Datasets:
Commit
•
1a4c0f5
0
Parent(s):
Update files from the datasets library (from 1.2.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.2.0
- .gitattributes +27 -0
- README.md +210 -0
- dataset_infos.json +1 -0
- dummy/AIC/0.0.0/dummy_data.zip +3 -0
- dummy/Abstract/0.0.0/dummy_data.zip +3 -0
- dummy/FullText/0.0.0/dummy_data.zip +3 -0
- scitldr.py +183 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- no-annotation
|
4 |
+
language_creators:
|
5 |
+
- found
|
6 |
+
languages:
|
7 |
+
- en
|
8 |
+
licenses:
|
9 |
+
- unknown
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
size_categories:
|
13 |
+
- 1K<n<10K
|
14 |
+
source_datasets:
|
15 |
+
- original
|
16 |
+
task_categories:
|
17 |
+
- conditional-text-generation
|
18 |
+
task_ids:
|
19 |
+
- summarization
|
20 |
+
---
|
21 |
+
|
22 |
+
# Dataset Card for SciTLDR
|
23 |
+
|
24 |
+
## Table of Contents
|
25 |
+
- [Dataset Description](#dataset-description)
|
26 |
+
- [Dataset Summary](#dataset-summary)
|
27 |
+
- [Supported Tasks](#supported-tasks-and-leaderboards)
|
28 |
+
- [Languages](#languages)
|
29 |
+
- [Dataset Structure](#dataset-structure)
|
30 |
+
- [Data Instances](#data-instances)
|
31 |
+
- [Data Fields](#data-instances)
|
32 |
+
- [Data Splits](#data-instances)
|
33 |
+
- [Dataset Creation](#dataset-creation)
|
34 |
+
- [Curation Rationale](#curation-rationale)
|
35 |
+
- [Source Data](#source-data)
|
36 |
+
- [Annotations](#annotations)
|
37 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
38 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
39 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
40 |
+
- [Discussion of Biases](#discussion-of-biases)
|
41 |
+
- [Other Known Limitations](#other-known-limitations)
|
42 |
+
- [Additional Information](#additional-information)
|
43 |
+
- [Dataset Curators](#dataset-curators)
|
44 |
+
- [Licensing Information](#licensing-information)
|
45 |
+
- [Citation Information](#citation-information)
|
46 |
+
|
47 |
+
## Dataset Description
|
48 |
+
|
49 |
+
- **Homepage:** https://github.com/allenai/scitldr
|
50 |
+
- **Repository:** https://github.com/allenai/scitldr
|
51 |
+
- **Paper:** https://arxiv.org/abs/2004.15011
|
52 |
+
- **Leaderboard:**
|
53 |
+
- **Point of Contact:** {isabelc,kylel,armanc,danw}@allenai.org
|
54 |
+
|
55 |
+
### Dataset Summary
|
56 |
+
`SciTLDR`: Extreme Summarization of Scientific Documents
|
57 |
+
|
58 |
+
SciTLDR is a new multi-target dataset of 5.4K TLDRs over 3.2K papers. SciTLDR contains both author-written and expert-derived TLDRs, where the latter are collected using a novel annotation protocol that produces high-quality summaries while minimizing annotation burden.
|
59 |
+
|
60 |
+
### Supported Tasks and Leaderboards
|
61 |
+
|
62 |
+
summarization
|
63 |
+
|
64 |
+
### Languages
|
65 |
+
|
66 |
+
English
|
67 |
+
|
68 |
+
## Dataset Structure
|
69 |
+
|
70 |
+
SciTLDR is split in to a 60/20/20 train/dev/test split. For each file, each line is a json, formatted as follows
|
71 |
+
```
|
72 |
+
{
|
73 |
+
"source":[
|
74 |
+
"sent0",
|
75 |
+
"sent1",
|
76 |
+
"sent2",
|
77 |
+
...
|
78 |
+
],
|
79 |
+
"source_labels":[binary list in which 1 is the oracle sentence],
|
80 |
+
"rouge_scores":[precomputed rouge-1 scores],
|
81 |
+
"paper_id":"PAPER-ID",
|
82 |
+
"target":[
|
83 |
+
"author-tldr",
|
84 |
+
"pr-tldr0",
|
85 |
+
"pr-tldr1",
|
86 |
+
...
