File size: 26,654 Bytes
bd4180c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
from typing import Dict, Any, List
import datasets
class ScirepevalConfig(datasets.BuilderConfig):
"""BuilderConfig for SuperGLUE."""
def __init__(self, features: Dict[str, Any], task_type: str, citation: str = "",
licenses: str = "", is_training: bool = False, homepage: str = "", url="", **kwargs):
"""BuilderConfig for SuperGLUE.
Args:
features: *list[string]*, list of the features that will appear in the
feature dict. Should not include "label".
data_url: *string*, url to download the zip file from.
citation: *string*, citation for the data set.
url: *string*, url for information about the data set.
label_classes: *list[string]*, the list of classes for the label if the
label is present as a string. Non-string labels will be cast to either
'False' or 'True'.
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(version=datasets.Version("1.1.0"), **kwargs)
self.features = features
self.task_type = task_type
self.citation = citation
self.license = licenses
self.is_training = is_training
self.homepage = homepage
self.url = url
@classmethod
def get_features(self, feature_names: List[str], type_mapping: Dict[str, Any] = None) -> Dict[str, Any]:
features = {name: type_mapping[name] if name in type_mapping else datasets.Value("string") for name in
feature_names}
if "corpus_id" in features:
features["corpus_id"] = datasets.Value("uint64")
return features
SCIREPEVAL_CONFIGS = [
ScirepevalConfig(name="fos", features=ScirepevalConfig.get_features(
["doc_id", "corpus_id", "title", "abstract", "labels", "labels_text"],
{"labels": datasets.Sequence(datasets.Value("int32")),
"labels_text": datasets.Sequence(datasets.Value("string"))}),
task_type="classification (multi-label)", is_training=True, description=""),
ScirepevalConfig(name="mesh_descriptors", features=ScirepevalConfig.get_features(
["doc_id", "mag_id", "corpus_id", "title", "abstract", "descriptor", "qualifier"], {"mag_id": datasets.Value("uint64")}),
task_type="classification", is_training=True,
citation="@article{Lipscomb2000MedicalSH, \
title={Medical Subject Headings (MeSH).}, \
author={Carolyn E. Lipscomb}, \
journal={Bulletin of the Medical Library Association},\
year={2000}, \
volume={88 3}, \
pages={ \
265-6 \
} \
}",
description="", homepage="https://www.nlm.nih.gov/databases/download/mesh.html"
),
ScirepevalConfig(name="cite_count", features=ScirepevalConfig.get_features(
["doc_id", "corpus_id", "title", "abstract", "venue", "n_citations", "log_citations"],
{"n_citations": datasets.Value("int32"),
"log_citations": datasets.Value("float32")}),
task_type="regression", is_training=True, description=""
),
ScirepevalConfig(name="pub_year", features=ScirepevalConfig.get_features(
["doc_id", "corpus_id", "title", "abstract", "year", "venue", "norm_year", "scaled_year", "n_authors", "norm_authors"],
{"year": datasets.Value("int32"), "norm_year": datasets.Value("float32"),
"scaled_year": datasets.Value("float32"), "n_authors": datasets.Value("int32"),
"norm_authors": datasets.Value("float32"), }),
task_type="regression", is_training=True, description=""),
ScirepevalConfig(name="cite_prediction",
features=ScirepevalConfig.get_features(["query", "pos", "neg"],
{"query": {
"doc_id": datasets.Value("string"),
"title": datasets.Value("string"),
"abstract": datasets.Value(
"string"),
"sha": datasets.Value("string"),
"corpus_id": datasets.Value("uint64")},
"pos": {
"doc_id": datasets.Value("string"),
"title": datasets.Value("string"),
"abstract": datasets.Value(
"string"),
"sha": datasets.Value("string"),
"corpus_id": datasets.Value("uint64")}
, "neg": {
"doc_id": datasets.Value("string"),
"title": datasets.Value("string"),
"abstract": datasets.Value(
"string"),
"sha": datasets.Value("string"),
"corpus_id": datasets.Value("uint64")}}),
task_type="proximity", is_training=True, citation="@inproceedings{specter2020cohan, \
title={{SPECTER: Document-level Representation Learning using Citation-informed Transformers}}, \
