Dataset Viewer
Auto-converted to Parquet
document_id
stringclasses
760 values
text
stringlengths
1
79
entity_type
stringclasses
3 values
spans
stringlengths
3
23
UMLS_CUI
stringlengths
6
8
22271960_ru
Гриппоподобная болезнь
DISO
1581-1603
C0521839
22271960_ru
гриппа
DISO
272-278
C0021400
22271960_ru
гриппа
DISO
1076-1082
C0021400
22271960_ru
зева
ANATOMY
246-250
C2945603
22271960_ru
гриппом
DISO
884-891
C0021400
22271960_ru
ГПБ
DISO
1405-1408
C0521839
22271960_ru
гриппа
DISO
1744-1750
C0021400
22271960_ru
гриппом
DISO
1338-1345
C0021400
22271960_ru
инфекцией
DISO
130-139
C3714514
22271960_ru
гриппоподобной болезни
DISO
473-495
C0521839
22271960_ru
респираторной инфекцией
DISO
380-403
C0035243
22271960_ru
ТОРИ
DISO
141-145
C3873497
22271960_ru
ТОРИ
DISO
1139-1143
C3873497
22271960_ru
носа
ANATOMY
239-243
C0028429
22271960_ru
ТОРИ
DISO
405-409
C3873497
22271960_ru
тяжелой острой респираторной инфекцией
DISO
101-139
C3873497
22271960_ru
гриппа
DISO
1526-1532
C0021400
22271960_ru
ГПБ
DISO
497-500
C0521839
22271960_ru
тяжелой острой респираторной инфекцией
DISO
365-403
C3873497
22271960_ru
инфекцией
DISO
394-403
C3714514
22271960_ru
гриппом
DISO
743-750
C0021400
22271960_ru
грипп
DISO
41-46
C0021400
22271960_ru
респираторной инфекцией
DISO
116-139
C0035243
22271960_ru
острой респираторной инфекцией
DISO
373-403
C0339901
22271960_ru
ТОРИ
DISO
862-866
C3873497
22271960_ru
острой респираторной инфекцией
DISO
109-139
C0339901
23397346_ru
иммунодефицита
DISO
971-985
C0021051
23397346_ru
иммунодефицита человека
DISO
971-994
C0019693
23397346_ru
инфекцией
DISO
1000-1009
C3714514
23397346_ru
инфекции, передающиеся половым путем
DISO
1103-1139
C0036916
23397346_ru
инфекции
DISO
1103-1111
C3714514
23397346_ru
ВИЧ-инфекцией
DISO
996-1009
C0019693
23397347_ru
плацебо
CHEM
1372-1379
C0032042
23397347_ru
витамина А
CHEM
71-81
C0042839
23397347_ru
витамина А
CHEM
470-480
C0042839
23397347_ru
плацебо
CHEM
252-259
C0032042
23397347_ru
витамина А
CHEM
692-702
C0042839
23397347_ru
плацебо
CHEM
497-504
C0032042
23397347_ru
витамина А
CHEM
1626-1636
C0042839
23397347_ru
плацебо
CHEM
705-712
C0032042
23397347_ru
витамина
CHEM
692-700
C0042890
23397347_ru
витамина
CHEM
470-478
C0042890
23397347_ru
витамина
CHEM
71-79
C0042890
23397347_ru
витамина
CHEM
1626-1634
C0042890
23397353_ru
полимеразной
CHEM
958-970
C1335439
23397353_ru
инфекции
DISO
1026-1034
C3714514
23397353_ru
инфекции
DISO
1099-1107
C3714514
23397353_ru
иммунодефицита
DISO
145-159
C0021051
23397353_ru
Т-лимфоцитов
ANATOMY
1916-1928
C0039194
23397353_ru
лимфоцитов
ANATOMY
1918-1928
C0024264
23397353_ru
ВИЧ-инфекции
DISO
1095-1107
C0019693
23397353_ru
заражения ВИЧ
DISO
868-881
C0019693
23397353_ru
CD4 +
ANATOMY
1929-1934
C0039215
23397353_ru
иммунодефицита человека
DISO
145-168
C0019693
23397353_ru
ВИЧ-инфекции
DISO
1022-1034
C0019693
23476090_ru
корью
DISO
339-344
C0025007
23476090_ru
инфекции
DISO
659-667
C3714514
23476090_ru
инфекцией
DISO
1639-1648
C3714514
23476090_ru
кори
DISO
98-102
C0025007
23476090_ru
вакцины
CHEM
600-607
C0042210
23476090_ru
кори
DISO
1388-1392
C0025007
23476090_ru
ВИЧ-инфекцией
DISO
1635-1648
C0019693
23476090_ru
кори
DISO
1793-1797
C0025007
23476090_ru
кори
DISO
1066-1070
C0025007
23476090_ru
корью
DISO
276-281
C0025007
23476090_ru
иммунодефицита человека
DISO
675-698
C0019693
23476090_ru
кори
DISO
556-560
C0025007
23476090_ru
кори
DISO
1481-1485
C0025007
23476090_ru
кори
DISO
153-157
C0025007
23476090_ru
инфекциям
DISO
1807-1816
C3714514
23476090_ru
иммунодефицита
DISO
675-689
C0021051
23476090_ru
вакцины
CHEM
1297-1304
C0042210
23476092_ru
туберкулеза
DISO
205-216
C0041296
23476092_ru
клеток
ANATOMY
946-952
C0007634
23476092_ru
T-лимфоцитов
ANATOMY
932-944
C0039194
23476092_ru
иммунодефицита человека
DISO
447-470
C0019693
23476092_ru
ВИЧ-положительные
DISO
526-543
C0019693
23476092_ru
туберкулезом
DISO
479-491
C0041296
23476092_ru
ВИЧ-положительных
DISO
822-839
C0019693
23476092_ru
иммунодефицита
DISO
447-461
C0021051
23476092_ru
туберкулезом
DISO
852-864
C0041296
23476092_ru
CD4+
ANATOMY
953-957
C0039215
23476092_ru
туберкулеза
DISO
1247-1258
C0041296
23476092_ru
CD4+ T-лимфоцитов
ANATOMY
927-944
C0039215
23476092_ru
CD4+
ANATOMY
1101-1105
C0039215
23476092_ru
клеток
ANATOMY
1094-1100
C0007634
23476092_ru
клетки
ANATOMY
964-970
C0007634
23476092_ru
лимфоцитов
ANATOMY
934-944
C0024264
23476093_ru
экстренным акушерским случаям
DISO
238-267
C0269815
23476093_ru
экстренных акушерских случаях
DISO
2029-2058
C0269815
23554522_ru
иммунодефицита человека
DISO
205-228
C0019693
23554522_ru
лимфоцитов
ANATOMY
1412-1422
C0024264
23554522_ru
инфекции
DISO
189-197
C3714514
23554522_ru
инфекционных
DISO
1479-1491
C0009450
23554522_ru
иммунодефицита
DISO
205-219
C0021051
23554522_ru
гемоглобина
CHEM
1373-1384
C0518015
23554522_ru
опиоидных препаратов
CHEM
112-132
C0242402
23554522_ru
Т-лимфоцитов
ANATOMY
1410-1422
C0039194
23554522_ru
ВИЧ-инфицированных
DISO
307-325
C0019693
23554522_ru
инъекционных опиоидных препаратов
CHEM
99-132
CUILESS
End of preview. Expand in Data Studio