|
87 |
+
],
|
88 |
+
"title":"TITLE"
|
89 |
+
}
|
90 |
+
```
|
91 |
+
The keys `rouge_scores` and `source_labels` are not necessary for any code to run, precomputed Rouge scores are provided for future research.
|
92 |
+
|
93 |
+
### Data Instances
|
94 |
+
|
95 |
+
{
|
96 |
+
"source": [
|
97 |
+
"Mixed precision training (MPT) is becoming a practical technique to improve the speed and energy efficiency of training deep neural networks by leveraging the fast hardware support for IEEE half-precision floating point that is available in existing GPUs.",
|
98 |
+
"MPT is typically used in combination with a technique called loss scaling, that works by scaling up the loss value up before the start of backpropagation in order to minimize the impact of numerical underflow on training.",
|
99 |
+
"Unfortunately, existing methods make this loss scale value a hyperparameter that needs to be tuned per-model, and a single scale cannot be adapted to different layers at different training stages.",
|
100 |
+
"We introduce a loss scaling-based training method called adaptive loss scaling that makes MPT easier and more practical to use, by removing the need to tune a model-specific loss scale hyperparameter.",
|
101 |
+
"We achieve this by introducing layer-wise loss scale values which are automatically computed during training to deal with underflow more effectively than existing methods.",
|
102 |
+
"We present experimental results on a variety of networks and tasks that show our approach can shorten the time to convergence and improve accuracy, compared with using the existing state-of-the-art MPT and single-precision floating point."
|
103 |
+
],
|
104 |
+
"source_labels": [
|
105 |
+
0,
|
106 |
+
0,
|
107 |
+
0,
|
108 |
+
1,
|
109 |
+
0,
|
110 |
+
0
|
111 |
+
],
|
112 |
+
"rouge_scores": [
|
113 |
+
0.2399999958000001,
|
114 |
+
0.26086956082230633,
|
115 |
+
0.19999999531250012,
|
116 |
+
0.38095237636054424,
|
117 |
+
0.2051282003944774,
|
118 |
+
0.2978723360796741
|
119 |
+
],
|
120 |
+
"paper_id": "rJlnfaNYvB",
|
121 |
+
"target": [
|
122 |
+
"We devise adaptive loss scaling to improve mixed precision training that surpass the state-of-the-art results.",
|
123 |
+
"Proposal for an adaptive loss scaling method during backpropagation for mix precision training where scale rate is decided automatically to reduce the underflow.",
|
124 |
+
"The authors propose a method to train models in FP16 precision that adopts a more elaborate way to minimize underflow in every layer simultaneously and automatically."
|
125 |
+
],
|
126 |
+
"title": "Adaptive Loss Scaling for Mixed Precision Training"
|
127 |
+
}
|
128 |
+
|
129 |
+
### Data Fields
|
130 |
+
|
131 |
+
- `source`: The Abstract, Introduction and Conclusion (AIC) or Full text of the paper, with one sentence per line.
|
132 |
+
- `source_labels`: Binary 0 or 1, 1 denotes the oracle sentence.
|
133 |
+
- `rouge_scores`: Precomputed ROUGE baseline scores for each sentence.
|
134 |
+
- `paper_id`: Arxiv Paper ID.
|
135 |
+
- `target`: Multiple summaries for each sentence, one sentence per line.
|
136 |
+
- `title`: Title of the paper.
|
137 |
+
### Data Splits
|
138 |
+
|
139 |
+
| | train | valid | test |
|
140 |
+
|-------------------|-------|--------|------|
|
141 |
+
| SciTLDR-A | 1992 | 618 | 619 |
|
142 |
+
| SciTLDR-AIC | 1992 | 618 | 619 |
|
143 |
+
| SciTLDR-FullText | 1992 | 618 | 619 |
|
144 |
+
|
145 |
+
## Dataset Creation
|
146 |
+
|
147 |
+
[More Information Needed]
|
148 |
+
|
149 |
+
### Curation Rationale
|
150 |
+
|
151 |
+
[More Information Needed]
|
152 |
+
|
153 |
+
### Source Data
|
154 |
+
|
155 |
+
#### Initial Data Collection and Normalization
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
#### Who are the source language producers?
|
160 |
+
https://allenai.org/
|
161 |
+
|
162 |
+
### Annotations
|
163 |
+
|
164 |
+
#### Annotation process
|
165 |
+
|
166 |
+
Given the title and first 128 words of a reviewer comment about a paper,
|
167 |
+
re-write the summary (if it exists) into a single sentence or an incomplete
|
168 |
+
phrase. Summaries must be no more than one sentence.
