Datasets:

Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 7,205 Bytes
1a4c0f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
988152f
 
 
1a4c0f5
988152f
1a4c0f5
 
 
988152f
1a4c0f5
 
 
988152f
1a4c0f5
 
 
988152f
1a4c0f5
 
 
988152f
35561c7
1a4c0f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dataset for TLDR: Extreme Summarization of Scientific Documents"""


import json
import os

import datasets


_SOURCE = "source"
_TARGET = "target"

_CITATION = """\
@article{cachola2020tldr,
  title={{TLDR}: Extreme Summarization of Scientific Documents},
  author={Isabel Cachola and Kyle Lo and Arman Cohan and Daniel S. Weld},
  journal={arXiv:2004.15011},
  year={2020},
}
"""

_DESCRIPTION = """\
A new multi-target dataset of 5.4K TLDRs over 3.2K papers.
SCITLDR contains both author-written and expert-derived TLDRs,
where the latter are collected using a novel annotation protocol
that produces high-quality summaries while minimizing annotation burden.
"""


_LICENSE = "Apache License 2.0"

# TODO: Add link to the official dataset URLs here
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLs = {
    "Abstract": "https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-A/",
    "AIC": "https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-AIC/",
    "FullText": "https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-FullText/",
}

_TRAIN_DATA = "train.jsonl"
_TEST_DATA = "test.jsonl"
_VALID_DATA = "dev.jsonl"


# There are several preprocessing scripts given in the original SciTLDR GitHub repository to preprocess this data.
class Scitldr(datasets.GeneratorBasedBuilder):
    """Dataset for TLDR: Extreme Summarization of Scientific Documents."""

    VERSION = datasets.Version("1.1.0")

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('scitldr', 'Abstract')
    # data = datasets.load_dataset('scitldr', 'AIC')
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="Abstract", description="This part contains only abstracts of the paper"),
        datasets.BuilderConfig(
            name="AIC",
            description="This part contains Abstracts, Introduction and Conclusion (AIC) sections of the paper",
        ),
        datasets.BuilderConfig(name="FullText", description="This part contains the full text of the paper"),
    ]

    DEFAULT_CONFIG_NAME = (
        "Abstract"  # It's not mandatory to have a default configuration. Just use one if it make sense.
    )

    def _info(self):
        if self.config.name == "AIC":  # This is the name of the configuration selected in BUILDER_CONFIGS above
            features = datasets.Features(
                {
                    "source": datasets.Sequence(datasets.Value("string")),
                    "source_labels": datasets.Sequence(datasets.ClassLabel(num_classes=2, names=[0, 1])),
                    "rouge_scores": datasets.Sequence(datasets.Value("float32")),
                    "paper_id": datasets.Value("string"),
                    "ic": datasets.Value("bool_"),
                    "target": datasets.features.Sequence(datasets.Value("string"))
                    # These are the features of your dataset like images, labels ...
                }
            )
        else:
            features = datasets.Features(
                {
                    "source": datasets.Sequence(datasets.Value("string")),
                    "source_labels": datasets.Sequence(
                        datasets.ClassLabel(num_classes=2, names=["non-oracle", "oracle"])
                    ),
                    "rouge_scores": datasets.Sequence(datasets.Value("float32")),
                    "paper_id": datasets.Value("string"),
                    "target": datasets.Sequence(datasets.Value("string"))
                    # These are the features of your dataset like images, labels ...
                }
            )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=(_SOURCE, _TARGET),
            # Homepage of the dataset for documentation
            homepage="https://github.com/allenai/scitldr",
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        urls = {
            "train": _URLs[self.config.name] + _TRAIN_DATA,
            "valid": _URLs[self.config.name] + _VALID_DATA,
            "test": _URLs[self.config.name] + _TEST_DATA,
        }
        data_dir = dl_manager.download(urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": os.path.join(data_dir["train"])},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": os.path.join(data_dir["test"])},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": os.path.join(data_dir["valid"])},
            ),
        ]

    def _generate_examples(self, filepath):
        """Yields examples."""
        with open(filepath, encoding="utf-8") as f:
            for id_, row in enumerate(f):
                data = json.loads(row)
                if self.config.name == "AIC":
                    yield id_, {
                        "source": data["source"],
                        "source_labels": data["source_labels"],
                        "rouge_scores": data["rouge_scores"],
                        "paper_id": data["paper_id"],
                        "ic": True if data["ic"] else False,
                        "target": data["target"],
                    }
                else:
                    yield id_, {
                        "source": data["source"],
                        "source_labels": data["source_labels"],
                        "rouge_scores": data["rouge_scores"],
                        "paper_id": data["paper_id"],
                        "target": data["target"],
                    }