 1} \over 3}$$<br/><br/> and $${{x + 3} \over 2} = {{y + 2} \over 6} = {{z - 1} \over \lambda }\left( {\lambda \in R} \right)$$<br/><br/> is equal to $${k \over {\sqrt {633} }}$$, then k is equal to ______.
[]
null
3
Required distance = perpendicular distance of plane 23x – 10y – 2z + 48 = 0 either from (–1, 3, –1) or (–3, –2, 1) <br><br>$$ \Rightarrow $$ $$\left| {{{ - 23 - 30 + 2 + 48} \over {\sqrt {{{\left( {23} \right)}^2} + {{\left( {10} \right)}^2} + {{\left( 2 \right)}^2}} }}} \right|$$ = $${k \over {\sqrt {633} }}$$ <br><br>$$ \Rightarrow $$ $$\left| {{3 \over {\sqrt {633} }}} \right|$$ = $${k \over {\sqrt {633} }}$$ <br><br>$$ \Rightarrow $$ k = 3
integer
jee-main-2020-online-9th-january-evening-slot
z3jkKUxU8nDZA2wXVQjgy2xukg3b9f5y
maths
3d-geometry
lines-and-plane
A plane P meets the coordinate axes at A, B and C respectively. The centroid of $$\Delta $$ABC is given to be (1, 1, 2). Then the equation of the line through this centroid and perpendicular to the plane P is :
[{"identifier": "A", "content": "$${{x - 1} \\over 1} = {{y - 1} \\over 1} = {{z - 2} \\over 2}$$"}, {"identifier": "B", "content": "$${{x - 1} \\over 2} = {{y - 1} \\over 1} = {{z - 2} \\over 1}$$"}, {"identifier": "C", "content": "$${{x - 1} \\over 2} = {{y - 1} \\over 2} = {{z - 2} \\over 1}$$"}, {"identifier": "D", "content": "$${{x - 1} \\over 1} = {{y - 1} \\over 2} = {{z - 2} \\over 2}$$"}]
["C"]
null
Let, Equation of plane is <br><br>$${x \over a} + {y \over b} + {z \over c}$$ = 1 <br><br>A = ($$a$$, 0, 0) B = (0, b, 0), C = (0, 0, c) <br><br>$$ \therefore $$ Centroid = $$\left( {{a \over 3},{b \over 3},{c \over 3}} \right)$$ = (1, 1, 2) <br><br>$$ \Rightarrow $$ $$a$$ = 3, b = 3, c = 6 <br><br>$$ \therefore $$ Plane : $${x \over 3} + {y \over 3} + {z \over 6}$$ = 1 <br><br>$$ \Rightarrow $$ 2x + 2y + z = 6 <br><br>The equation of the line through this centroid (1, 1, 2) and <br>perpendicular to the plane 2x + 2y + z = 6 is : <br><br>$${{x - 1} \over 2} = {{y - 1} \over 2} = {{z - 2} \over 1}$$
mcq
jee-main-2020-online-6th-september-evening-slot
Qojv10KpxgJcV2JxWHjgy2xukfuuxqrg
maths
3d-geometry
lines-and-plane
The shortest distance between the lines <br/><br>$${{x - 1} \over 0} = {{y + 1} \over { - 1}} = {z \over 1}$$ <br/><br>and x + y + z + 1 = 0, 2x – y + z + 3 = 0 is :</br></br>
[{"identifier": "A", "content": "1"}, {"identifier": "B", "content": "$${1 \\over 2}$$"}, {"identifier": "C", "content": "$${1 \\over {\\sqrt 2 }}$$"}, {"identifier": "D", "content": "$${1 \\over {\\sqrt 3 }}$$"}]
["D"]
null
Plane through line of intersection is <br><br>x + y + z + 1 + $$\lambda $$ (2x –y + z + 3) = 0 <br><br>It should be parallel to given line $${{x - 1} \over 0} = {{y + 1} \over { - 1}} = {z \over 1}$$ <br><br>$$ \therefore $$ 0(1 + 2$$\lambda $$) - 1(1 - $$\lambda $$) + 1(1 + $$\lambda $$) = 0 $$ \Rightarrow $$ $$\lambda $$ = 0 <br><br>$$ \therefore $$ Required Plane : x + y + z + 1 = 0 <br><br>Shortest distance of (1, –1, 0) from this plane <br><br>= $${{\left| {1 - 1 + 0 + 1} \right|} \over {\sqrt {{1^2} + {1^2} + {1^2}} }}$$ = $${1 \over {\sqrt 3 }}$$
mcq
jee-main-2020-online-6th-september-morning-slot
u8By5wccby20xeA0tgjgy2xukfqch09n
maths
3d-geometry
lines-and-plane
If for some $$\alpha $$ $$ \in $$ R, the lines <br/><br/>L<sub>1</sub> : $${{x + 1} \over 2} = {{y - 2} \over { - 1}} = {{z - 1} \over 1}$$ and <br/><br>L<sub>2</sub> : $${{x + 2} \over \alpha } = {{y + 1} \over {5 - \alpha }} = {{z + 1} \over 1}$$ are coplanar, <br/><br/>then the line L<sub>2</sub> passes through the point :</br>
[{"identifier": "A", "content": "(10, 2, 2)"}, {"identifier": "B", "content": "(2, \u201310, \u20132)"}, {"identifier": "C", "content": "(10, \u20132, \u20132)"}, {"identifier": "D", "content": "(\u20132, 10, 2)"}]
["B"]
null
L<sub>1</sub> : $${{x + 1} \over 2} = {{y - 2} \over { - 1}} = {{z - 1} \over 1}$$ and <br><br>L<sub>2</sub> : $${{x + 2} \over \alpha } = {{y + 1} \over {5 - \alpha }} = {{z + 1} \over 1}$$ are coplanar. <br><br>$$ \therefore $$ $$\left| {\matrix{ 1 &amp; 3 &amp; 2 \cr 2 &amp; { - 1} &amp; 1 \cr \alpha &amp; {5 - \alpha } &amp; 1 \cr } } \right|$$ = 0 <br><br>$$ \Rightarrow $$ –1(–1 + $$\alpha $$ - 5) + 3(2 - $$\alpha $$) - 2(10 - 2$$\alpha $$ + $$\alpha $$) = 0 <br><br>$$ \Rightarrow $$ 6 - $$\alpha $$ + 6 - 3$$\alpha $$ + 2$$\alpha $$ - 20 = 0 <br><br>$$ \Rightarrow $$ –8 –2$$\alpha $$ = 0 <br><br>$$ \Rightarrow $$ $$\alpha $$ = -4 <br><br>$$ \therefore $$ Equation of L<sub>2</sub> : $${{x + 2} \over { - 4}} = {{y + 1} \over 9} = {{z + 1} \over 1}$$ <br><br>Check options (2, –10, –2) lies on L<sub>2</sub>.
mcq
jee-main-2020-online-5th-september-evening-slot
b7yr7A2nAMnX9Hf8Fojgy2xukfagymx7
maths
3d-geometry
lines-and-plane
The distance of the point (1, –2, 3) from<br/><br> the plane x – y + z = 5 measured parallel to <br/><br>the line $${x \over 2} = {y \over 3} = {z \over { - 6}}$$ is :</br></br>
[{"identifier": "A", "content": "7"}, {"identifier": "B", "content": "1"}, {"identifier": "C", "content": "$${1 \\over 7}$$"}, {"identifier": "D", "content": "$${7 \\over 5}$$"}]
["B"]
null
Equation of line parallel to $${x \over 2} = {y \over 3} = {z \over { - 6}}$$ passes through $$(1, - 2,3)$$ is<br><br>$${{x - 1} \over 2} = {{y + 2} \over 3} = {{z - 3} \over { - 6}} = r$$<br><br>$$x = 2r + 1$$<br><br>$$y = 3r - 2$$, <br><br>$$z = - 6r + 3$$ <br><br>A point on whole line = (2r + 1, 3r – 2, – 6r + 3). <br><br>This point lies on plane x – y + 2 = 5 <br><br>so, $$2r + 1 - 3r + 2 - 6r + 3 = 5$$<br><br>$$ \Rightarrow $$ $$r = {1 \over 7}$$<br><br>$$ \therefore $$ $$x = {9 \over 7}$$, $$y = {{ - 11} \over 7}$$, $$z = {{15} \over 7}$$<br><br>Distance is = $$\sqrt {{{\left( {{9 \over 7} - 1} \right)}^2} + {{\left( {2 - {{11} \over 7}} \right)}^2} + {{\left( {3 - {{15} \over 7}} \right)}^2}} $$<br><br>$$ = \sqrt {{{\left( {{2 \over 7}} \right)}^2} + {{\left( {{3 \over 7}} \right)}^2} + {{\left( {{6 \over 7}} \right)}^2}} $$<br><br>$$ = {1 \over 7}\sqrt {4 + 9 + 36} $$ = 1
mcq
jee-main-2020-online-4th-september-evening-slot
ZyHrTWGrvXewytqQX0jgy2xukezm71el
maths
3d-geometry
lines-and-plane
The foot of the perpendicular drawn from the point (4, 2, 3) to the line joining the points (1, –2, 3) and (1, 1, 0) lies on the plane :
[{"identifier": "A", "content": "x \u2013 2y + z = 1"}, {"identifier": "B", "content": "x + 2y \u2013 z = 1"}, {"identifier": "C", "content": "x \u2013 y \u2013 2y = 1"}, {"identifier": "D", "content": "2x + y \u2013 z = 1"}]
["D"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267567/exam_images/staijxnqv8p4honzsnr6.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2020 (Online) 3rd September Morning Slot Mathematics - 3D Geometry Question 228 English Explanation"> <br><br>Equation of AB, <br><br>$${{x - 1} \over 0} = {{y + 2} \over 3} = {{z - 3} \over { - 3}} = \lambda $$ <br><br>$$ \therefore $$ Coordinates of any point on the line (M) = $$\left( { - 3,3\lambda - 2, - 3\lambda } \right)$$ <br><br>$$\overrightarrow {PM} = - 3\widehat i + \left( {3\lambda - 4} \right)\widehat j - 3\lambda \widehat k$$ <br><br>$$\overrightarrow {AB} = 3\widehat j - 3\widehat k$$ <br><br>As $$\overrightarrow {PM} \bot \overrightarrow {AB} $$ <br><br>$$ \therefore $$ $$\overrightarrow {PM} .\overrightarrow {AB} = 0$$ <br><br>$$ \Rightarrow $$ $$\left( { - 3} \right).0 + \left( {3\lambda - 4} \right)\left( 3 \right) + \left( { - 3\lambda } \right)\left( { - 3} \right)$$ = 0 <br><br>$$ \Rightarrow $$ $$\lambda $$ = $${2 \over 3}$$ <br><br>$$ \therefore $$ M = (1, 0, 1) <br><br>By checking each options we can see M lies on 2x + y – z = 1.