|
169 |
+
Most summaries are between 15 and 25 words. The average rewritten summary is
|
170 |
+
20 words long.
|
171 |
+
|
172 |
+
#### Who are the annotators?
|
173 |
+
|
174 |
+
[More Information Needed]
|
175 |
+
|
176 |
+
### Personal and Sensitive Information
|
177 |
+
|
178 |
+
[More Information Needed]
|
179 |
+
|
180 |
+
## Considerations for Using the Data
|
181 |
+
|
182 |
+
### Social Impact of Dataset
|
183 |
+
|
184 |
+
To encourage further research in the area of extreme summarization of scientific documents.
|
185 |
+
|
186 |
+
### Discussion of Biases
|
187 |
+
|
188 |
+
[More Information Needed]
|
189 |
+
|
190 |
+
### Other Known Limitations
|
191 |
+
|
192 |
+
[More Information Needed]
|
193 |
+
|
194 |
+
## Additional Information
|
195 |
+
|
196 |
+
### Dataset Curators
|
197 |
+
|
198 |
+
[More Information Needed]
|
199 |
+
|
200 |
+
### Licensing Information
|
201 |
+
|
202 |
+
Apache License 2.0
|
203 |
+
|
204 |
+
### Citation Information
|
205 |
+
@article{cachola2020tldr,
|
206 |
+
title={{TLDR}: Extreme Summarization of Scientific Documents},
|
207 |
+
author={Isabel Cachola and Kyle Lo and Arman Cohan and Daniel S. Weld},
|
208 |
+
journal={arXiv:2004.15011},
|
209 |
+
year={2020},
|
210 |
+
}
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"Abstract": {"description": "A new multi-target dataset of 5.4K TLDRs over 3.2K papers.\nSCITLDR contains both author-written and expert-derived TLDRs,\nwhere the latter are collected using a novel annotation protocol\nthat produces high-quality summaries while minimizing annotation burden.\n", "citation": "@article{cachola2020tldr,\n title={{TLDR}: Extreme Summarization of Scientific Documents},\n author={Isabel Cachola and Kyle Lo and Arman Cohan and Daniel S. Weld},\n journal={arXiv:2004.15011},\n year={2020},\n}\n", "homepage": "https://github.com/allenai/scitldr", "license": "Apache License 2.0", "features": {"source": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "source_labels": {"feature": {"num_classes": 2, "names": ["non-oracle", "oracle"], "names_file": null, "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}, "rouge_scores": {"feature": {"dtype": "float32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "paper_id": {"dtype": "string", "id": null, "_type": "Value"}, "target": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": {"input": "source", "output": "target"}, "builder_name": "scitldr", "config_name": "Abstract", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2738065, "num_examples": 1992, "dataset_name": "scitldr"}, "test": {"name": "test", "num_bytes": 1073656, "num_examples": 618, "dataset_name": "scitldr"}, "validation": {"name": "validation", "num_bytes": 994876, "num_examples": 619, "dataset_name": "scitldr"}}, "download_checksums": {"https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-A/train.jsonl": {"num_bytes": 3155015, "checksum": "b222771d387be585cfdf5ae957b36757138415a352e0a3e3b23f73f87c3b1119"}, "https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-A/dev.jsonl": {"num_bytes": 1124865, "checksum": "3191fa98ccc09521332b7a1cd63b1930be4e8df125a235ccd31e40329709525e"}, "https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-A/test.jsonl": {"num_bytes": 1204107, "checksum": "fb42dd6cd4f4a1928ae8a01a189456fbfe994a07e938bd49f68653933f6503c9"}}, "download_size": 5483987, "post_processing_size": null, "dataset_size": 4806597, "size_in_bytes": 10290584}, "AIC": {"description": "A new multi-target dataset of 5.4K TLDRs over 3.2K papers.\nSCITLDR contains both author-written and expert-derived TLDRs,\nwhere the latter are collected using a novel annotation protocol\nthat produces high-quality summaries while minimizing annotation burden.\n", "citation": "@article{cachola2020tldr,\n title={{TLDR}: Extreme Summarization of Scientific Documents},\n author={Isabel Cachola and Kyle Lo and Arman Cohan and Daniel S. Weld},\n journal={arXiv:2004.15011},\n year={2020},\n}\n", "homepage": "https://github.com/allenai/scitldr", "license": "Apache License 2.0", "features": {"source": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "source_labels": {"feature": {"num_classes": 2, "names": [0, 1], "names_file": null, "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}, "rouge_scores": {"feature": {"dtype": "float32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "paper_id": {"dtype": "string", "id": null, "_type": "Value"}, "ic": {"dtype": "bool_", "id": null, "_type": "Value"}, "target": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": {"input": "source", "output": "target"}, "builder_name": "scitldr", "config_name": "AIC", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 