File size: 26,654 Bytes
bd4180c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
from typing import Dict, Any, List

import datasets


class ScirepevalConfig(datasets.BuilderConfig):
    """BuilderConfig for SuperGLUE."""

    def __init__(self, features: Dict[str, Any], task_type: str, citation: str = "",
                 licenses: str = "", is_training: bool = False, homepage: str = "", url="", **kwargs):
        """BuilderConfig for SuperGLUE.

        Args:
        features: *list[string]*, list of the features that will appear in the
            feature dict. Should not include "label".
        data_url: *string*, url to download the zip file from.
        citation: *string*, citation for the data set.
        url: *string*, url for information about the data set.
        label_classes: *list[string]*, the list of classes for the label if the
            label is present as a string. Non-string labels will be cast to either
            'False' or 'True'.
        **kwargs: keyword arguments forwarded to super.
        """
        super().__init__(version=datasets.Version("1.1.0"), **kwargs)
        self.features = features
        self.task_type = task_type
        self.citation = citation
        self.license = licenses
        self.is_training = is_training
        self.homepage = homepage
        self.url = url

    @classmethod
    def get_features(self, feature_names: List[str], type_mapping: Dict[str, Any] = None) -> Dict[str, Any]:
        features = {name: type_mapping[name] if name in type_mapping else datasets.Value("string") for name in
                    feature_names}

        if "corpus_id" in features:
            features["corpus_id"] = datasets.Value("uint64")
        return features


SCIREPEVAL_CONFIGS = [
    ScirepevalConfig(name="fos", features=ScirepevalConfig.get_features(
        ["doc_id", "corpus_id", "title", "abstract", "labels", "labels_text"],
        {"labels": datasets.Sequence(datasets.Value("int32")),
         "labels_text": datasets.Sequence(datasets.Value("string"))}),
                     task_type="classification (multi-label)", is_training=True, description=""),

    ScirepevalConfig(name="mesh_descriptors", features=ScirepevalConfig.get_features(
        ["doc_id", "mag_id", "corpus_id", "title", "abstract", "descriptor", "qualifier"], {"mag_id": datasets.Value("uint64")}),
                     task_type="classification", is_training=True,
                     citation="@article{Lipscomb2000MedicalSH, \
                              title={Medical Subject Headings (MeSH).}, \
                              author={Carolyn E. Lipscomb}, \
                              journal={Bulletin of the Medical Library Association},\
                              year={2000}, \
                              volume={88 3}, \
                              pages={ \
                                      265-6 \
                                    } \
                            }",
                     description="", homepage="https://www.nlm.nih.gov/databases/download/mesh.html"
                     ),

    ScirepevalConfig(name="cite_count", features=ScirepevalConfig.get_features(
        ["doc_id", "corpus_id", "title", "abstract", "venue", "n_citations", "log_citations"],
        {"n_citations": datasets.Value("int32"),
         "log_citations": datasets.Value("float32")}),
                     task_type="regression", is_training=True, description=""
                     ),

    ScirepevalConfig(name="pub_year", features=ScirepevalConfig.get_features(
        ["doc_id", "corpus_id", "title", "abstract", "year", "venue", "norm_year", "scaled_year", "n_authors", "norm_authors"],
        {"year": datasets.Value("int32"), "norm_year": datasets.Value("float32"),
         "scaled_year": datasets.Value("float32"), "n_authors": datasets.Value("int32"),
         "norm_authors": datasets.Value("float32"), }),
                     task_type="regression", is_training=True, description=""),

