The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider removing the loading script and relying on automated data support (you can use convert_to_parquet from the datasets library). If this is not possible, please open a discussion for direct help.

Fin-Fact - Financial Fact-Checking Dataset

Overview

Welcome to the Fin-Fact repository! Fin-Fact is a comprehensive dataset designed specifically for financial fact-checking and explanation generation. This README provides an overview of the dataset, how to use it, and other relevant information. Click here to access the paper.

Dataset Usage

Fin-Fact is a valuable resource for researchers, data scientists, and fact-checkers in the financial domain. Here's how you can use it:

  1. Download the Dataset: You can download the Fin-Fact dataset here.

  2. Exploratory Data Analysis: Perform exploratory data analysis to understand the dataset's structure, distribution, and any potential biases.

  3. Natural Language Processing (NLP) Tasks: Utilize the dataset for various NLP tasks such as fact-checking, claim verification, and explanation generation.

  4. Fact Checking Experiments: Train and evaluate machine learning models, including text and image analysis, using the dataset to enhance the accuracy of fact-checking systems.

Leaderboard

Dependencies

We recommend you create an anaconda environment:

conda create --name finfact python=3.6 conda-build

Then, install Python requirements:

pip install -r requirements.txt

Run models for paper metrics

We provide scripts let you easily run our dataset on existing state-of-the-art models and re-create the metrics published in paper. You should be able to reproduce our results from the paper by following these instructions. Please post an issue if you're unable to do this. To run existing ANLI models for fact checking.

Run:

  1. BART
python anli.py --model_name 'ynie/bart-large-snli_mnli_fever_anli_R1_R2_R3-nli' --data_file finfact.json --threshold 0.5
  1. RoBERTa
python anli.py --model_name 'ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli' --data_file finfact.json --threshold 0.5
  1. ELECTRA
python anli.py --model_name 'ynie/electra-large-discriminator-snli_mnli_fever_anli_R1_R2_R3-nli' --data_file finfact.json --threshold 0.5
  1. AlBERT
python anli.py --model_name 'ynie/albert-xxlarge-v2-snli_mnli_fever_anli_R1_R2_R3-nli' --data_file finfact.json --threshold 0.5
  1. XLNET
python anli.py --model_name 'ynie/xlnet-large-cased-snli_mnli_fever_anli_R1_R2_R3-nli' --data_file finfact.json --threshold 0.5
  1. GPT-2
python gpt2_nli.py --model_name 'fractalego/fact-checking' --data_file finfact.json

Citation

@misc{rangapur2023finfact,
      title={Fin-Fact: A Benchmark Dataset for Multimodal Financial Fact Checking and Explanation Generation}, 
      author={Aman Rangapur and Haoran Wang and Kai Shu},
      year={2023},
      eprint={2309.08793},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}

Contribution

We welcome contributions from the community to help improve Fin-Fact. If you have suggestions, bug reports, or want to contribute code or data, please check our CONTRIBUTING.md file for guidelines.

License

Fin-Fact is released under the MIT License. Please review the license before using the dataset.

Contact

For questions, feedback, or inquiries related to Fin-Fact, please contact arangapur@hawk.iit.edu.

We hope you find Fin-Fact valuable for your research and fact-checking endeavors. Happy fact-checking!

Downloads last month
6
Edit dataset card