14473822, "num_examples": 1992, "dataset_name": "scitldr"}, "test": {"name": "test", "num_bytes": 4822026, "num_examples": 618, "dataset_name": "scitldr"}, "validation": {"name": "validation", "num_bytes": 4476237, "num_examples": 619, "dataset_name": "scitldr"}}, "download_checksums": {"https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-AIC/train.jsonl": {"num_bytes": 15569568, "checksum": "64b08af6de479671a12afd04770f66bcbc1c2c5f3098a08392b0fd7c1070d621"}, "https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-AIC/dev.jsonl": {"num_bytes": 4811551, "checksum": "ac5168c27d25181fc17bb6f1fb41d11dbe30c627bebee14457feb3bad2c839dd"}, "https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-AIC/test.jsonl": {"num_bytes": 5163989, "checksum": "7cb9230d3eb4863884762154918360d1c063aa18fc76de928801a14f4bcf4d37"}}, "download_size": 25545108, "post_processing_size": null, "dataset_size": 23772085, "size_in_bytes": 49317193}, "FullText": {"description": "A new multi-target dataset of 5.4K TLDRs over 3.2K papers.\nSCITLDR contains both author-written and expert-derived TLDRs,\nwhere the latter are collected using a novel annotation protocol\nthat produces high-quality summaries while minimizing annotation burden.\n", "citation": "@article{cachola2020tldr,\n title={{TLDR}: Extreme Summarization of Scientific Documents},\n author={Isabel Cachola and Kyle Lo and Arman Cohan and Daniel S. Weld},\n journal={arXiv:2004.15011},\n year={2020},\n}\n", "homepage": "https://github.com/allenai/scitldr", "license": "Apache License 2.0", "features": {"source": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "source_labels": {"feature": {"num_classes": 2, "names": ["non-oracle", "oracle"], "names_file": null, "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}, "rouge_scores": {"feature": {"dtype": "float32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "paper_id": {"dtype": "string", "id": null, "_type": "Value"}, "target": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": {"input": "source", "output": "target"}, "builder_name": "scitldr", "config_name": "FullText", "version": "0.0.0", "splits": {"train": {"name": "train", "num_bytes": 66917363, "num_examples": 1992, "dataset_name": "scitldr"}, "test": {"name": "test", "num_bytes": 20182554, "num_examples": 618, "dataset_name": "scitldr"}, "validation": {"name": "validation", "num_bytes": 18790651, "num_examples": 619, "dataset_name": "scitldr"}}, "download_checksums": {"https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-FullText/train.jsonl": {"num_bytes": 71263949, "checksum": "e35461c1665cb4f7b46daba6dd5ac3cff03a61eb196e6ce9983edda44d867604"}, "https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-FullText/dev.jsonl": {"num_bytes": 19111616, "checksum": "11c3fd77a7ec447adc44ca34c0fa41a7ab6bdacdf3b8e15748e6f8b8e4f698bf"}, "https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-FullText/test.jsonl": {"num_bytes": 20528987, "checksum": "1584bd3f5fff5859cb8428cfbacc8d38c671f5fc6a24a8140ea5350cbd86a751"}}, "download_size": 110904552, "post_processing_size": null, "dataset_size": 105890568, "size_in_bytes": 216795120}}
|
dummy/AIC/0.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f184cdf07cab1ddd90cd321785261cefdac82d3f2d0731fb25306a445251bc6
|
3 |
+
size 40496
|
dummy/Abstract/0.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0978db6412c8b2ebe7a0214f1c1a67d2e02b278f208b84631860f47bdd0d7788
|
3 |
+
size 10265
|
dummy/FullText/0.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:808e2c75c0803969f626806a8a3da0a28f9257e4682a0feb9981cf44af252de9
|
3 |
+
size 165874
|
scitldr.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Dataset for TLDR: Extreme Summarization of Scientific Documents"""
|
16 |
+
|
17 |
+
from __future__ import absolute_import, division, print_function
|
18 |
+
|
19 |
+
import json
|
20 |
+
import os
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
|
24 |
+
|
25 |
+
_SOURCE = "source"
|
26 |
+
_TARGET = "target"
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@article{cachola2020tldr,
|
30 |
+
title={{TLDR}: Extreme Summarization of Scientific Documents},
|
31 |
+
author={Isabel Cachola and Kyle Lo and Arman Cohan and Daniel S. Weld},
|
32 |
+
journal={arXiv:2004.15011},
|
33 |
+
year={2020},
|
34 |
+
}
|
35 |
+
"""
|
36 |
+
|
37 |
+
_DESCRIPTION = """\
|
38 |
+
A new multi-target dataset of 5.4K TLDRs over 3.2K papers.