author={Arman Cohan and Sergey Feldman and Iz Beltagy and Doug Downey and Daniel S. Weld}, \
booktitle={ACL}, \
year={2020} \
}", description="", homepage="https://github.com/allenai/specter"),
ScirepevalConfig(name="cite_prediction_new",
features=ScirepevalConfig.get_features(["query", "pos", "neg"],
{"query": {
"title": datasets.Value("string"),
"abstract": datasets.Value(
"string"),
"corpus_id": datasets.Value("uint64")},
"pos": {
"title": datasets.Value("string"),
"abstract": datasets.Value(
"string"),
"corpus_id": datasets.Value("uint64"),
}
, "neg": {
"title": datasets.Value("string"),
"abstract": datasets.Value(
"string"),
"corpus_id": datasets.Value("uint64"),
"score": datasets.Value("int8")}}),
task_type="proximity", is_training=True, citation="@inproceedings{specter2020cohan, \
title={{SPECTER: Document-level Representation Learning using Citation-informed Transformers}}, \
author={Arman Cohan and Sergey Feldman and Iz Beltagy and Doug Downey and Daniel S. Weld}, \
booktitle={ACL}, \
year={2020} \
}", description="", homepage="https://github.com/allenai/specter"),
ScirepevalConfig(name="cite_prediction_aug2023refresh",
features=ScirepevalConfig.get_features(["query", "pos", "neg"],
{"query": {
"title": datasets.Value("string"),
"abstract": datasets.Value(
"string"),
"corpus_id": datasets.Value("uint64")},
"pos": {
"title": datasets.Value("string"),
"abstract": datasets.Value(
"string"),
"corpus_id": datasets.Value("uint64"),
}
, "neg": {
"title": datasets.Value("string"),
"abstract": datasets.Value(
"string"),
"corpus_id": datasets.Value("uint64")}}),
task_type="proximity", is_training=True, citation="@inproceedings{specter2020cohan, \
title={{SPECTER: Document-level Representation Learning using Citation-informed Transformers}}, \
author={Arman Cohan and Sergey Feldman and Iz Beltagy and Doug Downey and Daniel S. Weld}, \
booktitle={ACL}, \
year={2020} \
}", description="", homepage="https://github.com/allenai/specter"),
ScirepevalConfig(name="high_influence_cite",
features=ScirepevalConfig.get_features(["query", "candidates"],
{"query": {
"doc_id": datasets.Value("string"),
"title": datasets.Value("string"),
"abstract": datasets.Value(
"string"),
"corpus_id": datasets.Value("uint64")},
"candidates":
[{"doc_id": datasets.Value("string"),
"title": datasets.Value("string"),
"abstract": datasets.Value(
"string"),
"corpus_id": datasets.Value("uint64"),
"score": datasets.Value("uint32")}]}),
task_type="proximity", is_training=True, description=""),
ScirepevalConfig(name="same_author",
features=ScirepevalConfig.get_features(["dataset", "query", "candidates"],
{"query": {
"doc_id": datasets.Value("string"),
"title": datasets.Value("string"),
"abstract": datasets.Value(
"string"),
"corpus_id": datasets.Value("uint64")},
"candidates":
[{
"doc_id": datasets.Value("string"),
"title": datasets.Value("string"),
"abstract": datasets.Value(
"string"),
"corpus_id": datasets.Value("uint64"),
"score": datasets.Value("uint32")}]}),
task_type="proximity", is_training=True, description=""),
ScirepevalConfig(name="search",
features=ScirepevalConfig.get_features(["query", "doc_id", "candidates"],
{"candidates":
[{
"doc_id": datasets.Value("string"),
"title": datasets.Value("string"),
"abstract": datasets.Value(
"string"),
"corpus_id": datasets.Value("uint64"),
"venue": datasets.Value("string"),
"year": datasets.Value("float64"),
"author_names": datasets.Sequence(datasets.Value("string")),
"n_citations": datasets.Value("int32"),
"n_key_citations": datasets.Value("int32"),
"score": datasets.Value("uint32")}]}),
task_type="search", is_training=True, description=""),
ScirepevalConfig(name="biomimicry", features=ScirepevalConfig.get_features(
["doc_id", "doi", "corpus_id", "title", "abstract", "label", "venue"], {"label": datasets.Value("uint32")}),
task_type="classification",
citation="@Article{vikram2019petal,\
