Convert dataset to Parquet

#3
by rishabbala - opened
README.md CHANGED
@@ -19,13 +19,20 @@ dataset_info:
19
  dtype: string
20
  splits:
21
  - name: train
22
- num_bytes: 6389954
23
  num_examples: 33410
24
  - name: validation
25
- num_bytes: 376508
26
  num_examples: 1954
27
- download_size: 2198056
28
- dataset_size: 6766462
 
 
 
 
 
 
 
29
  ---
30
 
31
  # Dataset Card for "social_i_qa"
 
19
  dtype: string
20
  splits:
21
  - name: train
22
+ num_bytes: 6327209
23
  num_examples: 33410
24
  - name: validation
25
+ num_bytes: 372815
26
  num_examples: 1954
27
+ download_size: 3678635
28
+ dataset_size: 6700024
29
+ configs:
30
+ - config_name: default
31
+ data_files:
32
+ - split: train
33
+ path: data/train-*
34
+ - split: validation
35
+ path: data/validation-*
36
  ---
37
 
38
  # Dataset Card for "social_i_qa"
data/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e3ec841d22f62a02a7a1c024bde076d735c5adc580a3455d70ae89d0144b2d0
3
+ size 3475355
data/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70b1ce33fe17e0b843761a5c34717717a30669957abd184fd94ed463f5922192
3
+ size 203280
social_i_qa.py DELETED
@@ -1,100 +0,0 @@
1
- """TODO(social_i_qa): Add a description here."""
2
-
3
-
4
- import json
5
- import os
6
-
7
- import datasets
8
-
9
-
10
- # TODO(social_i_qa): BibTeX citation
11
- _CITATION = """
12
- """
13
-
14
- # TODO(social_i_qa):
15
- _DESCRIPTION = """\
16
- We introduce Social IQa: Social Interaction QA, a new question-answering benchmark for testing social commonsense intelligence. Contrary to many prior benchmarks that focus on physical or taxonomic knowledge, Social IQa focuses on reasoning about people’s actions and their social implications. For example, given an action like "Jesse saw a concert" and a question like "Why did Jesse do this?", humans can easily infer that Jesse wanted "to see their favorite performer" or "to enjoy the music", and not "to see what's happening inside" or "to see if it works". The actions in Social IQa span a wide variety of social situations, and answer candidates contain both human-curated answers and adversarially-filtered machine-generated candidates. Social IQa contains over 37,000 QA pairs for evaluating models’ abilities to reason about the social implications of everyday events and situations. (Less)
17
- """
18
- _URL = "https://storage.googleapis.com/ai2-mosaic/public/socialiqa/socialiqa-train-dev.zip"
19
-
20
-
21
- class SocialIQa(datasets.GeneratorBasedBuilder):
22
- """TODO(social_i_qa): Short description of my dataset."""
23
-
24
- # TODO(social_i_qa): Set up version.
25
- VERSION = datasets.Version("0.1.0")
26
-
27
- def _info(self):
28
- # TODO(social_i_qa): Specifies the datasets.DatasetInfo object
29
- return datasets.DatasetInfo(
30
- # This is the description that will appear on the datasets page.
31
- description=_DESCRIPTION,
32
- # datasets.features.FeatureConnectors
33
- features=datasets.Features(
34
- {
35
- # These are the features of your dataset like images, labels ...
36
- "context": datasets.Value("string"),
37
- "question": datasets.Value("string"),
38
- "answerA": datasets.Value("string"),
39
- "answerB": datasets.Value("string"),
40
- "answerC": datasets.Value("string"),
41
- "label": datasets.Value("string"),
42
- }
43
- ),
44
- # If there's a common (input, target) tuple from the features,
45
- # specify them here. They'll be used if as_supervised=True in
46
- # builder.as_dataset.
47
- supervised_keys=None,
48
- # Homepage of the dataset for documentation
49
- homepage="https://leaderboard.allenai.org/socialiqa/submissions/get-started",
50
- citation=_CITATION,
51
- )
52
-
53
- def _split_generators(self, dl_manager):
54
- """Returns SplitGenerators."""
55
- # TODO(social_i_qa): Downloads the data and defines the splits
56
- # dl_manager is a datasets.download.DownloadManager that can be used to
57
- # download and extract URLs
58
- dl_dir = dl_manager.download_and_extract(_URL)
59
- dl_dir = os.path.join(dl_dir, "socialiqa-train-dev")
60
- return [
61
- datasets.SplitGenerator(
62
- name=datasets.Split.TRAIN,
63
- # These kwargs will be passed to _generate_examples
64
- gen_kwargs={
65
- "filepath": os.path.join(dl_dir, "train.jsonl"),
66
- "labelpath": os.path.join(dl_dir, "train-labels.lst"),
67
- },
68
- ),
69
- datasets.SplitGenerator(
70
- name=datasets.Split.VALIDATION,
71
- # These kwargs will be passed to _generate_examples
72
- gen_kwargs={
73
- "filepath": os.path.join(dl_dir, "dev.jsonl"),
74
- "labelpath": os.path.join(dl_dir, "dev-labels.lst"),
75
- },
76
- ),
77
- ]
78
-
79
- def _generate_examples(self, filepath, labelpath):
80
- """Yields examples."""
81
- # TODO(social_i_qa): Yields (key, example) tuples from the dataset
82
- with open(labelpath, encoding="utf-8") as f:
83
- labels = [label.strip() for label in f]
84
- with open(filepath, encoding="utf-8") as f1:
85
- for id_, row in enumerate(f1):
86
- data = json.loads(row)
87
- label = labels[id_]
88
- context = data["context"]
89
- answerA = data["answerA"]
90
- answerB = data["answerB"]
91
- answerC = data["answerC"]
92
- question = data["question"]
93
- yield id_, {
94
- "context": context,
95
- "question": question,
96
- "answerA": answerA,
97
- "answerB": answerB,
98
- "answerC": answerC,
99
- "label": label,
100
- }