|
39 |
+
SCITLDR contains both author-written and expert-derived TLDRs,
|
40 |
+
where the latter are collected using a novel annotation protocol
|
41 |
+
that produces high-quality summaries while minimizing annotation burden.
|
42 |
+
"""
|
43 |
+
|
44 |
+
|
45 |
+
_LICENSE = "Apache License 2.0"
|
46 |
+
|
47 |
+
# TODO: Add link to the official dataset URLs here
|
48 |
+
# The HuggingFace dataset library don't host the datasets but only point to the original files
|
49 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
50 |
+
_URLs = {
|
51 |
+
"Abstract": "https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-A/",
|
52 |
+
"AIC": "https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-AIC/",
|
53 |
+
"FullText": "https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-FullText/",
|
54 |
+
}
|
55 |
+
|
56 |
+
_TRAIN_DATA = "train.jsonl"
|
57 |
+
_TEST_DATA = "test.jsonl"
|
58 |
+
_VALID_DATA = "dev.jsonl"
|
59 |
+
|
60 |
+
|
61 |
+
# There are several preprocessing scripts given in the original SciTLDR GitHub repository to preprocess this data.
|
62 |
+
class Scitldr(datasets.GeneratorBasedBuilder):
|
63 |
+
"""Dataset for TLDR: Extreme Summarization of Scientific Documents."""
|
64 |
+
|
65 |
+
VERSION = datasets.Version("1.1.0")
|
66 |
+
|
67 |
+
# You will be able to load one or the other configurations in the following list with
|
68 |
+
# data = datasets.load_dataset('scitldr', 'Abstract')
|
69 |
+
# data = datasets.load_dataset('scitldr', 'AIC')
|
70 |
+
BUILDER_CONFIGS = [
|
71 |
+
datasets.BuilderConfig(name="Abstract", description="This part contains only abstracts of the paper"),
|
72 |
+
datasets.BuilderConfig(
|
73 |
+
name="AIC",
|
74 |
+
description="This part contains Abstracts, Introduction and Conclusion (AIC) sections of the paper",
|
75 |
+
),
|
76 |
+
datasets.BuilderConfig(name="FullText", description="This part contains the full text of the paper"),
|
77 |
+
]
|
78 |
+
|
79 |
+
DEFAULT_CONFIG_NAME = (
|
80 |
+
"Abstract" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
81 |
+
)
|
82 |
+
|
83 |
+
def _info(self):
|
84 |
+
if self.config.name == "AIC": # This is the name of the configuration selected in BUILDER_CONFIGS above
|
85 |
+
features = datasets.Features(
|
86 |
+
{
|
87 |
+
"source": datasets.Sequence(datasets.Value("string")),
|
88 |
+
"source_labels": datasets.Sequence(datasets.ClassLabel(num_classes=2, names=[0, 1])),
|
89 |
+
"rouge_scores": datasets.Sequence(datasets.Value("float32")),
|
90 |
+
"paper_id": datasets.Value("string"),
|
91 |
+
"ic": datasets.Value("bool_"),
|
92 |
+
"target": datasets.features.Sequence(datasets.Value("string"))