mcq
jee-main-2020-online-3rd-september-morning-slot
Qarw3NWSaAza5ekKgYjgy2xukezbvldh
maths
3d-geometry
lines-and-plane
A plane passing through the point (3, 1, 1) contains two lines whose direction ratios are 1, –2, 2 and 2, 3, –1 respectively. If this plane also passes through the point ($$\alpha $$, –3, 5), then $$\alpha $$ is equal to:
[{"identifier": "A", "content": "-10"}, {"identifier": "B", "content": "10"}, {"identifier": "C", "content": "5"}, {"identifier": "D", "content": "-5"}]
["C"]
null
As normal is perpendicular to both the lines so normal vector to the plane is<br><br> $$\overrightarrow n = \left( {\widehat i - 2\widehat j + 2\widehat k} \right) \times \left( {2\widehat i + 3\widehat j - \widehat k} \right)$$<br><br> $$\overrightarrow n = \left| {\matrix{ {\widehat i} &amp; {\widehat j} &amp; {\widehat k} \cr 1 &amp; { - 2} &amp; 2 \cr 2 &amp; 3 &amp; { - 1} \cr } } \right|$$<br><br> $$\overrightarrow n = \left( {2 - 6} \right)\widehat i - \left( { - 1 - 4} \right)\widehat j + \left( {3 + 4} \right)\widehat k$$<br><br> $$\overrightarrow n = - 4\widehat i + 5\widehat j + 7\widehat k$$<br><br> Now equation of plane passing through (3,1,1) is<br><br> $$ \Rightarrow $$ –4(x – 3) + 5(y – 1) + 7(z – 1) = 0<br><br> $$ \Rightarrow $$ –4x + 12 + 5y – 5 + 7z – 7 = 0<br><br> $$ \Rightarrow $$ –4x + 5y + 7z = 0 &nbsp;&nbsp;&nbsp;...(1)<br><br> Plane is also passing through ($$\alpha $$, –3, 5) so this point satisfies the equation of plane so put in equation (1)<br><br> –4$$\alpha $$ + 5 × (–3) + 7 × (5) = 0<br><br> $$ \Rightarrow $$ –4$$\alpha $$ – 15 + 35 = 0<br><br> $$ \Rightarrow\alpha $$ = 5
mcq
jee-main-2020-online-2nd-september-evening-slot
mKqODJ2TViU4wWfYdSjgy2xukewrehxd
maths
3d-geometry
lines-and-plane
The plane passing through the points (1, 2, 1), <br/>(2, 1, 2) and parallel to the line, 2x = 3y, z = 1 <br/>also passes through the point :
[{"identifier": "A", "content": "(0, 6, \u20132)"}, {"identifier": "B", "content": "(\u20132, 0, 1)"}, {"identifier": "C", "content": "(0, \u20136, 2)"}, {"identifier": "D", "content": "(2, 0 \u20131)"}]
["B"]
null
Equation of plane passing through (2, 1, 2)<br><br>a(x $$-$$ 2) + b(y $$-$$ 1) + c(z $$-$$ 2) = 0 ......(1)<br><br>As point (1, 2, 1) also passes through the plane, so it satisfy the equation, <br><br>a(1 $$-$$ 2) + b(2 $$-$$ 1) + c(1 $$-$$ 2) = 0<br><br>$$ \Rightarrow $$ $$-$$a + b $$-$$ c = 0 ....(2)<br><br>Given line 2x = 3y and z = 1,<br><br>So, symmetric form of the line<br><br>$${x \over 3} = {y \over 2} = {{z - 1} \over 0}$$<br><br>$$ \therefore $$ Direction ratio of this line is (3, 2, 0) and Direction ration of plane = (a, b, c)<br><br>As plane is parallel to the line so the normal of the plane is perpendicular to the line.<br><br>$$ \therefore $$ Dot product of direction ratio = 0<br><br>3a + 2b + 0(c) = 0 .....(3)<br><br>Equation of plane, <br><br>$$\left| {\matrix{ {x - 2} &amp; {y - 1} &amp; {z - 2} \cr { - 1} &amp; 1 &amp; { - 1} \cr 3 &amp; 2 &amp; 0 \cr } } \right| = 0$$<br><br>$$ \Rightarrow 3(1 - y + 2 - z) - 2( - x + 2 + z - 2) = 0$$<br><br>$$ \Rightarrow 9 - 3y - 3z + 2x - 2z = 0$$<br><br>$$ \Rightarrow 2x - 3y - 5z + 9 = 0$$<br><br>By checking all options you can see ($$-$$2, 0, 1) satisfy the equation.
mcq
jee-main-2020-online-2nd-september-morning-slot
1t1lV3VVbYNVWnJEu8jgy2xukf49l5v7
maths
3d-geometry
lines-and-plane
Let a plane P contain two lines <br/>$$\overrightarrow r = \widehat i + \lambda \left( {\widehat i + \widehat j} \right)$$, $$\lambda \in R$$ and <br/>$$\overrightarrow r = - \widehat j + \mu \left( {\widehat j - \widehat k} \right)$$, $$\mu \in R$$ <br/>If Q($$\alpha $$, $$\beta $$, $$\gamma $$) is the foot of the perpendicular drawn from the point M(1, 0, 1) to P, then 3($$\alpha $$ + $$\beta $$ + $$\gamma $$) equals _______.
[]
null
5
Given lines,<br><br>$$\overrightarrow r = \widehat i + \lambda (\widehat i + \widehat j)$$ parallel to $$(\widehat i + \widehat j)$$<br><br>Let, $$\overrightarrow {{n_1}} = (\widehat i + \widehat j)$$<br><br>and $$\overrightarrow r = - \widehat j + \mu (\widehat j - \widehat k)$$ parallel to $$(\widehat j - \widehat k)$$<br><br>Let, $$\overrightarrow {{n_2}} = (\widehat j - \widehat k)$$<br><br>$$ \therefore $$ Normal of plane, $$\overrightarrow n = \overrightarrow {{n_1}} \times \overrightarrow {{n_2}} $$<br><br>$$\overrightarrow n = \left| {\matrix{ {\widehat i} &amp; {\widehat j} &amp; {\widehat k} \cr 2 &amp; 1 &amp; 0 \cr 0 &amp; 1 &amp; { - 1} \cr } } \right|$$<br><br>$$ = - \widehat i + \widehat j + \widehat k$$<br><br>Line $$\overrightarrow r = \widehat i + \lambda (\widehat i + \widehat j)$$ is on the plane so, point on the line (1, 0, 0) will be also on the plane.<br><br>$$ \therefore $$ Equation of the plane, <br><br>$$ - 1(x - 1) + 1(y - 0) + 1(z - 0) = 0$$<br><br>$$ \Rightarrow x - y - z - 1 = 0$$<br><br>Foot of perpendicular from (x<sub>1</sub>, y<sub>1</sub>, z<sub>1</sub>) on the plane,<br><br>$${{x - {x_1}} \over a} = {{y - {y_1}} \over b} = {{z - {z_1}} \over c} = - {{(a{x_1} + b{y_1} + c{z_1} + d)} \over {{a^2} + {b^2} + {c^2}}}$$<br><br>Here foot of perpendicular is drawn from M(1, 0, 1),<br><br>$$ \therefore $$ $${{x - 1} \over 1} = {{y - 0} \over { - 1}} = {{z - 1} \over { - 1}} = - {{(1 - 0 - 1 - 1)} \over 3}$$<br><br>$$ \therefore $$ $$x - 1 = {1 \over 3} \Rightarrow x = {4 \over 3}$$<br><br>$${y \over { - 1}} = {1 \over 3} \Rightarrow y = - {1 \over 3}$$<br><br>$${{z - 1} \over { - 1}} = {1 \over 3} \Rightarrow z = {2 \over 3}$$<br><br>According to the question,<br><br>$$x = \alpha $$, $$y = \beta $$, $$z = \gamma $$<br><b $$$$\beta="-" {1="" \over="" 3}$$<br=""><br>$$ \therefore $$ $$\alpha = {4 \over 3}$$, $$\beta = - {1 \over 3}$$, $$\gamma = {2 \over 3}$$<br><br>$$ \therefore $$ $$3(\alpha + \beta + \gamma ) = 3\left( {{4 \over 3} - {1 \over 3} + {2 \over 3}} \right) = 5$$</b>
integer
jee-main-2020-online-3rd-september-evening-slot
a2z3tAA7ldpoqgXxjx1klrep90f
maths
3d-geometry
lines-and-plane
The distance of the point (1, 1, 9) from the point of intersection of the line $${{x - 3} \over 1} = {{y - 4} \over 2} = {{z - 5} \over 2}$$ and the plane x + y + z = 17 is :
[{"identifier": "A", "content": "$$19\\sqrt 2 $$"}, {"identifier": "B", "content": "$$2\\sqrt {19} $$"}, {"identifier": "C", "content": "38"}, {"identifier": "D", "content": "$$\\sqrt {38} $$"}]
["D"]
null
Given, P(1, 1, 9).<br/><br/>Equation of plane x + y + z = 17<br/><br/>Equation of line $$\Rightarrow$$ $${{x - 3} \over 1} = {{y - 4} \over 2} = {{z - 5} \over 2}$$<br/><br/>$$\Rightarrow$$ $${{x - 3} \over 1} = {{y - 4} \over 2} = {{z - 5} \over 2} = \lambda $$ (let)<br/><br/>$$\Rightarrow$$ x = $$\lambda$$ + 3; y = 2$$\lambda$$ + 4; z = 2$$\lambda$$ + 5<br/><br/>$$\therefore$$ The point we have is ($$\lambda$$ + 3, 2$$\lambda$$ + 4, 2$$\lambda$$ + 5).<br/><br/>$$\because$$ This point lies on the plane x + y + z = 17.<br/><br/>$$\therefore$$ $$\lambda$$ + 3 + 2$$\lambda$$ + 4 + 2$$\lambda$$ + 5 = 17<br/><br/>$$\Rightarrow$$ $$\lambda$$ = 1<br/><br/>$$\therefore$$ The coordinate of point is (4, 6, 7)<br/><br/>$$\therefore$$ Required distance between (1, 1, 9) and (4, 6, 7) is<br/><br/>$$ = \sqrt {{{(4 - 1)}^2} + {{(6 - 1)}^2} + {{(7 - 9)}^2}} $$<br/><br/>$$ = \sqrt {9 + 25 + 4} = \sqrt {38} $$
mcq
jee-main-2021-online-24th-february-morning-slot
wENOHw7UshvkPbCF2x1klrlu7yu
maths
3d-geometry
lines-and-plane
The vector equation of the plane passing through the intersection<br/><br/> of the planes $$\overrightarrow r .\left( {\widehat i + \widehat j + \widehat k} \right) = 1$$ and $$\overrightarrow r .\left( {\widehat i - 2\widehat j} \right) = - 2$$, and the point (1, 0, 2) is :
[{"identifier": "A", "content": "$$\\overrightarrow r .\\left( {\\widehat i + 7\\widehat j + 3\\widehat k} \\right) = {7 \\over 3}$$"}, {"identifier": "B", "content": "$$\\overrightarrow r .\\left( {\\widehat i + 7\\widehat j + 3\\widehat k} \\right) = 7$$"}, {"identifier": "C", "content": "$$\\overrightarrow r .\\left( {3\\widehat i + 7\\widehat j + 3\\widehat k} \\right) = 7$$"}, {"identifier": "D", "content": "$$\\overrightarrow r .\\left( {\\widehat i - 7\\widehat j + 3\\widehat k} \\right) = {7 \\over 3}$$"}]
["B"]
null
Given, point (1, 0, 2)<br/><br/>Equation of plane = <br/><br/>$$\overrightarrow r\,.\,(\widehat i + \widehat j + \widehat k) = 1$$ and $$\overrightarrow r\,.\,(\widehat i - 2\widehat j) = - 2$$<br/><br/>Equation of plane passing through the intersection of given planes is<br/><br/>$$[\overrightarrow r\,.\,(\widehat i + \widehat j + \widehat k) - 1] + \lambda [\overrightarrow r\,.\,(\widehat i - 2\widehat j) + 2] = 0$$<br/><br/>$$\because$$ This plane passes through point (1, 0, 2) i.e., <br/><br/>vector $$(\widehat i + 2\widehat k)$$<br/><br/>$$\therefore$$ $$[(\widehat i + 2\widehat k)\,.\,(\widehat i + \widehat j + \widehat k) - 1] + \lambda [(\widehat i + 2\widehat k)\,.\,(\widehat i - 2\widehat j) + 2] = 0$$<br/><br/>$$ \Rightarrow (3 - 1) + \lambda (1 + 2) = 0$$<br/><br/>$$ \Rightarrow 2 + \lambda \times 3 = 0$$<br/><br/>$$ \Rightarrow \lambda = - 2/3$$<br/><br/>Hence, equation of required plane is<br/><br/>$$[\overrightarrow r\,.\,(\widehat i + \widehat j + \widehat k) - 1] + \left( {{{ - 2} \over 3}} \right)[\overrightarrow r\,.\,(\widehat i - 2\widehat j) + 2] = 0$$<br/><br/>$$ \Rightarrow $$ $$3[\overrightarrow r\,.\,(\widehat i + \widehat j + \widehat k) - 1] - 2[\overrightarrow r\,.\,(\widehat i - 2\widehat j) + 2] = 0$$<br/><br/>$$ \Rightarrow $$ $$\overrightarrow r\,.\,(\widehat i + 7\widehat j + 3\widehat k) = 7$$
mcq
jee-main-2021-online-24th-february-evening-slot
oAhZZg0ACHs4c6hAhW1kluhipw0
maths
3d-geometry
lines-and-plane
Let ($$\lambda$$, 2, 1) be a point on the plane which passes through the point (4, $$-$$2, 2). If the plane is perpendicular to the line joining the points ($$-$$2, $$-$$21, 29) and ($$-$$1, $$-$$16, 23), then $${\left( {{\lambda \over {11}}} \right)^2} - {{4\lambda } \over {11}} - 4$$ is equal to __________.
