File size: 9,006 Bytes
bd4180c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
import csv
import json
import os
import glob
import datasets
from datasets.data_files import DataFilesDict
from .scirepeval_configs import SCIREPEVAL_CONFIGS
#from datasets.packaged_modules.json import json
from datasets.utils.logging import get_logger
logger = get_logger(__name__)
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2021}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
"first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
"second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
}
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class Scirepeval(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.1.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = SCIREPEVAL_CONFIGS
def _info(self):
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=self.config.description,
# This defines the different columns of the dataset and their types
features=datasets.Features(self.config.features), # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage="",
# License for the dataset if available
license=self.config.license,
# Citation for the dataset
citation=self.config.citation,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
base_url = "https://ai2-s2-research-public.s3.us-west-2.amazonaws.com/scirepeval"
data_urls = dict()
data_dir = self.config.url if self.config.url else self.config.name
if self.config.is_training:
data_urls = {"train": f"{base_url}/train/{data_dir}/train.jsonl"}
if "refresh" not in self.config.name:
data_urls.update({"val": f"{base_url}/train/{data_dir}/val.jsonl"})
if "cite_prediction" not in self.config.name:
data_urls.update({"test": f"{base_url}/test/{data_dir}/meta.jsonl"})
# print(data_urls)
downloaded_files = dl_manager.download_and_extract(data_urls)
# print(downloaded_files)
splits = []
if "test" in downloaded_files:
splits = [datasets.SplitGenerator(
name=datasets.Split("evaluation"),
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": downloaded_files["test"],
"split": "evaluation"
},
),
]
if "train" in downloaded_files:
splits.append(
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": downloaded_files["train"],
"split": "train",
},
))
if "val" in downloaded_files:
splits.append(datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": downloaded_files["val"],
"split": "validation",
}))
return splits
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
def read_data(data_path):
task_data = []
try:
task_data = json.load(open(data_path, "r", encoding="utf-8"))
except:
with open(data_path) as f:
task_data = [json.loads(line) for line in f]
if type(task_data) == dict:
task_data = list(task_data.values())
return task_data
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
# data = read_data(filepath)
seen_keys = set()
IGNORE=set(["n_key_citations", "session_id", "user_id", "user"])
logger.warning(filepath)
with open(filepath, encoding="utf-8") as f:
for line in f:
d = json.loads(line)
d = {k:v for k,v in d.items() if k not in IGNORE}
key="doc_id" if "cite_prediction_" not in self.config.name else "corpus_id"
if self.config.task_type == "proximity":
if "cite_prediction" in self.config.name:
if "arxiv_id" in d["query"]:
for item in ["query", "pos", "neg"]:
del d[item]["arxiv_id"]
del d[item]["doi"]
if "fos" in d["query"]:
del d["query"]["fos"]
if "score" in d["pos"]:
del d["pos"]["score"]
yield str(d["query"][key]) + str(d["pos"][key]) + str(d["neg"][key]), d
else:
if d["query"][key] not in seen_keys:
seen_keys.add(d["query"][key])
yield str(d["query"][key]), d
else:
if d[key] not in seen_keys:
seen_keys.add(d[key])
if self.config.task_type != "search":
if "corpus_id" not in d:
d["corpus_id"] = None
if "scidocs" in self.config.name:
if "cited by" not in d:
d["cited_by"] = []
if type(d["corpus_id"]) == str:
d["corpus_id"] = None
yield d[key], d |