|
93 |
+
# These are the features of your dataset like images, labels ...
|
94 |
+
}
|
95 |
+
)
|
96 |
+
else:
|
97 |
+
features = datasets.Features(
|
98 |
+
{
|
99 |
+
"source": datasets.Sequence(datasets.Value("string")),
|
100 |
+
"source_labels": datasets.Sequence(
|
101 |
+
datasets.ClassLabel(num_classes=2, names=["non-oracle", "oracle"])
|
102 |
+
),
|
103 |
+
"rouge_scores": datasets.Sequence(datasets.Value("float32")),
|
104 |
+
"paper_id": datasets.Value("string"),
|
105 |
+
"target": datasets.Sequence(datasets.Value("string"))
|
106 |
+
# These are the features of your dataset like images, labels ...
|
107 |
+
}
|
108 |
+
)
|
109 |
+
return datasets.DatasetInfo(
|
110 |
+
# This is the description that will appear on the datasets page.
|
111 |
+
description=_DESCRIPTION,
|
112 |
+
# This defines the different columns of the dataset and their types
|
113 |
+
features=features, # Here we define them above because they are different between the two configurations
|
114 |
+
# If there's a common (input, target) tuple from the features,
|
115 |
+
# specify them here. They'll be used if as_supervised=True in
|
116 |
+
# builder.as_dataset.
|
117 |
+
supervised_keys=(_SOURCE, _TARGET),
|
118 |
+
# Homepage of the dataset for documentation
|
119 |
+
homepage="https://github.com/allenai/scitldr",
|
120 |
+
# License for the dataset if available
|
121 |
+
license=_LICENSE,
|
122 |
+
# Citation for the dataset
|
123 |
+
citation=_CITATION,
|
124 |
+
)
|
125 |
+
|
126 |
+
def _split_generators(self, dl_manager):
|
127 |
+
"""Returns SplitGenerators."""
|
128 |
+
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
129 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
130 |
+
|
131 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
|
132 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
133 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
134 |
+
urls = {
|
135 |
+
"train": os.path.join(_URLs[self.config.name], _TRAIN_DATA),
|
136 |
+
"valid": os.path.join(_URLs[self.config.name], _VALID_DATA),
|
137 |
+
"test": os.path.join(_URLs[self.config.name], _TEST_DATA),
|
138 |
+
}
|
139 |
+
data_dir = dl_manager.download_and_extract(urls)
|
140 |
+
return [
|
141 |
+
datasets.SplitGenerator(
|
142 |
+
name=datasets.Split.TRAIN,
|
143 |
+
# These kwargs will be passed to _generate_examples
|
144 |
+
gen_kwargs={"filepath": os.path.join(data_dir["train"]), "split": "train"},
|
145 |
+
),
|
146 |
+
datasets.SplitGenerator(
|
147 |
+
name=datasets.Split.TEST,
|
148 |
+
# These kwargs will be passed to _generate_examples
|
149 |
+
gen_kwargs={"filepath": os.path.join(data_dir["test"]), "split": "test"},
|
150 |
+
),
|
151 |
+
datasets.SplitGenerator(
|
152 |
+
name=datasets.Split.VALIDATION,
|
153 |
+
# These kwargs will be passed to _generate_examples
|
154 |
+
gen_kwargs={"filepath": os.path.join(data_dir["valid"]), "split": "dev"},
|
155 |
+
),
|
156 |
+
]
|
157 |
+
|
158 |
+
def _generate_examples(self, filepath, split):
|
159 |
+
""" Yields examples. """
|
160 |
+
# TODO: This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
|
161 |
+
# It is in charge of opening the given file and yielding (key, example) tuples from the dataset
|
162 |
+
# The key is not important, it's more here for legacy reason (legacy from tfds)
|
163 |
+
|
164 |
+
with open(filepath, encoding="utf-8") as f:
|
165 |
+
for id_, row in enumerate(f):
|
166 |
+
data = json.loads(row)
|
167 |
+
if self.config.name == "AIC":
|
168 |
+
yield id_, {
|
169 |
+
"source": data["source"],
|
170 |
+
"source_labels": data["source_labels"],
|
171 |
+
"rouge_scores": data["rouge_scores"],
|
172 |
+
"paper_id": data["paper_id"],
|
173 |
+
"ic": True if data["ic"] else False,
|
174 |
+
"target": data["target"],
|
175 |
+
}
|
176 |
+
else:
|
177 |
+
yield id_, {
|
178 |
+
"source": data["source"],
|
179 |
+
"source_labels": data["source_labels"],
|
180 |
+
"rouge_scores": data["rouge_scores"],
|
181 |
+
"paper_id": data["paper_id"],
|
182 |
+
"target": data["target"],
|
183 |
+
}
|