[]
null
8
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265776/exam_images/vghtupk7erbaxkhau8et.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 26th February Morning Shift Mathematics - 3D Geometry Question 209 English Explanation"><br><br>$$\overrightarrow {AB} \bot \overrightarrow {PQ} $$<br><br>$$\left[ {(4 - \lambda )\widehat i - 4\widehat j + \widehat k} \right].\left[ { + \widehat i + 5\widehat j - 6\widehat k} \right] = 0$$<br><br>$$4 - \lambda - 20 - 6 = 0$$<br><br>$$ \Rightarrow $$ $$\lambda $$ = -22<br><br>Now, $${\lambda \over {11}} = - 2$$<br><br>$$ \Rightarrow {\left( {{\lambda \over {11}}} \right)^2} - {{4\lambda } \over {11}} - 4$$<br><br>$$ \Rightarrow 4 + 8 - 4 = 8$$
integer
jee-main-2021-online-26th-february-morning-slot
0syG6wUdgkgrwz9vew1kluxx2hr
maths
3d-geometry
lines-and-plane
Let L be a line obtained from the intersection of two planes x + 2y + z = 6 and y + 2z = 4. If point P($$\alpha$$, $$\beta$$, $$\gamma$$) is the foot of perpendicular from (3, 2, 1) on L, then the <br/>value of 21($$\alpha$$ + $$\beta$$ + $$\gamma$$) equals :
[{"identifier": "A", "content": "102"}, {"identifier": "B", "content": "142"}, {"identifier": "C", "content": "136"}, {"identifier": "D", "content": "68"}]
["A"]
null
Dr's of line $$\left| {\matrix{ {\widehat i} &amp; {\widehat j} &amp; {\widehat k} \cr 1 &amp; 2 &amp; 1 \cr 0 &amp; 1 &amp; 2 \cr } } \right| = 3\widehat i - 2\widehat j + \widehat k$$<br><br>Dr/s : - (3, $$-$$2, 1)<br><br>Points on the line ($$-$$2, 4, 0)<br><br>Equation of the line $${{x + 2} \over 3} = {{y - 4} \over { - 2}} = {z \over 1} = \lambda $$<br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266970/exam_images/wlg6fjohqqr0lnvjjp15.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 26th February Evening Shift Mathematics - 3D Geometry Question 207 English Explanation"><br><br>Dr's of PQ : $$3\lambda - 5, - 2\lambda + 2,\lambda - 1$$<br><br>Dr's of y lines are (3, $$-$$2, 1)<br><br>Since $$PQ \bot $$ line<br><br>$$3(3\lambda - 5) - 2( - 2\lambda + 2) + 1(\lambda - 1) = 0$$<br><br>$$\lambda = {{10} \over 7}$$<br><br>$$P\left( {{{16} \over 7},{8 \over 7},{{10} \over 7}} \right)$$<br><br>$$21(\alpha + \beta + \gamma ) = 21\left( {{{34} \over 7}} \right) = 102$$
mcq
jee-main-2021-online-26th-february-evening-slot
CkOToyCiyoKHvpwLR91kmhx32x5
maths
3d-geometry
lines-and-plane
Let P be a plane lx + my + nz = 0 containing <br/><br/>the line, $${{1 - x} \over 1} = {{y + 4} \over 2} = {{z + 2} \over 3}$$. If plane P divides the line segment AB joining <br/><br/>points A($$-$$3, $$-$$6, 1) and B(2, 4, $$-$$3) in ratio k : 1 then the value of k is equal to :
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "3"}, {"identifier": "C", "content": "1.5"}, {"identifier": "D", "content": "4"}]
["A"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264908/exam_images/td5ojeuzdtmnzkretbhj.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 16th March Morning Shift Mathematics - 3D Geometry Question 205 English Explanation"> <br>Line lies on plane<br><br>$$ - l + 2m + 3n = 0$$ ..... (1)<br><br>Point on line (1, $$-$$4, $$-$$2) lies on plane<br><br>$$l - 4m - 2n = 0$$ .... (2)<br><br>from (1) &amp; (2)<br><br>$$ - 2m + n = 0 \Rightarrow 2m = n$$<br><br>$$l = 3n + 2m \Rightarrow l = 4n$$<br><br>$$l:m:n::4n:{n \over 2}:n$$<br><br>$$l:m:n::8n:n:2n$$<br><br>$$l:m:n::8:1:2$$<br><br>Now equation of plane is 8x + y + 2z = 0<br><br>R divide AB is ratio k : 1<br><br>$$R:\left( {{{ - 3 + 2k} \over {k + 1}},{{ - 6 + 4k} \over {k + 1}},{{1 - 3k} \over {k + 1}}} \right)$$ lies on plane<br><br>$$8\left( {{{ - 3 + 2k} \over {k + 1}}} \right) + \left( {{{ - 6 + 4k} \over {k + 1}}} \right) + 2\left( {{{1 - 3k} \over {k + 1}}} \right) = 0$$<br><br>$$ - 24 + 16k - 6 + 4k + 2 - 6k = 0$$<br><br>$$ - 28 + 14k = 0$$<br><br>$$k = 2$$
mcq
jee-main-2021-online-16th-march-morning-shift
jTuoAqCOlT0ueBNhrI1kmizayck
maths
3d-geometry
lines-and-plane
If the distance of the point (1, $$-$$2, 3) from the plane x + 2y $$-$$ 3z + 10 = 0 measured parallel to the line, $${{x - 1} \over 3} = {{2 - y} \over m} = {{z + 3} \over 1}$$ is $$\sqrt {{7 \over 2}} $$, then the value of |m| is equal to _________.
[]
null
2
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267379/exam_images/vmb11b1oodts8ory1wgg.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 16th March Evening Shift Mathematics - 3D Geometry Question 202 English Explanation"> <br>Given line L, <br><br>$${{x - 1} \over 3} = {{2 - y} \over m} = {{z + 3} \over 1}$$ <br><br>$$ \Rightarrow $$ $${{x - 1} \over 3} = {{y - 2} \over -m} = {{z + 3} \over 1}$$ <br><br>$$ \therefore $$ D.R of line = &lt;3, -m, 1&gt; <br><br>D.R of parallel line PQ will also be same. <br><br>$$ \therefore $$ Equation of line PQ, <br><br>$${{x - 1} \over 3} = {{y + 2} \over { - m}} = {{z - 3} \over 1} = \lambda $$<br><br>Pt. $$Q(3\lambda + 1, - m\lambda - 2,\lambda + 3)$$ lie on plane<br><br>$$(3\lambda + 1) + 2( - m\lambda - 2) - 3(\lambda + 3) + 10 = 0$$<br><br>$$ \Rightarrow 3\lambda - 2m\lambda - 3\lambda + 1 - 4 - 9 + 10 = 0$$<br><br>$$ \Rightarrow - 2m\lambda = 2$$<br><br>$$m\lambda = - 1 \Rightarrow \lambda = - {1 \over m}$$<br><br>$$Q\left[ { - {3 \over m} + 1, - 1, - {1 \over m} + 3} \right]$$<br><br>Given, $$PQ = \sqrt {{7 \over 2}} $$<br><br>$$ \Rightarrow $$ $$\sqrt {{{\left( { - {3 \over m}} \right)}^2} + 1 + {{\left( { - {1 \over m}} \right)}^2}} = \sqrt {{7 \over 2}} $$<br><br>$$ \Rightarrow {{10 + {m^2}} \over {{m^2}}} = {7 \over 2}$$<br><br>$$ \Rightarrow 20 + 2{m^2} = 7{m^2}$$<br><br>$$ \Rightarrow $$ $${m^2} = 4 \Rightarrow |m| = 2$$
integer
jee-main-2021-online-16th-march-evening-shift
oMM8M7sXfZX0uLWycA1kmjbpapm
maths
3d-geometry
lines-and-plane
If the equation of the plane passing through the line of intersection of the planes 2x $$-$$ 7y + 4z $$-$$ 3 = 0, 3x $$-$$ 5y + 4z + 11 = 0 and the point ($$-$$2, 1, 3) is ax + by + cz $$-$$ 7 = 0, then the value of 2a + b + c $$-$$ 7 is ____________.
[]
null
4
Equation of plane can be written using family of planes : P<sub>1</sub> + $$\lambda$$P<sub>2</sub> = 0<br><br>(2x $$-$$ 7y + 4z $$-$$ 3) + $$\lambda$$ (3x $$-$$ 5y + 4z + 11) = 0<br><br>It passes through ($$-$$2, 1, 3)<br><br>$$ \therefore $$ ($$-$$4 + 7 + 12 $$-$$ 3) + $$\lambda$$ ($$-$$6 $$-$$ 5 + 12 + 11) = 0<br><br>$$-$$2 + $$\lambda$$ (12) = 0<br><br>$$\lambda$$ = $${1 \over 6}$$.<br><br>$$ \therefore $$ 12x $$-$$ 42y + 24z $$-$$ 18 + 3x $$-$$ 5y + 4z + 11 = 0<br><br>15x $$-$$ 47y + 28z $$-$$ 7 = 0<br><br>$$ \therefore $$ a = 15, b = $$-$$47, c = 28<br><br>$$ \therefore $$ 2a + b + c $$-$$ 7 = 30 $$-$$ 47 + 28 $$-$$ 7 = 4
integer
jee-main-2021-online-17th-march-morning-shift
hYzxuFS1bzdbL0JjTy1kmkm69ew
maths
3d-geometry
lines-and-plane
If the equation of plane passing through the mirror image of a point (2, 3, 1) with respect to line $${{x + 1} \over 2} = {{y - 3} \over 1} = {{z + 2} \over { - 1}}$$ and containing the line $${{x - 2} \over 3} = {{1 - y} \over 2} = {{z + 1} \over 1}$$ is $$\alpha$$x + $$\beta$$y + $$\gamma$$z = 24, then $$\alpha$$ + $$\beta$$ + $$\gamma$$ is equal to :
[{"identifier": "A", "content": "21"}, {"identifier": "B", "content": "19"}, {"identifier": "C", "content": "18"}, {"identifier": "D", "content": "20"}]
["B"]
null
<picture><source media="(max-width: 320px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267417/exam_images/rfcxq7voccwbfmoextkg.webp"><source media="(max-width: 500px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267008/exam_images/neowpsgzybeeqozyfefn.webp"><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267715/exam_images/itpc8wihkk6ay7ozb0q7.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 17th March Evening Shift Mathematics - 3D Geometry Question 196 English Explanation 1"></picture><br><br>Let point M is (2$$\lambda$$ $$-$$ 1, $$\lambda$$ + 3, $$-$$ $$\lambda$$ $$-$$ 2)<br><br>D.R.'s of AM line are &lt; 2$$\lambda$$ $$-$$ 1 $$-$$ 2, $$\lambda$$ + 3 $$-$$ 3, $$-$$$$\lambda$$ $$-$$ 2 $$-$$ 1&gt; <br><br>= &lt; 2$$\lambda$$ $$-$$ 3, $$\lambda$$, $$-$$$$\lambda$$ $$-$$3 &gt;<br><br>AM $$ \bot $$ line L<sub>1</sub><br><br>$$ \therefore $$ $$2(2\lambda - 3) + 1(\lambda ) - 1( - \lambda - 3) = 0$$<br><br>$$6\lambda = 3,\lambda = {1 \over 2}$$ $$ \therefore $$ $$M \equiv \left( {0,{7 \over 2},{{ - 5} \over 2}} \right)$$<br><br>M is mid-point of A &amp; B<br><br>$$M = {{A + B} \over 2}$$<br><br>B = 2M $$-$$ A<br><br>B $$ \equiv $$ ($$-$$2, 4, $$-$$6)<br><br>Now we have to find equation of plane passing through B($$-$$2, 4, $$-$$6) &amp; also containing the line<br><br>$${{x - 2} \over 3} = {{1 - y} \over 2} = {{z + 1} \over 1}$$ ....... (1)<br><br>$${{x - 2} \over 3} = {{y - 1} \over { - 2}} = {{z + 1} \over 1}$$<br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267697/exam_images/pcxamvzsbmuou2a9eitt.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 17th March Evening Shift Mathematics - 3D Geometry Question 196 English Explanation 2"><br><br>Point P on line is (2, 1, $$-$$1)<br><br>$${\overrightarrow b _2}$$ of line L<sub>2</sub> is 3, $$-$$2, 1<br><br>$$\overrightarrow n ||({\overrightarrow b _2} \times \overrightarrow {PB} )$$<br><br>$${\overrightarrow b _2} = 3\widehat i - 2\widehat j + \widehat k$$<br><br>$$\overrightarrow {PB} = - 4\widehat i + 3\widehat j - 5\widehat k$$<br><br>$$\overrightarrow n = 7\widehat i + 11\widehat j + \widehat k$$<br><br>$$ \therefore $$ equation of plane is $$\overrightarrow r \,.\,\overrightarrow n = \overrightarrow a \,.\,\overrightarrow n $$<br><br>$$\overrightarrow r \,.\,(7\widehat i + 11\widehat j + \widehat k) = ( - 2\widehat i + 4\widehat j - 6\widehat k).(7\widehat i + 11\widehat j + \widehat k)$$<br><br>7x + 11y + z = $$-$$14 + 44 $$-$$6<br><br>7x + 11y + z = 24<br><br>$$ \therefore $$ $$\alpha$$ = 7<br><br>$$\beta$$ = 11<br><br>$$\gamma$$ = 1<br><br>$$ \therefore $$ $$\alpha$$ + $$\beta$$ + $$\gamma$$ = 19
mcq
jee-main-2021-online-17th-march-evening-shift
Y1ictxRYxt6QuvFxjI1kmm42n93
maths
3d-geometry
lines-and-plane
Let P be a plane containing the line $${{x - 1} \over 3} = {{y + 6} \over 4} = {{z + 5} \over 2}$$ and parallel to the line $${{x - 1} \over 4} = {{y - 2} \over { - 3}} = {{z + 5} \over 7}$$. If the point (1, $$-$$1, $$\alpha$$) lies on the plane P, then the value of |5$$\alpha$$| is equal to ____________.
