Datasets:

Modalities:
Image
Text
Formats:
parquet
Libraries:
Datasets
Dask
License:
.gitattributes CHANGED
@@ -1,2 +1,8 @@
1
  data.tar.gz filter=lfs diff=lfs merge=lfs -text
2
- *.parquet filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
1
  data.tar.gz filter=lfs diff=lfs merge=lfs -text
2
+ full/train-00000-of-00005.parquet filter=lfs diff=lfs merge=lfs -text
3
+ full/train-00001-of-00005.parquet filter=lfs diff=lfs merge=lfs -text
4
+ full/train-00002-of-00005.parquet filter=lfs diff=lfs merge=lfs -text
5
+ full/train-00003-of-00005.parquet filter=lfs diff=lfs merge=lfs -text
6
+ full/train-00004-of-00005.parquet filter=lfs diff=lfs merge=lfs -text
7
+ full/validation-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
8
+ full/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
.gitignore DELETED
@@ -1,4 +0,0 @@
1
- env
2
- .idea
3
- *.json
4
- *.arrow
 
 
 
 
 
README.md CHANGED
@@ -1,94 +1,90 @@
1
  ---
2
- task_categories:
3
- - object-detection
4
- version: 2024.07.17
5
  license: cc-by-4.0
6
- pretty_name: LADaS
7
  size_categories:
8
  - 1K<n<10K
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
  # LADaS: Layout Analysis Dataset with Segmonto
12
 
13
- ## Dataset Details
14
-
15
- LADaS, created by the [ALMANaCH team-project](https://almanach.inria.fr/index-en.html) at Inria,
16
- continued in partnership with other researchers, is a multidocuments diachronic layout analysis
17
- dataset. This dataset includes:
18
-
19
- - Monographs from the Bibliothèque Nationale de France (17th century - today);
20
- - PhD Thesis, in various fields (not only STEM, 20th-21st century);
21
- - Selling Catalogs (for manuscripts and art pieces), in various fields (18th-20th century);
22
- - Noisy digitization (with fingers for example, 20th-21st century);
23
- - Academic papers (mostly Humanities and Social Sciences) (19th-21st century);
24
- - Magazines about technologies and video games, from 1920s to 2010;
25
- - Misc stuff found here and there.
26
-
27
- The data are in YoloV8 bbox format (center_x center_y width height).
28
-
29
- The script in document is mostly Latin script, and language is mostly French with some representation of the main
30
- western academic languages.
31
-
32
- ### Annotations
33
-
34
- Label Annotation have been conducted using the [SegmOnto](https://segmonto.github.io/) vocabulary.
35
- An annotation guide is available [here](https://github.com/DEFI-COLaF/LADaS/blob/25d4cf3f850cf79d18af572153cfbc73deff4160/AnnotationGuide.md).
36
-
37
-
38
- ### Dataset Description
39
-
40
-
41
- - **Curated by:** Thibault Clérice & Juliette Janès
42
- - **Funded by:** Défi COLaF, Inria
43
- - **License:** CC-BY
44
-
45
- ## Uses
46
-
47
- ### Direct Use
48
-
49
- - Layout Analysis
50
-
51
- ## Dataset Structure
52
-
53
- You'll find 8 fields in the parquet:
54
-
55
- - `image_path` is a string identifier for the file
56
- - `year` is the year of production. It can be null.
57
- - `dating-certainty` is used to specify when a date is automatically provided based on a date range and a century range. They will usually be centuries, such as 1600.
58
- - `set` represents the subset of the data, there are a few, including `theatre` for plays, `monographies` for monographs, `theses` for PhD thesis, etc.
59
- - `image` contains the image
60
- - `width` and `height` are quite clear...
61
- - `objects` is a dictionary with entries:
62
- - `bbox` which represents a series of bbox using the COCO / YOLO format (tuple of relative center_x, center_y, width, height)
63
- - `category` which contains a plain text representation of the annotation class of each bbox. There are 41 classes, further described on the annotation guide.
64
- - `objects` can contain an empty `bbox` list and an empty `category` list: it means the image does not contain any objects.
65
- ### Annotations
66
-
67
- #### Annotation process
68
-
69
- The annotation process is described in the [dataset paper](https://inria.hal.science/hal-04513725).
70
-
71
- #### Who are the annotators?
72
-
73
- - Clérice, Thibault
74
- - Janès, Juliette
75
- - Scheithauer, Hugo
76
- - Bénière, Sarah
77
- - Bougrelle, Roxane
78
- - [Anonymous place holder until a paper is published]
79
-
80
- ## Citation
81
-
82
- **BibTeX:**
83
-
84
- ```tex
85
- @misc{Clerice_Layout_Analysis_Dataset,
86
- author = {Clérice, Thibault and Janès, Juliette and Scheithauer, Hugo and Bénière, Sarah and Bougrelle, Roxane and Romary, Laurent and Sagot, Benoit},
87
- title = {{Layout Analysis Dataset with SegmOnto (LADaS)}},
88
- url = {https://github.com/DEFI-COLaF/LADaS}
89
- }
90
- ```
91
-
92
- ## Dataset Card Contact
93
-
94
- Thibault Clérice or Juliette Janes (first.last@inria.fr)
 