AUTHOR = {Shyam, Vikram and Friend, Lauren and Whiteaker, Brian and Bense, Nicholas and Dowdall, Jonathan and Boktor, Bishoy and Johny, Manju and Reyes, Isaias and Naser, Angeera and Sakhamuri, Nikhitha and Kravets, Victoria and Calvin, Alexandra and Gabus, Kaylee and Goodman, Delonte and Schilling, Herbert and Robinson, Calvin and Reid II, Robert Omar and Unsworth, Colleen},\
TITLE = {PeTaL (Periodic Table of Life) and Physiomimetics},\
JOURNAL = {Designs},\
VOLUME = {3},\
YEAR = {2019},\
NUMBER = {3},\
ARTICLE-NUMBER = {43},\
URL = {https://www.mdpi.com/2411-9660/3/3/43},\
ISSN = {2411-9660},\
ABSTRACT = {The Periodic Table of Life (PeTaL) is a system design tool and open source framework that uses artificial intelligence (AI) to aid in the systematic inquiry of nature for its application to human systems. This paper defines PeTaL’s architecture and workflow. Biomimicry, biophysics, biomimetics, bionics and numerous other terms refer to the use of biology and biological principles to inform practices in other disciplines. For the most part, the domain of inquiry in these fields has been confined to extant biological models with the proponents of biomimicry often citing the evolutionary success of extant organisms relative to extinct ones. An objective of this paper is to expand the domain of inquiry for human processes that seek to model those that are, were or could be found in nature with examples that relate to the field of aerospace and to spur development of tools that can work together to accelerate the use of artificial intelligence, topology optimization and conventional modeling in problem solving. Specifically, specialized fields such as paleomimesis, anthropomimesis and physioteleology are proposed in conjunction with artificial evolution. The overarching philosophy outlined here can be thought of as physiomimetics, a holistic and systematic way of learning from natural history. The backbone of PeTaL integrates an unstructured database with an ontological model consisting of function, morphology, environment, state of matter and ecosystem. Tools that support PeTaL include machine learning, natural language processing and computer vision. Applications of PeTaL include guiding human space exploration, understanding human and geological history, and discovering new or extinct life. Also discussed is the formation of V.I.N.E. (Virtual Interchange for Nature-inspired Exploration), a virtual collaborative aimed at generating data, research and applications centered on nature. Details of implementation will be presented in subsequent publications. Recommendations for future work are also presented.},\
DOI = {10.3390/designs3030043}\
}",
description="",
homepage="https://github.com/nasa-petal/PeTaL-db"
),
ScirepevalConfig(name="drsm", features=ScirepevalConfig.get_features(
["doc_id", "corpus_id", "title", "abstract", "label_type", "label", "class"],
{"class": datasets.Value("uint32")}),
task_type="classification", description="",
homepage="https://github.com/chanzuckerberg/DRSM-corpus"
),
ScirepevalConfig(name="relish",
features=ScirepevalConfig.get_features(["query", "candidates"],
{"query": {
"doc_id": datasets.Value("string"),
"title": datasets.Value("string"),
"abstract": datasets.Value(
"string"),
"corpus_id": datasets.Value("int64")},
"candidates":
[{
"doc_id": datasets.Value("string"),
"title": datasets.Value("string"),
"abstract": datasets.Value(
"string"),
"corpus_id": datasets.Value("int64"),
"score": datasets.Value("uint32")}]}),
task_type="proximity", description=""),
ScirepevalConfig(name="nfcorpus",
features=ScirepevalConfig.get_features(["query", "doc_id", "candidates"],
{"candidates":
[{
"doc_id": datasets.Value("string"),
"title": datasets.Value("string"),
"abstract": datasets.Value(
"string"),
"score": datasets.Value("uint32")}]}),
task_type="search", description=""),
ScirepevalConfig(name="peer_review_score_hIndex", features=ScirepevalConfig.get_features(
["doc_id", "corpus_id", "title", "abstract", "rating", "confidence", "authors", "decision", "mean_rating", "hIndex"],