[]
null
38
<p>Equation of required plane is $$\left| {\matrix{ {x - 1} & {y + 6} & {z + 5} \cr 3 & 4 & 2 \cr 4 & { - 3} & 7 \cr } } \right| = 0$$</p> <p>Since, (1, $$-$$1, $$\alpha$$) lies on it,</p> <p>So, replace x by 1, y by ($$-$$1) and z and $$\alpha$$.</p> <p>$$\left| {\matrix{ 0 & 5 & {\alpha + 5} \cr 3 & 4 & 2 \cr 4 & { - 3} & 7 \cr } } \right| = 0$$</p> <p>$$ \Rightarrow 5\alpha + 38 = 0 \Rightarrow 5\alpha = - 38$$</p> <p>$$\therefore$$ $$\left| {5\alpha } \right| = \left| { - 38} \right| = 38$$</p>
integer
jee-main-2021-online-18th-march-evening-shift
1krq0kpif
maths
3d-geometry
lines-and-plane
Let P be a plane passing through the points (1, 0, 1), (1, $$-$$2, 1) and (0, 1, $$-$$2). Let a vector $$\overrightarrow a = \alpha \widehat i + \beta \widehat j + \gamma \widehat k$$ be such that $$\overrightarrow a $$ is parallel to the plane P, perpendicular to $$(\widehat i + 2\widehat j + 3\widehat k)$$ and $$\overrightarrow a \,.\,(\widehat i + \widehat j + 2\widehat k) = 2$$, then $${(\alpha - \beta + \gamma )^2}$$ equals ____________.
[]
null
81
Equation of plane :<br><br>$$\left| {\matrix{ {x - 1} &amp; {y - 0} &amp; {z - 1} \cr {1 - 1} &amp; 2 &amp; {1 - 1} \cr {1 - 0} &amp; {0 - 1} &amp; {1 + 2} \cr } } \right| = 0$$<br><br>$$ \Rightarrow 3x - z - 2 = 0$$<br><br>$$\overrightarrow a = \alpha \widehat i + \beta \widehat j + \gamma \widehat k$$ || to 3x $$-$$ z $$-$$ 2 = 0<br><br>$$ \Rightarrow 3\alpha - 8 = 0$$ ..... (1)<br><br>$$\overrightarrow a \bot \widehat i + \widehat j + 3\widehat k$$<br><br>$$ \Rightarrow \alpha + 2\beta + 3\gamma = 0$$ ...... (2)<br><br>$$\overrightarrow a .(\widehat i + \widehat j + 2\widehat k) = 0$$<br><br>$$\Rightarrow$$ $$\alpha$$ + $$\beta$$ + 2$\gamma$ = 2 ........ (3)<br><br>On solving 1, 2 &amp; 3<br><br>$$\alpha$$ = 1, $$\beta$$ = $$-$$5, $\gamma$ = 3<br><br>So, ($$\alpha$$ $$-$$ $$\beta$$ + $\gamma$)<sup>2</sup> = 81
integer
jee-main-2021-online-20th-july-morning-shift
1krrtutnt
maths
3d-geometry
lines-and-plane
Consider the line L given by the equation <br/><br/>$${{x - 3} \over 2} = {{y - 1} \over 1} = {{z - 2} \over 1}$$. <br/><br/>Let Q be the mirror image of the point (2, 3, $$-$$1) with respect to L. Let a plane P be such that it passes through Q, and the line L is perpendicular to P. Then which of the following points is on the plane P?
[{"identifier": "A", "content": "($$-$$1, 1, 2)"}, {"identifier": "B", "content": "(1, 1, 1)"}, {"identifier": "C", "content": "(1, 1, 2)"}, {"identifier": "D", "content": "(1, 2, 2)"}]
["D"]
null
Plane p is $${ \bot ^r}$$ to line $${{x - 3} \over 2} = {{y - 1} \over 1} = {{z - 2} \over 1}$$ &amp; passes through pt. (2, 3) equation of plane p <br><br>2(x $$-$$ 2) + 1(y $$-$$ 3) + 1 (z + 1) = 0<br><br>2x + y + z $$-$$ 6 = 0<br><br>Point (1, 2, 2) satisfies above equation
mcq
jee-main-2021-online-20th-july-evening-shift
1krtbltik
maths
3d-geometry
lines-and-plane
Let L be the line of intersection of planes $$\overrightarrow r .(\widehat i - \widehat j + 2\widehat k) = 2$$ and $$\overrightarrow r .(2\widehat i + \widehat j - \widehat k) = 2$$. If $$P(\alpha ,\beta ,\gamma )$$ is the foot of perpendicular on L from the point (1, 2, 0), then the value of $$35(\alpha + \beta + \gamma )$$ is equal to :
[{"identifier": "A", "content": "101"}, {"identifier": "B", "content": "119"}, {"identifier": "C", "content": "143"}, {"identifier": "D", "content": "134"}]
["B"]
null
$${P_1}:x - y + 2z = 2$$<br><br>$${P_2}:2x + y - 3 = 2$$<br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265409/exam_images/gzyjdvs460f1b9cskjhd.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 22th July Evening Shift Mathematics - 3D Geometry Question 187 English Explanation"><br>Let line of Intersection of planes P<sub>1</sub> and P<sub>2</sub> cuts xy plane in point Q.<br><br>$$\Rightarrow$$ z-coordinate of point Q is zero<br><br>$$ \Rightarrow \left. {\matrix{ {x - y = 2} \cr {and\,2x + y = 2} \cr } } \right\} \Rightarrow x = {4 \over 3},y = {{ - 2} \over 3}$$<br><br>$$ \Rightarrow Q\left( {{4 \over 3},{{ - 2} \over 3},0} \right)$$<br><br>Vector parallel to the line of intersection<br><br>$$\overrightarrow a = \left| {\matrix{ {\widehat i} &amp; {\widehat j} &amp; {\widehat k} \cr 1 &amp; { - 1} &amp; 2 \cr 2 &amp; 1 &amp; { - 1} \cr } } \right| = - \widehat i + 5\widehat j + 3\widehat k$$<br><br>Equation of Line of intersection<br><br>$${{x - {4 \over 3}} \over { - 1}} = {{y + {2 \over 3}} \over 5} = {{z - 0} \over 3} = \lambda $$ (say)<br><br>Let coordinates of foot of perpendicular be <br><br>$$F\left( { - \lambda + {4 \over 3},5\lambda - {2 \over 3},3\lambda } \right)$$<br><br>$$\overrightarrow {PF} = \left( { - \lambda + {1 \over 3}} \right)\widehat i + \left( {5\lambda - {8 \over 3}} \right)\widehat j + (3\lambda )\widehat k$$<br><br>$$\overrightarrow {PF} .\overrightarrow a = 0$$<br><br>$$ \Rightarrow \lambda - {1 \over 3} + 25\lambda {{ - 40} \over 3} + 9\lambda = 0$$<br><br>$$ \Rightarrow 35\lambda = {{41} \over 3} \Rightarrow \lambda = {{41} \over {105}}$$<br><br>Now, $$\alpha = - \lambda + {4 \over 3},\beta = 5\lambda - {2 \over 3},\gamma = 3\lambda $$<br><br>$$ \Rightarrow \alpha + \beta + \gamma = 7\lambda + {2 \over 3}$$<br><br>$$ = 7\left( {{{41} \over {105}}} \right) + {2 \over 3}$$<br><br>$$ = {{51} \over {15}}$$<br><br>$$ \Rightarrow 35(\alpha + \beta + \gamma ) = {{51} \over {15}} \times 35 = 119$$
mcq
jee-main-2021-online-22th-july-evening-shift
1krw1mzhz
maths
3d-geometry
lines-and-plane
Let the foot of perpendicular from a point P(1, 2, $$-$$1) to the straight line $$L:{x \over 1} = {y \over 0} = {z \over { - 1}}$$ be N. Let a line be drawn from P parallel to the plane x + y + 2z = 0 which meets L at point Q. If $$\alpha$$ is the acute angle between the lines PN and PQ, then cos$$\alpha$$ is equal to ________________.