    ScirepevalConfig(name="cite_prediction",
                     features=ScirepevalConfig.get_features(["query", "pos", "neg"],
                                                            {"query": {
                                                                "doc_id": datasets.Value("string"),
                                                                "title": datasets.Value("string"),
                                                                "abstract": datasets.Value(
                                                                    "string"),
                                                                "sha": datasets.Value("string"),
                                                                "corpus_id": datasets.Value("uint64")},
                                                                "pos": {
                                                                    "doc_id": datasets.Value("string"),
                                                                    "title": datasets.Value("string"),
                                                                    "abstract": datasets.Value(
                                                                        "string"),
                                                                    "sha": datasets.Value("string"),
                                                                    "corpus_id": datasets.Value("uint64")}
                                                                , "neg": {
                                                                    "doc_id": datasets.Value("string"),
                                                                "title": datasets.Value("string"),
                                                                "abstract": datasets.Value(
                                                                    "string"),
                                                                "sha": datasets.Value("string"),
                                                                "corpus_id": datasets.Value("uint64")}}),
                     task_type="proximity", is_training=True, citation="@inproceedings{specter2020cohan, \
                              title={{SPECTER: Document-level Representation Learning using Citation-informed Transformers}}, \
                              author={Arman Cohan and Sergey Feldman and Iz Beltagy and Doug Downey and Daniel S. Weld}, \
                              booktitle={ACL}, \
                              year={2020} \
                            }", description="", homepage="https://github.com/allenai/specter"),
    ScirepevalConfig(name="cite_prediction_new",
                     features=ScirepevalConfig.get_features(["query", "pos", "neg"],
                                                            {"query": {
                                                                "title": datasets.Value("string"),
                                                                "abstract": datasets.Value(
                                                                    "string"),
                                                                "corpus_id": datasets.Value("uint64")},
                                                                "pos": {
                                                                    "title": datasets.Value("string"),
                                                                    "abstract": datasets.Value(
                                                                        "string"),
                                                                    "corpus_id": datasets.Value("uint64"),
                                                                }
                                                                , "neg": {
                                                                "title": datasets.Value("string"),
                                                                "abstract": datasets.Value(
                                                                    "string"),
                                                                "corpus_id": datasets.Value("uint64"),
                                                                "score": datasets.Value("int8")}}),
                     task_type="proximity", is_training=True, citation="@inproceedings{specter2020cohan, \
                              title={{SPECTER: Document-level Representation Learning using Citation-informed Transformers}}, \
                              author={Arman Cohan and Sergey Feldman and Iz Beltagy and Doug Downey and Daniel S. Weld}, \
                              booktitle={ACL}, \
                              year={2020} \
                            }", description="", homepage="https://github.com/allenai/specter"),
    ScirepevalConfig(name="cite_prediction_aug2023refresh",
                     features=ScirepevalConfig.get_features(["query", "pos", "neg"],
                                                            {"query": {
                                                                "title": datasets.Value("string"),
                                                                "abstract": datasets.Value(
                                                                    "string"),
                                                                "corpus_id": datasets.Value("uint64")},
                                                                "pos": {
                                                                    "title": datasets.Value("string"),
                                                                    "abstract": datasets.Value(
                                                                        "string"),
                                                                    "corpus_id": datasets.Value("uint64"),
                                                                }
                                                                , "neg": {
                                                                "title": datasets.Value("string"),
                                                                "abstract": datasets.Value(
                                                                    "string"),
                                                                "corpus_id": datasets.Value("uint64")}}),
                     task_type="proximity", is_training=True, citation="@inproceedings{specter2020cohan, \
                              title={{SPECTER: Document-level Representation Learning using Citation-informed Transformers}}, \
                              author={Arman Cohan and Sergey Feldman and Iz Beltagy and Doug Downey and Daniel S. Weld}, \
                              booktitle={ACL}, \
                              year={2020} \
                            }", description="", homepage="https://github.com/allenai/specter"),

    ScirepevalConfig(name="high_influence_cite",
                     features=ScirepevalConfig.get_features(["query", "candidates"],
                                                            {"query": {
                                                                "doc_id": datasets.Value("string"),
                                                                "title": datasets.Value("string"),
                                                                "abstract": datasets.Value(
                                                                    "string"),
                                                                "corpus_id": datasets.Value("uint64")},
                                                                "candidates":
                                                                    [{"doc_id": datasets.Value("string"),
                                                                        "title": datasets.Value("string"),
                                                                        "abstract": datasets.Value(
                                                                            "string"),
                                                                        "corpus_id": datasets.Value("uint64"),
                                                                        "score": datasets.Value("uint32")}]}),
                     task_type="proximity", is_training=True, description=""),

    ScirepevalConfig(name="same_author",
                     features=ScirepevalConfig.get_features(["dataset", "query", "candidates"],
                                                            {"query": {
                                                                "doc_id": datasets.Value("string"),
                                                                "title": datasets.Value("string"),
                                                                "abstract": datasets.Value(
                                                                    "string"),
                                                                "corpus_id": datasets.Value("uint64")},
                                                                "candidates":
                                                                    [{
                                                                        "doc_id": datasets.Value("string"),
                                                                        "title": datasets.Value("string"),
                                                                        "abstract": datasets.Value(
                                                                            "string"),
                                                                        "corpus_id": datasets.Value("uint64"),
                                                                        "score": datasets.Value("uint32")}]}),
                     task_type="proximity", is_training=True, description=""),

    ScirepevalConfig(name="search",
                     features=ScirepevalConfig.get_features(["query", "doc_id", "candidates"],
                                                            {"candidates":
                                                                [{
                                                                    "doc_id": datasets.Value("string"),
                                                                    "title": datasets.Value("string"),
                                                                    "abstract": datasets.Value(
                                                                        "string"),
                                                                    "corpus_id": datasets.Value("uint64"),
                                                                    "venue": datasets.Value("string"),
                                                                    "year": datasets.Value("float64"),
                                                                    "author_names": datasets.Sequence(datasets.Value("string")),
                                                                    "n_citations": datasets.Value("int32"),
                                                                    "n_key_citations": datasets.Value("int32"),
                                                                    "score": datasets.Value("uint32")}]}),
                     task_type="search", is_training=True, description=""),