BioNNE-L Shared Task at BioASQ 2025

Shared Task Overview

The BioNNE-L shared task challenges participants to tackle medical concept normalization (MCN), also known as entity linking, for English and Russian languages.

Goal: map biomedical entity mentions to their corresponding concept names and unique identifiers (CUIs) within the Unified Medical Language System (UMLS).

Data: Entities from English and Russian scientific abstracts in the biomedical domain. The BioNNE-L task utilizes the MCN annotation of the NEREL-BIO dataset [1], which provides annotated mentions of disorders, anatomical structures, chemicals, diagnostic procedures, and biological functions.

Evaluation Tracks: Similar to the BioNNE 2024 task [2], the evaluation is structured into three tracks:

  • (1), (2) Monolingual tracks requiring separate models for English and Russian;
  • (3) Bilingual track: requiring a single model trained on multilingual dataset combined from English and Russian data:

Shared Task-Specific Challenges:

  • Nestedness: Complexity of nested entity mentions;

  • Partial terminology: a concept does not have concept name in low-resource language (Russian) and thus has to be linked to a vocabulary entry in rich-resource language (English).

Data

The dataset entities can be loaded from HuggingFace:

dataset = load_dataset("andorei/BioNNE-L", "Bilingual", split="train")

Annotated Data Format

Each line describes a single biomedical entity of possible entity types: (i) Disease (DISO), (ii) Chemical (CHEM), (iii) Anatomy (ANATOMY).

  • doc_id is a unique textual document identifier the given entity is derived from. Each document contains multiple entities described with their spans in the document;

  • text is a textual mention string of the given entity;

  • entity_type can take one of three values: DISO, CHEM, ANATOMY. These are high-level semantic types supported by the underlying UMLS knowledge base;

  • spans provides a list of comma-separated entity positions within the given textual document with id doc_id. Each span entry provides starting and ending positions, e.g., 22-28. An entity provided with multiple positions (e.g., 472-476,492-500 for lung injuries) corresponds to an interrupted entity with non-entity words inserted between entity words;

  • UMLS_CUI is the Concept Unique Identifier (CUI) in the UMLS metathesaurus (UMLS serves the normalization vocabulary). This field provides ground truth CUI for the given entity. We note that the predicted CUI in your submission file must be in prediction column.

Normalization Vocabulary

In our work, we collect the bilingual concept vocabulary derived from English and Russian UMLS parts. Due to incompleteness of Russian vocabulary (Partial terminology challenge), part of Russian entities have to be mapped to an English vocabular entry. Vocabulary file is a tsv file with the following fields:

CUI - UMLS CUI;

semantic_type - Concept's semantic type (DISO/CHEM/ANATOMY);

concept_name is a textual concept name derived from UMLS. Each concept can have multiple vocabular entries with different names but sharing the same CUI.

References

[1] Loukachevitch, Natalia, Andrey Sakhovskiy, and Elena Tutubalina. "Biomedical Concept Normalization over Nested Entities with Partial UMLS Terminology in Russian." Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024). 2024.

[2] Davydova, Vera, Natalia Loukachevitch, and Elena Tutubalina. "Overview of BioNNE task on biomedical nested named entity recognition at BioASQ 2024." CLEF Working Notes (2024).

Downloads last month
590