[{"identifier": "A", "content": "$${1 \\over {\\sqrt 5 }}$$"}, {"identifier": "B", "content": "$${{\\sqrt 3 } \\over 2}$$"}, {"identifier": "C", "content": "$${1 \\over {\\sqrt 3 }}$$"}, {"identifier": "D", "content": "$${1 \\over {2\\sqrt 3 }}$$"}]
["C"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264384/exam_images/ockxunbxex6ruzroagy0.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 25th July Morning Shift Mathematics - 3D Geometry Question 186 English Explanation 1"><br>$$\overrightarrow {PN} .(\widehat i - \widehat k) = 0$$<br><br>$$\Rightarrow$$ N(1, 0, $$-$$1)<br><br>Now, <br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265917/exam_images/on0qybbkpgettztu34nb.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 25th July Morning Shift Mathematics - 3D Geometry Question 186 English Explanation 2"><br>$$\overrightarrow {PQ} .(\widehat i + \widehat j + 2\widehat k) = 0$$<br><br>$$\Rightarrow$$ $$\mu$$ = $$-$$ 1<br><br>$$\Rightarrow$$ Q ($$-$$1, 0, 1)<br><br>$$\overrightarrow {PN} $$ = 2$$\widehat j$$ and $$\overrightarrow {PQ} $$ = $$2\widehat i + 2\widehat j - 2\widehat k$$<br><br>$$ \Rightarrow \cos \alpha = {1 \over {\sqrt 3 }}$$
mcq
jee-main-2021-online-25th-july-morning-shift
1krxgs6qs
maths
3d-geometry
lines-and-plane
For real numbers $$\alpha$$ and $$\beta$$ $$\ne$$ 0, if the point of intersection of the straight lines<br/><br/>$${{x - \alpha } \over 1} = {{y - 1} \over 2} = {{z - 1} \over 3}$$ and $${{x - 4} \over \beta } = {{y - 6} \over 3} = {{z - 7} \over 3}$$, lies on the plane x + 2y $$-$$ z = 8, then $$\alpha$$ $$-$$ $$\beta$$ is equal to :
[{"identifier": "A", "content": "5"}, {"identifier": "B", "content": "9"}, {"identifier": "C", "content": "3"}, {"identifier": "D", "content": "7"}]
["D"]
null
First line is ($$\phi$$ + $$\alpha$$, 2$$\phi$$ + 1, 3$$\phi$$ + 1)<br><br>and second line is (q$$\beta$$ + 4, 3q + 6, 3q + 7)<br><br>For intersection<br><br>$$\phi$$ + $$\alpha$$ = q$$\beta$$ + 4 ...... (i)<br><br>2$$\phi$$ + 1 = 3q + 6 .... (ii)<br><br>3$$\phi$$ + 1 = 3q + 7 ...... (iii)<br><br>for (ii) &amp; (iii) $$\phi$$ = 1, q = $$-$$1<br><br>So, from (i) $$\alpha$$ + $$\beta$$ = 3<br><br>Now, point of intersection is ($$\alpha$$ + 1, 3, 4)<br><br>It lies on the plane.<br><br>Hence, $$\alpha$$ = 5 &amp; $$\beta$$ = $$-$$2
mcq
jee-main-2021-online-27th-july-evening-shift
1kryflta1
maths
3d-geometry
lines-and-plane
The distance of the point P(3, 4, 4) from the point of intersection of the line joining the points. Q(3, $$-$$4, $$-$$5) and R(2, $$-$$3, 1) and the plane 2x + y + z = 7, is equal to ______________.
[]
null
7
$$\overrightarrow {QR} : - {{x - 3} \over 1} = {{y + 4} \over { - 1}} = {{z + 5} \over { - 6}} = r$$<br><br>$$ \Rightarrow (x,y,z) \equiv (r + 3, - r - 4, - 6r - 5)$$<br><br>Now, satisfying it in the given plane.<br><br>We get r = $$-$$2<br><br>so, required point of intersection is T(1, $$-$$2, 7).<br><br>Hence, PT = 7.
integer
jee-main-2021-online-27th-july-evening-shift
1krzrobee
maths
3d-geometry
lines-and-plane
If the lines $${{x - k} \over 1} = {{y - 2} \over 2} = {{z - 3} \over 3}$$ and <br/>$${{x + 1} \over 3} = {{y + 2} \over 2} = {{z + 3} \over 1}$$ are co-planar, then the value of k is _____________.
[]
null
1
$$\left| {\matrix{ {k + 1} &amp; 4 &amp; 6 \cr 1 &amp; 2 &amp; 3 \cr 3 &amp; 2 &amp; 1 \cr } } \right| = 0$$<br><br>$$ \Rightarrow $$ $$(k + 1)[2 - 6] - 4[1 - 9] + 6[2 - 6] = 0$$<br><br>$$ \Rightarrow $$ $$k = 1$$
integer
jee-main-2021-online-25th-july-evening-shift
1ks0cxriw
maths
3d-geometry
lines-and-plane
Let a plane P pass through the point (3, 7, $$-$$7) and contain the line, $${{x - 2} \over { - 3}} = {{y - 3} \over 2} = {{z + 2} \over 1}$$. If distance of the plane P from the origin is d, then d<sup>2</sup> is equal to ______________.
[]
null
3
$$\overrightarrow {BA} = (\widehat i + 4\widehat j - 5\widehat k)$$<br><br>$$\overrightarrow {BA} \times \overrightarrow l = \overrightarrow n = \left| {\matrix{ {\widehat i} &amp; {\widehat j} &amp; {\widehat k} \cr { - 3} &amp; 2 &amp; 1 \cr 1 &amp; 4 &amp; { - 5} \cr } } \right|$$<br><br>$$a\widehat i + b\widehat j + c\widehat k = - 14\widehat i - \widehat j(14) + \widehat k( - 14)$$<br><br>a = 1, b = 1, c = 1<br><br>Plane is (x $$-$$ 2) + (y $$-$$ 3) + (z + 2) = 0<br><br>$$ \Rightarrow $$ x + y + z $$-$$ 3 = 0<br><br>$$ \therefore $$ d = $$\sqrt 3 $$ $$\Rightarrow$$ d<sup>2</sup> = 3
integer
jee-main-2021-online-27th-july-morning-shift
1ktbf6smu
maths
3d-geometry
lines-and-plane
A plane P contains the line $$x + 2y + 3z + 1 = 0 = x - y - z - 6$$, and is perpendicular to the plane $$ - 2x + y + z + 8 = 0$$. Then which of the following points lies on P?
[{"identifier": "A", "content": "($$-$$1, 1, 2)"}, {"identifier": "B", "content": "(0, 1, 1)"}, {"identifier": "C", "content": "(1, 0, 1)"}, {"identifier": "D", "content": "(2, $$-$$1, 1)"}]
["B"]
null
Equation of plane P can be assumed as<br><br>P : x + 2y + 3z + 1 + $$\lambda$$ (x $$-$$ y $$-$$ z $$-$$ 6) = 0<br><br>$$\Rightarrow$$ P : (1 + $$\lambda$$)x + (2 $$-$$ $$\lambda$$)y + (3 $$-$$ $$\lambda$$)z + 1 $$-$$ 6$$\lambda$$ = 0<br><br>$$ \Rightarrow {\overrightarrow n _1} = (1 + \lambda )\widehat i + (2 - \lambda )\widehat j + (3 - \lambda )\widehat k$$<br><br>$$\therefore$$ $${\overrightarrow n _1}\,.\,{\overrightarrow n _2} = 0$$<br><br>$$\Rightarrow$$ 2(1 + $$\lambda$$) $$-$$ (2 $$-$$ $$\lambda$$) $$-$$ (3 $$-$$ $$\lambda$$) = 0<br><br>$$\Rightarrow$$ 2 + 2$$\lambda$$ $$-$$ 2 + $$\lambda$$ $$-$$ 3 + $$\lambda$$ = 0 $$\Rightarrow$$ $$\lambda$$ = $${3 \over 4}$$<br><br>$$\Rightarrow$$ $$P:{{7x} \over 4} + {5 \over 4}y + {{9z} \over 4} - {{14} \over 4} = 0$$<br><br>$$\Rightarrow$$ 7x + 5y + 9z = 14<br><br>(0, 1, 1) lies on P.
mcq
jee-main-2021-online-26th-august-morning-shift
1ktbi6k7h
maths
3d-geometry
lines-and-plane
Let the line L be the projection of the line $${{x - 1} \over 2} = {{y - 3} \over 1} = {{z - 4} \over 2}$$ in the plane x $$-$$ 2y $$-$$ z = 3. If d is the distance of the point (0, 0, 6) from L, then d<sup>2</sup> is equal to _______________.
[]
null
26
To find the projection let's find the foot of perpendicular from $(1,3$, 4) to plane $x-2 y-z=3$ <br><br><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lfg2ca35/20453aa3-5bf8-445c-837d-c8b6d848626f/8ecab100-c6b2-11ed-b4b3-b306e87ca523/file-1lfg2ca36.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lfg2ca35/20453aa3-5bf8-445c-837d-c8b6d848626f/8ecab100-c6b2-11ed-b4b3-b306e87ca523/file-1lfg2ca36.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2021 (Online) 26th August Morning Shift Mathematics - 3D Geometry Question 179 English Explanation"> <br>$$ \begin{aligned} &amp; \frac{x-1}{1}=\frac{y-3}{-2}=\frac{z-4}{-1}=\lambda_1 \\\\ &amp; \left(\lambda_1+1\right)-2\left(-2 \lambda_1+3\right)-\left(-\lambda_1+4\right)=3 \\\\ &amp; \Rightarrow 6 \lambda_1=12 \Rightarrow \lambda_1=2 \end{aligned} $$ <br><br>So, foot of perpendicular from $(1,3,4)$ to plane $x-2 y-z=3$ is $A$ $(3,-1,2)$. <br><br>Let us also find the intersection point of the plane and line <br><br>$$ \begin{gathered} \frac{x-1}{2}=\frac{y-3}{1}=\frac{z-4}{2}=\lambda_2 \\\\ \left(2 \lambda_2+1\right)-2\left(\lambda_2+3\right)-\left(2 \lambda_2+4\right)=3-2 \lambda_2=12 \Rightarrow \lambda_2=-6 \end{gathered} $$ <br><br>The intersection point of the plane and line is $B(-11,-3,-8)$ Line passing through $A$ and $B$ is <br><br>$$ \begin{aligned} &amp; \frac{x-3}{-14}=\frac{y+1}{-2}=\frac{z-2}{-10}=\mu \\\\ &amp; \frac{x-3}{7}=\frac{y+1}{1}=\frac{z-2}{5}=\mu \end{aligned} $$ <br><br>Now, let's find the distance from $O(0,0,6)$ to this line $L$. <br><br>Let's say $C(7 \mu+3, \mu-1,5 \mu+2)$ is any point on $L$. Then, <br><br>$$ \begin{aligned} &amp; \{(7 \mu+3)-0\} \cdot 7+\{(\mu-1)-0\} \cdot 1+\{(5 \mu+2)-6\} \cdot 5=0 \\\\ &amp; \Rightarrow 49 \mu+21+\mu-1+25 \mu-20=0 \Rightarrow \mu=0 \\\\ &amp; \therefore C(3,-1,2) \\\\ &amp; \text { Distance }=\sqrt{(3-0)^2+(-1-0)^2+(2-6)^2}=\sqrt{26} \\\\ &amp; d^2=26 \end{aligned} $$
integer
jee-main-2021-online-26th-august-morning-shift
1ktd44pm7
maths
3d-geometry
lines-and-plane
Let Q be the foot of the perpendicular from the point P(7, $$-$$2, 13) on the plane containing the lines $${{x + 1} \over 6} = {{y - 1} \over 7} = {{z - 3} \over 8}$$ and $${{x - 1} \over 3} = {{y - 2} \over 5} = {{z - 3} \over 7}$$. Then (PQ)<sup>2</sup>, is equal to ___________.