    ScirepevalConfig(name="biomimicry", features=ScirepevalConfig.get_features(
        ["doc_id", "doi", "corpus_id", "title", "abstract", "label", "venue"], {"label": datasets.Value("uint32")}),
                     task_type="classification",
                     citation="@Article{vikram2019petal,\
AUTHOR = {Shyam, Vikram and Friend, Lauren and Whiteaker, Brian and Bense, Nicholas and Dowdall, Jonathan and Boktor, Bishoy and Johny, Manju and Reyes, Isaias and Naser, Angeera and Sakhamuri, Nikhitha and Kravets, Victoria and Calvin, Alexandra and Gabus, Kaylee and Goodman, Delonte and Schilling, Herbert and Robinson, Calvin and Reid II, Robert Omar and Unsworth, Colleen},\
TITLE = {PeTaL (Periodic Table of Life) and Physiomimetics},\
JOURNAL = {Designs},\
VOLUME = {3},\
YEAR = {2019},\
NUMBER = {3},\
ARTICLE-NUMBER = {43},\
URL = {https://www.mdpi.com/2411-9660/3/3/43},\
ISSN = {2411-9660},\
ABSTRACT = {The Periodic Table of Life (PeTaL) is a system design tool and open source framework that uses artificial intelligence (AI) to aid in the systematic inquiry of nature for its application to human systems. This paper defines PeTaL’s architecture and workflow. Biomimicry, biophysics, biomimetics, bionics and numerous other terms refer to the use of biology and biological principles to inform practices in other disciplines. For the most part, the domain of inquiry in these fields has been confined to extant biological models with the proponents of biomimicry often citing the evolutionary success of extant organisms relative to extinct ones. An objective of this paper is to expand the domain of inquiry for human processes that seek to model those that are, were or could be found in nature with examples that relate to the field of aerospace and to spur development of tools that can work together to accelerate the use of artificial intelligence, topology optimization and conventional modeling in problem solving. Specifically, specialized fields such as paleomimesis, anthropomimesis and physioteleology are proposed in conjunction with artificial evolution. The overarching philosophy outlined here can be thought of as physiomimetics, a holistic and systematic way of learning from natural history. The backbone of PeTaL integrates an unstructured database with an ontological model consisting of function, morphology, environment, state of matter and ecosystem. Tools that support PeTaL include machine learning, natural language processing and computer vision. Applications of PeTaL include guiding human space exploration, understanding human and geological history, and discovering new or extinct life. Also discussed is the formation of V.I.N.E. (Virtual Interchange for Nature-inspired Exploration), a virtual collaborative aimed at generating data, research and applications centered on nature. Details of implementation will be presented in subsequent publications. Recommendations for future work are also presented.},\
DOI = {10.3390/designs3030043}\
}",
                     description="",
                     homepage="https://github.com/nasa-petal/PeTaL-db"
                     ),

    ScirepevalConfig(name="drsm", features=ScirepevalConfig.get_features(
        ["doc_id", "corpus_id", "title", "abstract", "label_type", "label", "class"],
        {"class": datasets.Value("uint32")}),
                     task_type="classification", description="",
                     homepage="https://github.com/chanzuckerberg/DRSM-corpus"
                     ),

    ScirepevalConfig(name="relish",
                     features=ScirepevalConfig.get_features(["query", "candidates"],
                                                            {"query": {
                                                                "doc_id": datasets.Value("string"),
                                                                "title": datasets.Value("string"),
                                                                "abstract": datasets.Value(
                                                                    "string"),
                                                                "corpus_id": datasets.Value("int64")},
                                                                "candidates":
                                                                    [{
                                                                        "doc_id": datasets.Value("string"),
                                                                        "title": datasets.Value("string"),
                                                                        "abstract": datasets.Value(
                                                                            "string"),
                                                                        "corpus_id": datasets.Value("int64"),
                                                                        "score": datasets.Value("uint32")}]}),
                     task_type="proximity", description=""),

    ScirepevalConfig(name="nfcorpus",
                     features=ScirepevalConfig.get_features(["query", "doc_id", "candidates"],
                                                            {"candidates":
                                                                [{
                                                                    "doc_id": datasets.Value("string"),
                                                                    "title": datasets.Value("string"),
                                                                    "abstract": datasets.Value(
                                                                        "string"),
                                                                    "score": datasets.Value("uint32")}]}),
                     task_type="search", description=""),