{"mean_rating": datasets.Value("float32"),
"rating": datasets.Sequence(datasets.Value("int32")),
"authors": datasets.Sequence(datasets.Value("string")),
"hIndex": datasets.Sequence(datasets.Value("string"))
}),
task_type="regression", description=""
),
ScirepevalConfig(name="trec_covid",
features=ScirepevalConfig.get_features(["query", "doc_id", "candidates"],
{"candidates":
[{
"title": datasets.Value("string"),
"abstract": datasets.Value(
"string"),
"corpus_id": datasets.Value("string"),
"doc_id": datasets.Value("string"),
"date": datasets.Value("string"),
"doi": datasets.Value("string"),
"iteration": datasets.Value("string"),
"score": datasets.Value("int32")}]}),
task_type="search", description="", homepage="https://ir.nist.gov/trec-covid/", citation="@article{Voorhees2020TRECCOVIDCA,\
title={TREC-COVID: Constructing a Pandemic Information Retrieval Test Collection},\
author={Ellen M. Voorhees and Tasmeer Alam and Steven Bedrick and Dina Demner-Fushman and William R. Hersh and Kyle Lo and Kirk Roberts and Ian Soboroff and Lucy Lu Wang},\
journal={ArXiv},\
year={2020},\
volume={abs/2005.04474}\
}"),
ScirepevalConfig(name="tweet_mentions", features=ScirepevalConfig.get_features(
["doc_id", "corpus_id", "title", "abstract", "index", "retweets", "count", "mentions"],
{"index": datasets.Value("int32"), "count": datasets.Value("int32"),
"retweets": datasets.Value("float32"), "mentions": datasets.Value("float32")}),
task_type="regression", description="",
citation="@article{Jain2021TweetPapAD,\
title={TweetPap: A Dataset to Study the Social Media Discourse of Scientific Papers},\
author={Naman Jain and Mayank Kumar Singh},\
journal={2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)},\
year={2021},\
pages={328-329}\
}"),
ScirepevalConfig(name="scidocs_mag_mesh", features=ScirepevalConfig.get_features(
["doc_id", "corpus_id", "title", "abstract", "authors", "cited_by", "references", "year"],
{"year": datasets.Value("int32"),
"authors": datasets.Sequence(datasets.Value("string")),
"cited_by": datasets.Sequence(datasets.Value("string")),
"references": datasets.Sequence(datasets.Value("string"))
}),
task_type="classification ", description="", url="scidocs/mag_mesh",
homepage="https://github.com/allenai/scidocs", citation="@inproceedings{specter2020cohan,\
title={SPECTER: Document-level Representation Learning using Citation-informed Transformers},\
author={Arman Cohan and Sergey Feldman and Iz Beltagy and Doug Downey and Daniel S. Weld},\
booktitle={ACL},\
year={2020}\
}"),
ScirepevalConfig(name="scidocs_view_cite_read", features=ScirepevalConfig.get_features(
["doc_id", "corpus_id", "title", "abstract", "authors", "cited_by", "references", "year"],
{"year": datasets.Value("int32"),
"authors": datasets.Sequence(datasets.Value("string")),
"cited_by": datasets.Sequence(datasets.Value("string")),
"references": datasets.Sequence(datasets.Value("string"))
}),
task_type="metadata", description="", url="scidocs/view_cite_read",
homepage="https://github.com/allenai/scidocs", citation="@inproceedings{specter2020cohan,\
title={SPECTER: Document-level Representation Learning using Citation-informed Transformers},\
author={Arman Cohan and Sergey Feldman and Iz Beltagy and Doug Downey and Daniel S. Weld},\
booktitle={ACL},\
year={2020}\
}"),
ScirepevalConfig(name="paper_reviewer_matching", features=ScirepevalConfig.get_features(
["doc_id", "title", "abstract", "corpus_id"],
{}),
task_type="metadata", description="", citation="@inproceedings{Mimno2007ExpertiseMF,\
title={Expertise modeling for matching papers with reviewers},\
author={David Mimno and Andrew McCallum},\
booktitle={KDD '07},\
year={2007}\
}, @ARTICLE{9714338,\
author={Zhao, Yue and Anand, Ajay and Sharma, Gaurav},\
journal={IEEE Access}, \
title={Reviewer Recommendations Using Document Vector Embeddings and a Publisher Database: Implementation and Evaluation}, \
year={2022},\
volume={10},\
number={},\
pages={21798-21811},\
doi={10.1109/ACCESS.2022.3151640}}")
]
|