[]
null
96
Containing the line $$\left| {\matrix{ {x + 1} &amp; {y - 1} &amp; {z - 3} \cr 6 &amp; 7 &amp; 8 \cr 3 &amp; 5 &amp; 7 \cr } } \right| = 0$$<br><br>$$9(x + 1) - 18(y - 1) + 9(z - 3) = 0$$<br><br>$$x - 2y + z = 0$$<br><br>$$PQ = \left| {{{7 + 4 + 13} \over {\sqrt 6 }}} \right| = 4\sqrt 6 $$<br><br>$$P{Q^2} = 96$$
integer
jee-main-2021-online-26th-august-evening-shift
1kteihgh9
maths
3d-geometry
lines-and-plane
The distance of the point (1, $$-$$2, 3) from the plane x $$-$$ y + z = 5 measured parallel to a line, whose direction ratios are 2, 3, $$-$$6 is :
[{"identifier": "A", "content": "3"}, {"identifier": "B", "content": "5"}, {"identifier": "C", "content": "2"}, {"identifier": "D", "content": "1"}]
["D"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263282/exam_images/vaartuqi2uokdkrcurcw.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 27th August Morning Shift Mathematics - 3D Geometry Question 175 English Explanation"><br><br>$$(1 + 2\lambda ) + 2 - 3\lambda + 3 - 6\lambda = 5$$<br><br>$$ \Rightarrow 6 - 7\lambda = 5 \Rightarrow \lambda = {1 \over 7}$$<br><br>so, $$P = \left( {{9 \over 7}, - {{11} \over 7},{{15} \over 7}} \right)$$<br><br>$$AP = \sqrt {{{\left( {1 - {9 \over 7}} \right)}^2} + {{\left( { - 2 + {{11} \over 7}} \right)}^2} + {{\left( {3 - {{15} \over 7}} \right)}^2}} $$<br><br>$$AP = \sqrt {\left( {{4 \over {49}}} \right) + {9 \over {49}} + {{36} \over {49}}} = 1$$
mcq
jee-main-2021-online-27th-august-morning-shift
1ktekeym0
maths
3d-geometry
lines-and-plane
Equation of a plane at a distance $$\sqrt {{2 \over {21}}} $$ from the origin, which contains the line of intersection of the planes x $$-$$ y $$-$$ z $$-$$ 1 = 0 and 2x + y $$-$$ 3z + 4 = 0, is :
[{"identifier": "A", "content": "$$3x - y - 5z + 2 = 0$$"}, {"identifier": "B", "content": "$$3x - 4z + 3 = 0$$"}, {"identifier": "C", "content": "$$ - x + 2y + 2z - 3 = 0$$"}, {"identifier": "D", "content": "$$4x - y - 5z + 2 = 0$$"}]
["D"]
null
Required equation of plane<br><br>$${P_1} + \lambda {P_2} = 0$$<br><br>$$(x - y - z - 1) + \lambda (2x + y - 3z + 4) = 0$$<br><br>Given that its dist. From origin is $${2 \over {\sqrt {21} }}$$<br><br>Thus, $${{|4\lambda - 1|} \over {\sqrt {{{(2\lambda + 1)}^2} + {{(\lambda - 1)}^2} + {{( - 3\lambda - 1)}^2}} }} = {{\sqrt 2 } \over {\sqrt {21} }}$$<br><br>$$ \Rightarrow 21{(4\lambda - 1)^2} = 2(14{\lambda ^2} + 8\lambda + 3)$$<br><br>$$ \Rightarrow 336{\lambda ^2} - 168\lambda + 21 = 28{\lambda ^2} + 16\lambda + 6$$<br><br>$$ \Rightarrow 308{\lambda ^2} - 184\lambda + 15 = 0$$<br><br>$$ \Rightarrow 308{\lambda ^2} - 154\lambda - 30\lambda + 15 = 0$$<br><br>$$ \Rightarrow (2\lambda - 1)(154\lambda - 15) = 0$$<br><br>$$ \Rightarrow \lambda = {1 \over 2}$$ or $${{15} \over {154}}$$<br><br>for $$\lambda = {1 \over 2}$$ reqd. plane is $$4x - y - 5z + 2 = 0$$
mcq
jee-main-2021-online-27th-august-morning-shift
1ktfzryxs
maths
3d-geometry
lines-and-plane
The equation of the plane passing through the line of intersection of the planes $$\overrightarrow r .\left( {\widehat i + \widehat j + \widehat k} \right) = 1$$ and $$\overrightarrow r .\left( {2\widehat i + 3\widehat j - \widehat k} \right) + 4 = 0$$ and parallel to the x-axis is :
[{"identifier": "A", "content": "$$\\overrightarrow r .\\left( {\\widehat j - 3\\widehat k} \\right) + 6 = 0$$"}, {"identifier": "B", "content": "$$\\overrightarrow r .\\left( {\\widehat i + 3\\widehat k} \\right) + 6 = 0$$"}, {"identifier": "C", "content": "$$\\overrightarrow r .\\left( {\\widehat i - 3\\widehat k} \\right) + 6 = 0$$"}, {"identifier": "D", "content": "$$\\overrightarrow r .\\left( {\\widehat j - 3\\widehat k} \\right) - 6 = 0$$"}]
["A"]
null
Equation of planes are<br><br>$$\overrightarrow r .\left( {\widehat i + \widehat j + \widehat k} \right) - 1 = 0 \Rightarrow x + y + z - 1 = 0$$<br><br>and $$\overrightarrow r .\left( {2\widehat i + 3\widehat j - \widehat k} \right) + 4 = 0 \Rightarrow 2x + 3y - z + 4 = 0$$<br><br>equation of planes through line of intersection of these planes is :-<br><br>$$(x + y + z - 1) + \lambda (2x + 3y - z + 4) = 0$$<br><br>$$ \Rightarrow (1 + 2\lambda )x + (1 + 3\lambda )y + (1 - \lambda )z - 1 + 4\lambda = 0$$<br><br>But this plane is parallel to x-axis whose direction are (1, 0, 0)<br><br>$$\therefore$$ $$(1 + 2\lambda )1 + (1 + 3\lambda )0 + (1 - \lambda )0 = 0$$<br><br>$$\lambda = - {1 \over 2}$$<br><br>$$\therefore$$ Required plane is <br><br>$$0x + \left( {1 - {3 \over 2}} \right)y + \left( {1 + {1 \over 2}} \right)z - 1 + 4\left( {{{ - 1} \over 2}} \right) = 0$$<br><br>$$ \Rightarrow {{ - y} \over 2} + {3 \over 2}z - 3 = 0$$<br><br>$$ \Rightarrow y - 3z + 6 = 0$$<br><br>$$ \Rightarrow \overrightarrow r .\left( {\widehat j - 3\widehat k} \right) + 6 = 0$$ Ans.
mcq
jee-main-2021-online-27th-august-evening-shift
1ktgobl7e
maths
3d-geometry
lines-and-plane
Let S be the mirror image of the point Q(1, 3, 4) with respect to the plane 2x $$-$$ y + z + 3 = 0 and let R(3, 5, $$\gamma$$) be a point of this plane. Then the square of the length of the line segment SR is ___________.
[]
null
72
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266720/exam_images/h71pebht6whdybpiqe1o.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 27th August Evening Shift Mathematics - 3D Geometry Question 173 English Explanation"> <br><br>Since R(3, 5, $$\gamma$$) lies on the plane 2x $$-$$ y + z + 3 = 0. <br><br>Therefore, 6 $$-$$ 5 + $$\gamma$$ + 3 = 0<br><br>$$\Rightarrow$$ $$\gamma$$ = $$-$$4<br><br>Now, <br><br>dr's of line QS are 2, $$-$$1, 1<br><br>equation of line QS is <br><br>$${{x - 1} \over 2} = {{y - 3} \over { - 1}} = {{z - 4} \over 1} = \lambda $$ (say)<br><br>$$ \Rightarrow F(2\lambda + 1, - \lambda + 3,\lambda + 4)$$<br><br>F lies in the plane<br><br>$$ \Rightarrow 2(2\lambda + 1) - ( - \lambda + 3) + (\lambda + 4) + 3$$ = 0<br><br>$$ \Rightarrow 4\lambda + 2 + \lambda - 3 + \lambda + 7 = 0$$<br><br>$$ \Rightarrow 6\lambda + 6 = 0 \Rightarrow \lambda = - 1$$<br><br>$$\Rightarrow$$ F($$-$$1, 4, 3)<br><br>Since, F is mid-point of QS.<br><br>Therefore, coordinated of S are ($$-$$3, 5, 2).<br><br>So, SR = $$\sqrt {36 + 0 + 36} = \sqrt {72} $$<br><br>SR<sup>2</sup> = 72.
integer
jee-main-2021-online-27th-august-evening-shift
1ktiom3vk
maths
3d-geometry
lines-and-plane
Let the equation of the plane, that passes through the point (1, 4, $$-$$3) and contains the line of intersection of the <br/>planes 3x $$-$$ 2y + 4z $$-$$ 7 = 0 <br/>and x + 5y $$-$$ 2z + 9 = 0, be <br/>$$\alpha$$x + $$\beta$$y + $$\gamma$$z + 3 = 0, then $$\alpha$$ + $$\beta$$ + $$\gamma$$ is equal to :
[{"identifier": "A", "content": "$$-$$23"}, {"identifier": "B", "content": "$$-$$15"}, {"identifier": "C", "content": "23"}, {"identifier": "D", "content": "15"}]
["A"]
null
3x $$-$$ 2y + 4z $$-$$ 7 + $$\lambda$$(x + 5y $$-$$ 2z + 9) = 0<br><br>(3 + $$\lambda$$)x + (5$$\lambda$$ $$-$$ 2)y + (4 $$-$$ 2$$\lambda$$)z + 9$$\lambda$$ $$-$$ 7 = 0<br><br>passing through (1, 4, $$-$$3)<br><br>$$\Rightarrow$$ 3 + $$\lambda$$ + 20$$\lambda$$ $$-$$ 8 $$-$$ 12 + 6$$\lambda$$ + 9$$\lambda$$ $$-$$ 7 = 0<br><br>$$\Rightarrow$$ $$\lambda$$ = $${2 \over 3}$$<br><br>$$\Rightarrow$$ equation of plane is<br><br>$$-$$11x $$-$$ 4y $$-$$ 8z + 3 = 0<br><br>$$\Rightarrow$$ $$\alpha$$ + $$\beta$$ + $$\gamma$$ = $$-$$23
mcq
jee-main-2021-online-31st-august-morning-shift
1ktis4alt
maths
3d-geometry
lines-and-plane
The square of the distance of the point of intersection <br/><br/>of the line $${{x - 1} \over 2} = {{y - 2} \over 3} = {{z + 1} \over 6}$$ and the plane $$2x - y + z = 6$$ from the point ($$-$$1, $$-$$1, 2) is __________.
[]
null
61
$${{x - 1} \over 2} = {{y - 2} \over 3} = {{z + 1} \over 6} = \lambda $$<br><br>$$x = 2\lambda + 1,y = 3\lambda + 2,z = 6\lambda - 1$$<br><br>for point of intersection of line &amp; plane<br><br>$$2(2\lambda + 1) - (3\lambda + 2) + (6\lambda - 1) = 6$$<br><br>$$7\lambda = 7 \Rightarrow \lambda = 1$$<br><br>point : (3, 5, 5)<br><br>(distance)<sup>2</sup> = $${(3 + 1)^2} + {(5 + 1)^2} + {(5 - 2)^2}$$<br><br>$$ = 16 + 36 + 9 = 61$$
integer
jee-main-2021-online-31st-august-morning-shift
1ktk5cco4
maths
3d-geometry
lines-and-plane
The distance of the point ($$-$$1, 2, $$-$$2) from the line of intersection of the planes 2x + 3y + 2z = 0 and x $$-$$ 2y + z = 0 is :
[{"identifier": "A", "content": "$${1 \\over {\\sqrt 2 }}$$"}, {"identifier": "B", "content": "$${5 \\over 2}$$"}, {"identifier": "C", "content": "$${{\\sqrt {42} } \\over 2}$$"}, {"identifier": "D", "content": "$${{\\sqrt {34} } \\over 2}$$"}]
["D"]
null
P<sub>1</sub> : 2x + 3y + 2z = 0<br><br>$$\Rightarrow$$ $${\overrightarrow n _1} = 2\widehat i + 3\widehat j + 2\widehat k$$<br><br>P<sub>2</sub> : x $$-$$ 2y + z = 0<br><br>$$\Rightarrow$$ $${\overrightarrow n _2} = \widehat i - 2\widehat j + \widehat k$$<br><br>Direction vector of line L which is line of intersection of P<sub>1</sub> &amp; P<sub>2</sub><br><br>$$\overrightarrow r = {\overrightarrow n _1} \times {\overrightarrow n _2} = 7\widehat i - 7\widehat k$$<br><br>DR's of L are (1, 0, $$-$$1)<br><br>$$\Rightarrow$$ Equation of L : $${x \over 1} = {y \over 0} = {z \over { - 1}} = \lambda $$<br><br> <img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266901/exam_images/kkhzoknkbvrgsubbusfx.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 31st August Evening Shift Mathematics - 3D Geometry Question 166 English Explanation"> <br><br>DR's of $$\overrightarrow {PQ} $$ = ($$\lambda$$ + 1, $$-$$2, 2 $$-$$ $$\lambda$$)<br><br>$$\because$$ $$\overrightarrow {PQ} \bot \overrightarrow r $$<br><br>$$ \Rightarrow (\lambda + 1)(1) + ( - 2)(0) + (2 - \lambda )( - 1) = 0$$<br><br>$$ \Rightarrow \lambda = {1 \over 2} \Rightarrow Q\left( {{1 \over 2},0,{{ - 1} \over 2}} \right)$$<br><br>$$ \Rightarrow PQ = {{\sqrt {34} } \over 2}$$
mcq
jee-main-2021-online-31st-august-evening-shift
1ktkdi4ed
maths
3d-geometry
lines-and-plane
Suppose, the line $${{x - 2} \over \alpha } = {{y - 2} \over { - 5}} = {{z + 2} \over 2}$$ lies on the plane $$x + 3y - 2z + \beta = 0$$. Then $$(\alpha + \beta )$$ is equal to _______.