1
  ---
 
 
 
2
  license: cc-by-4.0
 
3
  size_categories:
4
  - 1K<n<10K
5
+ task_categories:
6
+ - object-detection
7
+ pretty_name: LADaS
8
+ dataset_info:
9
+ config_name: full
10
+ features:
11
+ - name: image_path
12
+ dtype: string
13
+ - name: image
14
+ dtype: image
15
+ - name: objects
16
+ sequence:
17
+ - name: bbox
18
+ sequence: float32
19
+ length: 4
20
+ - name: category
21
+ dtype:
22
+ class_label:
23
+ names:
24
+ '0': AdvertisementZone
25
+ '1': DigitizationArtefactZone
26
+ '2': DropCapitalZone
27
+ '3': FigureZone
28
+ '4': FigureZone-FigDesc
29
+ '5': FigureZone-Head
30
+ '6': GraphicZone
31
+ '7': GraphicZone-Decoration
32
+ '8': GraphicZone-FigDesc
33
+ '9': GraphicZone-Head
34
+ '10': GraphicZone-Maths
35
+ '11': GraphicZone-Part
36
+ '12': GraphicZone-TextualContent
37
+ '13': MainZone-Date
38
+ '14': MainZone-Entry
39
+ '15': MainZone-Entry-Continued
40
+ '16': MainZone-Form
41
+ '17': MainZone-Head
42
+ '18': MainZone-Lg
43
+ '19': MainZone-Lg-Continued
44
+ '20': MainZone-List
45
+ '21': MainZone-List-Continued
46
+ '22': MainZone-Other
47
+ '23': MainZone-P
48
+ '24': MainZone-P-Continued
49
+ '25': MainZone-Signature
50
+ '26': MainZone-Sp
51
+ '27': MainZone-Sp-Continued
52
+ '28': MarginTextZone-ManuscriptAddendum
53
+ '29': MarginTextZone-Notes
54
+ '30': MarginTextZone-Notes-Continued
55
+ '31': NumberingZone
56
+ '32': PageTitleZone
57
+ '33': PageTitleZone-Index
58
+ '34': QuireMarkZone
59
+ '35': RunningTitleZone
60
+ '36': StampZone
61
+ '37': StampZone-Sticker
62
+ '38': TableZone
63
+ '39': TableZone-Continued
64
+ '40': TableZone-Head
65
+ splits:
66
+ - name: train
67
+ num_bytes: 2357337025.298
68
+ num_examples: 4199
69
+ - name: validation
70
+ num_bytes: 237257708.0
71
+ num_examples: 662
72
+ - name: test
73
+ num_bytes: 92146968.0
74
+ num_examples: 294
75
+ download_size: 1535949175
76
+ dataset_size: 2686741701.298
77
+ configs:
78
+ - config_name: full
79
+ data_files:
80
+ - split: train
81
+ path: full/train-*
82
+ - split: validation
83
+ path: full/validation-*
84
+ - split: test
85
+ path: full/test-*
86
+ default: true
87
  ---
88
 