    ScirepevalConfig(name="peer_review_score_hIndex", features=ScirepevalConfig.get_features(
        ["doc_id", "corpus_id", "title", "abstract", "rating", "confidence", "authors", "decision", "mean_rating", "hIndex"],
        {"mean_rating": datasets.Value("float32"),
         "rating": datasets.Sequence(datasets.Value("int32")),
         "authors": datasets.Sequence(datasets.Value("string")),
         "hIndex": datasets.Sequence(datasets.Value("string"))
         }),
                     task_type="regression", description=""
                     ),

    ScirepevalConfig(name="trec_covid",
                     features=ScirepevalConfig.get_features(["query", "doc_id", "candidates"],
                                                            {"candidates":
                                                                [{
                                                                    "title": datasets.Value("string"),
                                                                    "abstract": datasets.Value(
                                                                        "string"),
                                                                    "corpus_id": datasets.Value("string"),
                                                                    "doc_id": datasets.Value("string"),
                                                                    "date": datasets.Value("string"),
                                                                    "doi": datasets.Value("string"),
                                                                    "iteration": datasets.Value("string"),
                                                                    "score": datasets.Value("int32")}]}),
                     task_type="search", description="", homepage="https://ir.nist.gov/trec-covid/", citation="@article{Voorhees2020TRECCOVIDCA,\
  title={TREC-COVID: Constructing a Pandemic Information Retrieval Test Collection},\
  author={Ellen M. Voorhees and Tasmeer Alam and Steven Bedrick and Dina Demner-Fushman and William R. Hersh and Kyle Lo and Kirk Roberts and Ian Soboroff and Lucy Lu Wang},\
  journal={ArXiv},\
  year={2020},\
  volume={abs/2005.04474}\
}"),

    ScirepevalConfig(name="tweet_mentions", features=ScirepevalConfig.get_features(
        ["doc_id", "corpus_id", "title", "abstract", "index", "retweets", "count", "mentions"],
        {"index": datasets.Value("int32"), "count": datasets.Value("int32"),
         "retweets": datasets.Value("float32"), "mentions": datasets.Value("float32")}),
                     task_type="regression", description="",
                     citation="@article{Jain2021TweetPapAD,\
  title={TweetPap: A Dataset to Study the Social Media Discourse of Scientific Papers},\
  author={Naman Jain and Mayank Kumar Singh},\
  journal={2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)},\
  year={2021},\
  pages={328-329}\
}"),

    ScirepevalConfig(name="scidocs_mag_mesh", features=ScirepevalConfig.get_features(
        ["doc_id", "corpus_id", "title", "abstract", "authors", "cited_by", "references", "year"],
        {"year": datasets.Value("int32"),
         "authors": datasets.Sequence(datasets.Value("string")),
         "cited_by": datasets.Sequence(datasets.Value("string")),
         "references": datasets.Sequence(datasets.Value("string"))
         }),
                     task_type="classification ", description="", url="scidocs/mag_mesh",
                     homepage="https://github.com/allenai/scidocs", citation="@inproceedings{specter2020cohan,\
  title={SPECTER: Document-level Representation Learning using Citation-informed Transformers},\
  author={Arman Cohan and Sergey Feldman and Iz Beltagy and Doug Downey and Daniel S. Weld},\
  booktitle={ACL},\
  year={2020}\
}"),

    ScirepevalConfig(name="scidocs_view_cite_read", features=ScirepevalConfig.get_features(
        ["doc_id", "corpus_id", "title", "abstract", "authors", "cited_by", "references", "year"],
        {"year": datasets.Value("int32"),
         "authors": datasets.Sequence(datasets.Value("string")),
         "cited_by": datasets.Sequence(datasets.Value("string")),
         "references": datasets.Sequence(datasets.Value("string"))
         }),
                     task_type="metadata", description="", url="scidocs/view_cite_read",
                     homepage="https://github.com/allenai/scidocs", citation="@inproceedings{specter2020cohan,\
  title={SPECTER: Document-level Representation Learning using Citation-informed Transformers},\
  author={Arman Cohan and Sergey Feldman and Iz Beltagy and Doug Downey and Daniel S. Weld},\
  booktitle={ACL},\
  year={2020}\
}"),

    ScirepevalConfig(name="paper_reviewer_matching", features=ScirepevalConfig.get_features(
        ["doc_id", "title", "abstract", "corpus_id"],
        {}),
                     task_type="metadata", description="", citation="@inproceedings{Mimno2007ExpertiseMF,\
  title={Expertise modeling for matching papers with reviewers},\
  author={David Mimno and Andrew McCallum},\
  booktitle={KDD '07},\
  year={2007}\
}, @ARTICLE{9714338,\
  author={Zhao, Yue and Anand, Ajay and Sharma, Gaurav},\
  journal={IEEE Access}, \
  title={Reviewer Recommendations Using Document Vector Embeddings and a Publisher Database: Implementation and Evaluation}, \
  year={2022},\
  volume={10},\
  number={},\
  pages={21798-21811},\
  doi={10.1109/ACCESS.2022.3151640}}")

]