[]
null
7
<p>Given equation of line</p> <p>$${{x - 2} \over \alpha } = {{y - 2} \over { - 5}} = {{z + 2} \over 2}$$ ...... (i)</p> <p>and plane x + 3y $$-$$ 2z + $$\beta$$ = 0 ...... (ii)</p> <p>Line (i) passes through (2, 2, $$-$$2)</p> <p>which lies on plane (ii).</p> <p>$$\therefore$$ 2 + 6 + 4 + $$\beta$$ = 0 $$\Rightarrow$$ $$\beta$$ = $$-$$ 12</p> <p>Also, given line is perpendicular to normal of the plane</p> <p>$$\alpha$$(1) $$-$$ 5(3) + 2($$-$$2) = 0 $$\Rightarrow$$ $$\alpha$$ = 19</p> <p>$$\therefore$$ $$\alpha$$ + $$\beta$$ = 19 + (-12) = 19 - 12 = 7</p>
integer
jee-main-2021-online-31st-august-evening-shift
1l546e82f
maths
3d-geometry
lines-and-plane
<p>Let $${P_1}:\overrightarrow r \,.\,\left( {2\widehat i + \widehat j - 3\widehat k} \right) = 4$$ be a plane. Let P<sub>2</sub> be another plane which passes through the points (2, $$-$$3, 2), (2, $$-$$2, $$-$$3) and (1, $$-$$4, 2). If the direction ratios of the line of intersection of P<sub>1</sub> and P<sub>2</sub> be 16, $$\alpha$$, $$\beta$$, then the value of $$\alpha$$ + $$\beta$$ is equal to ________________.</p>
[]
null
28
<p>Direction ratio of normal to $${P_1} \equiv < 2,1, - 3 > $$</p> <p>and that of $${P_2} \equiv \left| {\matrix{ {\widehat i} & {\widehat j} & {\widehat k} \cr 0 & 1 & { - 5} \cr { - 1} & { - 2} & 5 \cr } } \right| = - 5\widehat i - \widehat j( - 5) + \widehat k(1)$$</p> <p>i.e. $$ < - 5,5,1 > $$</p> <p>d.r's of line of intersection are along vector</p> <p>$$\left| {\matrix{ {\widehat i} & {\widehat j} & {\widehat k} \cr 2 & 1 & { - 3} \cr { - 5} & 5 & 1 \cr } } \right| = \widehat i(16) - \widehat j( - 13) + \widehat k(15)$$</p> <p>i.e. $$ < 16,13,15 > $$</p> <p>$$\therefore$$ $$\alpha + \beta = 13 + 15 = 28$$</p>
integer
jee-main-2022-online-29th-june-morning-shift
1l54bcrlo
maths
3d-geometry
lines-and-plane
<p>Let $${{x - 2} \over 3} = {{y + 1} \over { - 2}} = {{z + 3} \over { - 1}}$$ lie on the plane $$px - qy + z = 5$$, for some p, q $$\in$$ R. The shortest distance of the plane from the origin is :</p>
[{"identifier": "A", "content": "$$\\sqrt {{3 \\over {109}}} $$"}, {"identifier": "B", "content": "$$\\sqrt {{5 \\over {142}}} $$"}, {"identifier": "C", "content": "$${5 \\over {\\sqrt {71} }}$$"}, {"identifier": "D", "content": "$${1 \\over {\\sqrt {142} }}$$"}]
["B"]
null
$\frac{x-2}{3}=\frac{y+1}{-2}=\frac{z+3}{-1}=\lambda$ <br/><br/> $(3 \lambda+2,-2 \lambda-1,-\lambda-3)$ lies on plane $p x-q y+z=5$ <br/><br/>$p(3 \lambda+2)-q(-2 \lambda-1)+(-\lambda-3)=5$ <br/><br/> $\lambda(3 p+2 q-1)+(2 p+q-8)=0$ <br/><br/> $3 p+2 q-1=0\} p=15$ <br/><br/> $2 p+q-8=0\} q=-22$ <br/><br/> Equation of plane $15 x+22 y+z-5=0$ <br/><br/> Shortest distance from origin $=\frac{|0+0+0-5|}{\sqrt{15^{2}+22^{2}+1}}$ <br/><br/> $=\frac{5}{\sqrt{710}}$ <br/><br/> $=\sqrt{\frac{5}{142}}$
mcq
jee-main-2022-online-29th-june-evening-shift
1l54t8ew5
maths
3d-geometry
lines-and-plane
<p>Let Q be the mirror image of the point P(1, 2, 1) with respect to the plane x + 2y + 2z = 16. Let T be a plane passing through the point Q and contains the line $$\overrightarrow r = - \widehat k + \lambda \left( {\widehat i + \widehat j + 2\widehat k} \right),\,\lambda \in R$$. Then, which of the following points lies on T?</p>
[{"identifier": "A", "content": "(2, 1, 0)"}, {"identifier": "B", "content": "(1, 2, 1)"}, {"identifier": "C", "content": "(1, 2, 2)"}, {"identifier": "D", "content": "(1, 3, 2)"}]
["B"]
null
$P(1,2,1)$ image in plane $x+2 y+2 z=16$ <br><br> $$ \begin{aligned} &amp; \frac{x-1}{1}=\frac{y-2}{2}=\frac{z-1}{2}=\frac{-2(1+2 \times 2+2 \times 1-16)}{1^{2}+2^{2}+2^{2}} \\\\ &amp; \frac{x-1}{1}=\frac{y-2}{2}=\frac{z-1}{2}=2 \\\\ &amp; Q(3,6,5) \\\\ &amp; \vec{r}=-\hat{k}+\lambda(\hat{i}+\hat{j}+2 \hat{k}) \end{aligned} $$ <br><br> <img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lc5qpgrl/6590d524-93d7-4f0f-8cfb-f2167895c70e/934a1200-85a0-11ed-95b6-d9b2225f1c8e/file-1lc5qpgrm.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lc5qpgrl/6590d524-93d7-4f0f-8cfb-f2167895c70e/934a1200-85a0-11ed-95b6-d9b2225f1c8e/file-1lc5qpgrm.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 29th June Evening Shift Mathematics - 3D Geometry Question 161 English Explanation"><br> $A Q=3 \hat{i}+6 \hat{j}+6 \hat{k}$ <br><br> $$ \begin{aligned} &amp; =3(\hat{i}+2 \hat{j}+2 \hat{k}) \\\\ &amp; \vec{n}=(\hat{i}+2 \hat{j}+2 \hat{k}) \times(\hat{i}+\hat{j}+2 \hat{k}) \\\\ &amp; \left|\begin{array}{lll}\hat{i} &amp; \hat{j} &amp; \hat{k} \\1 &amp; 2 &amp; 2 \\1 &amp; 1 &amp; 2\end{array}\right| \\\\ &amp; =2 \hat{i}-0 \hat{j}-\hat{k} \end{aligned} $$<br><br> Equation of plane $\equiv 2(x-0)+0(y-0)-1(z+1)$ $=0$ <br><br> $2 x-z=1$ <br><br> Point lying on plane from the option is $(1,2,1)$ i.e., option (B)
mcq
jee-main-2022-online-29th-june-evening-shift
1l566xtof
maths
3d-geometry
lines-and-plane
<p>If two distinct point Q, R lie on the line of intersection of the planes $$ - x + 2y - z = 0$$ and $$3x - 5y + 2z = 0$$ and $$PQ = PR = \sqrt {18} $$ where the point P is (1, $$-$$2, 3), then the area of the triangle PQR is equal to :</p>
[{"identifier": "A", "content": "$${2 \\over 3}\\sqrt {38} $$"}, {"identifier": "B", "content": "$${4 \\over 3}\\sqrt {38} $$"}, {"identifier": "C", "content": "$${8 \\over 3}\\sqrt {38} $$"}, {"identifier": "D", "content": "$$\\sqrt {{{152} \\over 3}} $$"}]
["B"]
null
<p> <img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l5obyhm8/67807093-6d4d-453b-a541-6801368b15df/45fa9b00-0544-11ed-987f-3938cfc0f7f1/file-1l5obyhm9.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l5obyhm8/67807093-6d4d-453b-a541-6801368b15df/45fa9b00-0544-11ed-987f-3938cfc0f7f1/file-1l5obyhm9.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 28th June Morning Shift Mathematics - 3D Geometry Question 158 English Explanation"> </p> <p>Line L is x = y = z</p> <p>$$\overrightarrow {PQ} .\,(\widehat i + \widehat j + \widehat k) = 0$$</p> <p>$$ \Rightarrow (\alpha - 3) + \alpha + 2 + \alpha - 1 = 0$$</p> <p>$$ \Rightarrow \alpha = {2 \over 3}$$ so, $$T = \left( {{2 \over 3},{2 \over 3},{2 \over 3}} \right)$$</p> <p>$$PT = \sqrt {{{38} \over 3}} $$</p> <p>$$ \Rightarrow QT = {4 \over {\sqrt 3 }}$$</p> <p>So, Area $$ = \left( {{1 \over 2} \times {4 \over {\sqrt 3 }} \times {{\sqrt {38} } \over {\sqrt 3 }}} \right).\,2$$</p> <p>$$ = {{4\sqrt {38} } \over 3}$$ sq. units</p>
mcq
jee-main-2022-online-28th-june-morning-shift
1l5672y46
maths
3d-geometry
lines-and-plane
<p>Let the plane $$P:\overrightarrow r \,.\,\overrightarrow a = d$$ contain the line of intersection of two planes $$\overrightarrow r \,.\,\left( {\widehat i + 3\widehat j - \widehat k} \right) = 6$$ and $$\overrightarrow r \,.\,\left( { - 6\widehat i + 5\widehat j - \widehat k} \right) = 7$$. If the plane P passes through the point $$\left( {2,3,{1 \over 2}} \right)$$, then the value of $${{|13\overrightarrow a {|^2}} \over {{d^2}}}$$ is equal to :</p>
[{"identifier": "A", "content": "90"}, {"identifier": "B", "content": "93"}, {"identifier": "C", "content": "95"}, {"identifier": "D", "content": "97"}]
["B"]
null
<p>$${P_1}:x + 3y - z = 6$$</p> <p>$${P_2}: - 6x + 5y - z = 7$$</p> <p>Family of planes passing through line of intersection of P<sub>1</sub> and P<sub>2</sub> is given by $$x(1 - 6\lambda ) + y(3 + 5\lambda ) + z( - 1 - \lambda ) - (6 + 7\lambda ) = 0$$</p> <p>It passes through $$\left( {2,3,{1 \over 2}} \right)$$</p> <p>So, $$2(1 - 6\lambda ) + 3(3 + 5\lambda ) + {1 \over 2}( - 1 - \lambda ) - (6 + 7\lambda ) = 0$$</p> <p>$$ \Rightarrow 2 - 12\lambda + 9 + 15\lambda - {1 \over 2} - {\lambda \over 2} - 6 - 7\lambda = 0$$</p> <p>$$ \Rightarrow {9 \over 2} - {{9\lambda } \over 2} = 0 \Rightarrow \lambda = 1$$</p> <p>Required plane is</p> <p>$$ - 5x + 8y - 2z - 13 = 0$$</p> <p>Or $$\overrightarrow r .\,( - 5\widehat i + 8\widehat j - 2\widehat k) = 13$$</p> <p>$${{|13\overrightarrow a {|^2}} \over {|d{|^2}}} = {{{{13}^2}} \over {{{(13)}^2}}}.\,|\overrightarrow a {|^2} = 93$$</p>
mcq
jee-main-2022-online-28th-june-morning-shift
1l56r99j8
maths
3d-geometry
lines-and-plane
<p>Let the foot of the perpendicular from the point (1, 2, 4) on the line $${{x + 2} \over 4} = {{y - 1} \over 2} = {{z + 1} \over 3}$$ be P. Then the distance of P from the plane $$3x + 4y + 12z + 23 = 0$$ is :</p>