89
  # LADaS: Layout Analysis Dataset with Segmonto
90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
build.py DELETED
@@ -1,50 +0,0 @@
1
- import os
2
- from datasets import load_dataset
3
- from datasets import config
4
- from datasets.utils.py_utils import convert_file_size_to_int
5
- from datasets.table import embed_table_storage
6
- from tqdm import tqdm
7
-
8
-
9
- def build_parquet(split):
10
- # Source: https://discuss.huggingface.co/t/how-to-save-audio-dataset-with-parquet-format-on-disk/66179
11
- dataset = load_dataset("./src/LADaS.py", split=split, trust_remote_code=True)
12
- max_shard_size = '500MB'
13
-
14
- dataset_nbytes = dataset._estimate_nbytes()
15
- max_shard_size = convert_file_size_to_int(max_shard_size or config.MAX_SHARD_SIZE)
16
- num_shards = int(dataset_nbytes / max_shard_size) + 1
17
- num_shards = max(num_shards, 1)
18
- shards = (dataset.shard(num_shards=num_shards, index=i, contiguous=True) for i in range(num_shards))
19
-
20
- def shards_with_embedded_external_files(shards):
21
- for shard in shards:
22
- format = shard.format
23
- shard = shard.with_format("arrow")
24
- shard = shard.map(
25
- embed_table_storage,
26
- batched=True,
27
- batch_size=1000,
28
- keep_in_memory=True,
29
- )
30
- shard = shard.with_format(**format)
31
- yield shard
32
-
33
- shards = shards_with_embedded_external_files(shards)
34
-
35
- os.makedirs("data", exist_ok=True)
36
-
37
- for index, shard in tqdm(
38
- enumerate(shards),
39
- desc="Save the dataset shards",
40
- total=num_shards,
41
- ):
42
- shard_path = f"data/{split}-{index:05d}-of-{num_shards:05d}.parquet"
43
- shard.to_parquet(shard_path)
44
-
45
-
46
- if __name__ == "__main__":
47
- build_parquet("train")
48
- build_parquet("validation")
49
- build_parquet("test")
50
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
data/train-00003-of-00004.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e07ed6a4a4a37ef5107bbb92448497f8fe1a5f634b5c7f53e6a3dea0232ab4e3
3
- size 152476613
 
 
 