[{"identifier": "A", "content": "5"}, {"identifier": "B", "content": "$${{50} \\over {13}}$$"}, {"identifier": "C", "content": "4"}, {"identifier": "D", "content": "$${{63} \\over {13}}$$"}]
["A"]
null
<p>$$L:{{x + 2} \over 4} = {{y - 1} \over 2} = {{z + 1} \over 3} = t$$</p> <p>Let P = (4t $$-$$ 2, 2t + 1, 3t $$-$$ 1)</p> <p>$$\because$$ P is the foot of perpendicular of (1, 2, 4)</p> <p>$$\therefore$$ $$4(4t - 3) + 2(2t - 1) + 3(3t - 5) = 0$$</p> <p>$$ \Rightarrow 29t = 29 \Rightarrow t = 1$$</p> <p>$$\therefore$$ P = (2, 3, 2)</p> <p>Now, distance of P from the plane</p> <p>$$3x + 4y + 12z + 23 = 0$$, is</p> <p>$$\left| {{{6 + 12 + 24 + 23} \over {\sqrt {9 + 16 + 144} }}} \right| = {{65} \over {13}} = 5$$</p>
mcq
jee-main-2022-online-27th-june-evening-shift
1l58a1l78
maths
3d-geometry
lines-and-plane
<p>Let the plane 2x + 3y + z + 20 = 0 be rotated through a right angle about its line of intersection with the plane x $$-$$ 3y + 5z = 8. If the mirror image of the point $$\left( {2, - {1 \over 2},2} \right)$$ in the rotated plane is B(a, b, c), then :</p>
[{"identifier": "A", "content": "$${a \\over 8} = {b \\over 5} = {c \\over { - 4}}$$"}, {"identifier": "B", "content": "$${a \\over 4} = {b \\over 5} = {c \\over { - 2}}$$"}, {"identifier": "C", "content": "$${a \\over 8} = {b \\over { - 5}} = {c \\over 4}$$"}, {"identifier": "D", "content": "$${a \\over 4} = {b \\over 5} = {c \\over 2}$$"}]
["A"]
null
<p>Consider the equation of plane,</p> <p>$$P:(2x + 3y + z + 20) + \lambda (x - 3y + 5z - 8) = 0$$</p> <p>$$P:(2 + \lambda )x + 3(3 - 3\lambda )y + 1(1 + 5\lambda )z + (20 - 8\lambda ) = 0$$</p> <p>$$\because$$ Plane P is perpendicular to $$2x + 3y + z + 20 = 0$$</p> <p>So, $$4 + 2\lambda + 9 - 9\lambda + 1 + 5\lambda = 0$$</p> <p>$$ \Rightarrow \lambda = 7$$</p> <p>$$P:9x - 18y + 36z - 36 = 0$$</p> <p>or $$P:x - 2y + 4z = 4$$</p> <p>If image of $$\left( {2, - {1 \over 2},2} \right)$$ in plane P is (a, b, c) then</p> <p>$${{a - 2} \over 1} = {{b + {1 \over 2}} \over { - 2}} = {{c - 2} \over 4}$$</p> <p>and $$\left( {{{a + 2} \over 2}} \right) - 2\left( {{{b - {1 \over 2}} \over 2}} \right) + 4\left( {{{c + 2} \over 2}} \right) = 4$$</p> <p>Clearly $$a = {4 \over 3}$$, $$b = {5 \over 6}$$ and $$c = - {2 \over 3}$$</p> <p>So, $$a:b:c = 8:5: - 4$$</p>
mcq
jee-main-2022-online-26th-june-morning-shift
1l58g7um7
maths
3d-geometry
lines-and-plane
<p>If the lines $$\overrightarrow r = \left( {\widehat i - \widehat j + \widehat k} \right) + \lambda \left( {3\widehat j - \widehat k} \right)$$ and $$\overrightarrow r = \left( {\alpha \widehat i - \widehat j} \right) + \mu \left( {2\widehat i - 3\widehat k} \right)$$ are co-planar, then the distance of the plane containing these two lines from the point ($$\alpha$$, 0, 0) is :</p>
[{"identifier": "A", "content": "$${2 \\over 9}$$"}, {"identifier": "B", "content": "$${2 \\over 11}$$"}, {"identifier": "C", "content": "$${4 \\over 11}$$"}, {"identifier": "D", "content": "2"}]
["B"]
null
<p>$$\because$$ Both lines are coplanar, so</p> <p>$$\left| {\matrix{ {\alpha - 1} & 0 & { - 1} \cr 0 & 3 & { - 1} \cr 2 & 0 & { - 3} \cr } } \right| = 0$$</p> <p>$$ \Rightarrow \alpha = {5 \over 3}$$</p> <p>Equation of plane containing both lines</p> <p>$$\left| {\matrix{ {x - 1} & {y + 1} & {z - 1} \cr 0 & 3 & { - 1} \cr 2 & 0 & { - 3} \cr } } \right| = 0$$</p> <p>$$ \Rightarrow 9x + 2y + 6z = 13$$</p> <p>So, distance of $$\left( {{5 \over 3},0,0} \right)$$ from this plane</p> <p>$$ = {2 \over {\sqrt {81 + 4 + 36} }} = {2 \over {11}}$$</p>
mcq
jee-main-2022-online-26th-june-evening-shift
1l5aiu9gk
maths
3d-geometry
lines-and-plane
<p>Let Q be the mirror image of the point P(1, 0, 1) with respect to the plane S : x + y + z = 5. If a line L passing through (1, $$-$$1, $$-$$1), parallel to the line PQ meets the plane S at R, then QR<sup>2</sup> is equal to :</p>
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "5"}, {"identifier": "C", "content": "7"}, {"identifier": "D", "content": "11"}]
["B"]
null
<p>As L is parallel to PQ d.r.s of S is <1, 1, 1></p> <p>$$\therefore$$ $$L \equiv {{x - 1} \over 1} = {{y + 1} \over 1} = {{z + 1} \over 1}$$</p> <p>Point of intersection of L and S be $$\lambda$$</p> <p>$$ \Rightarrow (\lambda + 1) + (\lambda - 1) + (\lambda - 1) = S$$</p> <p>$$ \Rightarrow \lambda = 2$$</p> <p>$$\therefore$$ $$R \equiv (3,1,1)$$</p> <p>Let $$Q(\alpha ,\beta ,\gamma )$$</p> <p>$$ \Rightarrow {{\alpha - 1} \over 1} = {\beta \over 1} = {{\gamma - 1} \over 1} = {{ - 2( - 3)} \over 3}$$</p> <p>$$ \Rightarrow \alpha = 3,\,\beta = 2,\,\gamma = 3$$</p> <p>$$ \Rightarrow Q \equiv (3,2,3)$$</p> <p>$${(QR)^2} = {0^2} + {(1)^2} + {(2)^2} = 5$$</p>
mcq
jee-main-2022-online-25th-june-morning-shift
1l5ajvyuf
maths
3d-geometry
lines-and-plane
<p>Let the lines</p> <p>$${L_1}:\overrightarrow r = \lambda \left( {\widehat i + 2\widehat j + 3\widehat k} \right),\,\lambda \in R$$</p> <p>$${L_2}:\overrightarrow r = \left( {\widehat i + 3\widehat j + \widehat k} \right) + \mu \left( {\widehat i + \widehat j + 5\widehat k} \right);\,\mu \in R$$,</p> <p>intersect at the point S. If a plane ax + by $$-$$ z + d = 0 passes through S and is parallel to both the lines L<sub>1</sub> and L<sub>2</sub>, then the value of a + b + d is equal to ____________.</p>
[]
null
5
<p>As plane is parallel to both the lines we have d.r's of normal to the plane as <7, $$-$$2, $$-$$1></p> <p>$$\left( {from\,\left| {\matrix{ {\widehat i} & {\widehat j} & {\widehat k} \cr 1 & 2 & 3 \cr 1 & 1 & 5 \cr } } \right| = 7\widehat i - \widehat j(2) + \widehat k( - 1)} \right)$$</p> <p>Also point of intersection of lines is $$2\widehat i + 4\widehat j + 6\widehat k$$</p> <p>$$\therefore$$ Equation of plane is</p> <p>$$7(x - 2) - 2(y - 4) - 1(z - 6) = 0$$</p> <p>$$ \Rightarrow 7x - 2y - z = 0$$</p> <p>$$a + b + d = 7 - 2 + 0 = 5$$</p>
integer
jee-main-2022-online-25th-june-morning-shift
1l5w09pb2
maths
3d-geometry
lines-and-plane
<p>The distance of the point (3, 2, $$-$$1) from the plane $$3x - y + 4z + 1 = 0$$ along the line $${{2 - x} \over 2} = {{y - 3} \over 2} = {{z + 1} \over 1}$$ is equal to :</p>
[{"identifier": "A", "content": "9"}, {"identifier": "B", "content": "6"}, {"identifier": "C", "content": "3"}, {"identifier": "D", "content": "2"}]
["C"]
null
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l65uoj8c/397fdd39-a2f5-49e7-9863-c285adbe3668/d1a0d9c0-0ee6-11ed-a7de-eff776fdb55c/file-1l65uoj8d.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l65uoj8c/397fdd39-a2f5-49e7-9863-c285adbe3668/d1a0d9c0-0ee6-11ed-a7de-eff776fdb55c/file-1l65uoj8d.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 30th June Morning Shift Mathematics - 3D Geometry Question 138 English Explanation"></p> <p>Line PQ is parallel to line $${{2 - x} \over 2} = {{y - 3} \over 2} = {{z + 1} \over 1}$$</p> <p>$$\therefore$$ DR of PQ = DR of line = &lt;$$-$$2, 2, 1&gt;</p> <p>$$\therefore$$ Equation of line PQ passing through P(3, 2, $$-$$1) and DR = &lt;$$-$$2, 2, 1&gt; is</p> <p>$${{x - 3} \over { - 2}} = {{y - 2} \over 2} = {{z + 1} \over 1}$$</p> <p>Any General point on line PQ = (x<sub>1</sub>, y<sub>1</sub>, z<sub>1</sub>)</p> <p>$$\therefore$$ $${{{x_1} - 3} \over { - 2}} = {{{y_1} - 2} \over 2} = {{{z_1} + 1} \over 1} = \lambda $$</p> <p>$$ \Rightarrow {x_1} = - 2\lambda + 3$$</p> <p>$${y_1} = 2\lambda + 2$$</p> <p>$${z_1} = \lambda - 1$$</p> <p>$$\therefore$$ Point Q = ($$-$$2$$\lambda$$ + 3, 2$$\lambda$$ + 2, $$\lambda$$ $$-$$ 1)</p> <p>Point Q lies on the plane $$3x - y + 4z + 1 = 0$$. So point Q satisfy the equation.</p> <p>$$3( - 2\lambda + 3) - (2\lambda + 2) + 4(\lambda - 1) + 1 = 0$$</p> <p>$$ \Rightarrow - 6\lambda + 9 - 2\lambda - 2 + 4\lambda - 4 + 1 = 0$$</p> <p>$$ \Rightarrow - 4\lambda + 4 = 0$$</p> <p>$$ \Rightarrow \lambda = 1$$</p> <p>$$\therefore$$ Point Q = ($$-$$2 $$\times$$ 1 + 3, 2 $$\times$$ 1 + 2, 1 $$-$$ 1)</p> <p>= (1, 4, 0)</p> <p>$$\therefore$$ Distance of the point P(3, 2, $$-$$1) from the plane = Length of PQ</p> <p>$$ = \sqrt {{{(3 - 1)}^2} + {{(2 - 4)}^2} + {{( - 1 - 0)}^2}} $$</p> <p>$$ = \sqrt {{2^2} + {{( - 2)}^2} + {{( - 1)}^2}} $$</p> <p>$$ = \sqrt {4 + 4 + 1} $$</p> <p>$$ = \sqrt 9 $$</p> <p>$$ = 3$$</p>
mcq
jee-main-2022-online-30th-june-morning-shift
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
116