 
{data → full}/test-00000-of-00001.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8f8d4c8d639b746fef3265a8f17ade95ebbe91a71f80803343754b82401baff4
3
- size 109132271
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2f02f4070c2af6f8026c6785c45dd91505ba5691b3444c9a25e4e85c411ba2e
3
+ size 89745385
data/train-00001-of-00004.parquet → full/train-00000-of-00005.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:15f15a34695f67ff0457efcf7339f1225e36b697c53537641b5785d0eaaa4037
3
- size 587754651
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f04ed7e49f2b6d58ac8f084a5c0d166d742fe3a756fa0f8fa5957cc751839fb
3
+ size 466051138
data/train-00002-of-00004.parquet → full/train-00001-of-00005.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d7316055009e5773364ddbd7cf47b6dd4cbff4b7ff03620368fda3e6e3a5702a
3
- size 154107108
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94e301563864b66c0ce34b5b8f06c5bad97679004dfa1c182e3131750a272a73
3
+ size 435931215
data/train-00000-of-00004.parquet → full/train-00002-of-00005.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:50510535956adfcce298f3666a6fe04485a1b6bfc43753b8ca9254fb1086f771
3
- size 520039514
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f02c7cb4653d06c1f1a3cd1818bcd433283e4d15c24494c396bedfee4a9ba707
3
+ size 121729125
full/train-00003-of-00005.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b68bbdf19b575c3a0a574f03ea3cb08bbdd6a7272d39ded52ce5b02682baaa3
3
+ size 104987339
full/train-00004-of-00005.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c0dcfb9edab06a29ede446d52366aa5f05ec4add0a41bdb09580171dc54a0ab
3
+ size 85670348
{data → full}/validation-00000-of-00001.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:da1a0c88505d6de40c42452a82c9e9f1e9bdf67631b207c04e8ed7b445d3d4ad
3
- size 258990056
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbb7122abdcfb47fa695145b3532816c5fc741e8f05b35631595f0b99034c672
3
+ size 231834625
src/LADaS.py DELETED
@@ -1,141 +0,0 @@
1
- import glob
2
- import os
3
- import datasets
4
- from PIL import Image
5
- import csv
6
-
7
-
8
- _VERSION = "2024-07-17"
9
- _URL = f"https://github.com/DEFI-COLaF/LADaS/archive/refs/tags/{_VERSION}.tar.gz"
10
- _HOMEPAGE = "https://github.com/DEFI-COLaF/LADaS"
11
- _LICENSE = "CC BY 4.0"
12
- _CITATION = """\
13
- @misc{Clerice_Layout_Analysis_Dataset,
14
- author = {Clérice, Thibault and Janès, Juliette and Scheithauer, Hugo and Bénière, Sarah and Romary, Laurent and Sagot, Benoit and Bougrelle, Roxane},
15
- title = {{Layout Analysis Dataset with SegmOnto (LADaS)}},
16
- url = {https://github.com/DEFI-COLaF/LADaS}
17
- }
18
- """
19
-
20
- _CATEGORIES: list[str] = ["AdvertisementZone", "DigitizationArtefactZone", "DropCapitalZone", "FigureZone",
21
- "FigureZone-FigDesc", "FigureZone-Head", "GraphicZone", "GraphicZone-Decoration",
22
- "GraphicZone-FigDesc", "GraphicZone-Head", "GraphicZone-Maths", "GraphicZone-Part",
23
- "GraphicZone-TextualContent", "MainZone-Date", "MainZone-Entry", "MainZone-Entry-Continued",
24
- "MainZone-Form", "MainZone-Head", "MainZone-Lg", "MainZone-Lg-Continued", "MainZone-List",
25
- "MainZone-List-Continued", "MainZone-Other", "MainZone-P", "MainZone-P-Continued",
26
- "MainZone-Signature", "MainZone-Sp", "MainZone-Sp-Continued",
27
- "MarginTextZone-ManuscriptAddendum", "MarginTextZone-Notes", "MarginTextZone-Notes-Continued",
28
- "NumberingZone", "TitlePageZone", "TitlePageZone-Index", "QuireMarksZone", "RunningTitleZone",
29
- "StampZone", "StampZone-Sticker", "TableZone", "TableZone-Continued", "TableZone-Head"]
30
-
31
-
32
- class LadasConfig(datasets.BuilderConfig):
33
- """Builder Config for LADaS"""
34
- def __init__(self, *args, **kwargs):
35
- super().__init__(*args, **kwargs)
36
-
37
-
38
- class LadasDataset(datasets.GeneratorBasedBuilder):
39
- VERSION = datasets.Version(_VERSION.replace("-", "."))
40
- BUILDER_CONFIGS = [
41
- LadasConfig(
42
- name="full",
43
- description="Full version of the dataset"
44
- )
45
- ]
46
-
47
- def _info(self) -> datasets.DatasetInfo:
48
- features = datasets.Features({
49
- "image_path": datasets.Value("string"),
50
- "year": datasets.Value("int32"),
51
- "dating-certainty": datasets.Value("bool"),
52
- "set": datasets.Value("string"),
53
- "image": datasets.Image(),
54
- "width": datasets.Value("int32"),
55
- "height": datasets.Value("int32"),
56
- "objects": datasets.Sequence(
57
- {
58
- "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
59
- "category": datasets.Value("string"),
60
- }
61
- )
62
- })
63
- return datasets.DatasetInfo(
64
- features=features,
65
- homepage=_HOMEPAGE,
66
- citation=_CITATION,
67
- license=_LICENSE
68
- )
69
-
70
- def _split_generators(self, dl_manager):
71
- urls_to_download = _URL
72
- downloaded_files = dl_manager.download_and_extract(urls_to_download)
73
- return [
74
- datasets.SplitGenerator(
75
- name=datasets.Split.TRAIN,
76
- gen_kwargs={
77
- "local_dir": downloaded_files,
78
- "split": "train"
79
- },
80
- ),
81
- datasets.SplitGenerator(
82
- name=datasets.Split.VALIDATION,
83
- gen_kwargs={
84
- "local_dir": downloaded_files,
85
- "split": "valid"
86
- },
87
- ),
88
- datasets.SplitGenerator(
89
- name=datasets.Split.TEST,
90
- gen_kwargs={
91
- "local_dir": downloaded_files,
92
- "split": "test"
93
- },
94
- ),
95
- ]
96
-
97
- def _generate_examples(self, local_dir: str, split: str):
98
- idx = 0
99
-
100
- df = {}
101
- for file in glob.glob(os.path.join(local_dir, "*", "metadata.csv")):
102
- with open(file) as f:
103
- reader = csv.DictReader(f)
104
- for line in reader:
105
- df[line["file"]] = line
106
-
107
- for file in glob.glob(os.path.join(local_dir, "*", "data", "*", split, "labels", "*.txt")):
108
- objects = []
109
- with open(file) as f:
110
- for line in f:
111
- cls, *bbox = line.strip().split()
112
- objects.append({"category": _CATEGORIES[int(cls)], "bbox": list(map(float, bbox))})
113
-
114
- image_path = os.path.normpath(file).split(os.sep)
115
- image_path = os.path.join(*image_path[:-2], "images", image_path[-1].replace(".txt", ".jpg"))
116
- if file.startswith("/") and not image_path.startswith("/"):
117
- image_path = "/" + image_path
118
-
119
- with open(image_path, "rb") as f:
120
- image_bytes = f.read()
121
-
122
- with Image.open(image_path) as im:
123
- width, height = im.size
124
-
125
- filename = os.path.basename(image_path)
126
- line = df[filename]
127
-
128
- yield idx, {
129
- "image_path": f"{line['subset']}/{filename}",
130
- "image": {"path": image_path, "bytes": image_bytes},
131
- "year": line["year"] or None,
132
- "dating-certainty": line["dating-certainty"],
133
- "set": line["subset"],
134
- "width": width,
135
- "height": height,
136
- "objects": objects,
137
- }
138
- idx += 1
139
-
140
- if __name__ == "__main__":
141
- LadasDataset().download_and_prepare()