Convert dataset to Parquet

#4
README.md CHANGED
@@ -72,17 +72,26 @@ dataset_info:
72
  - name: id
73
  dtype: string
74
  splits:
75
- - name: test
76
- num_bytes: 870809
77
- num_examples: 1859
78
  - name: train
79
- num_bytes: 3843904
80
  num_examples: 8194
81
  - name: validation
82
- num_bytes: 430296
83
  num_examples: 916
84
- download_size: 23189911
85
- dataset_size: 5145009
 
 
 
 
 
 
 
 
 
 
 
 
86
  ---
87
 
88
  # Dataset Card for "scicite"
 
72
  - name: id
73
  dtype: string
74
  splits:
 
 
 
75
  - name: train
76
+ num_bytes: 3828509
77
  num_examples: 8194
78
  - name: validation
79
+ num_bytes: 428551
80
  num_examples: 916
81
+ - name: test
82
+ num_bytes: 867294
83
+ num_examples: 1859
84
+ download_size: 3561554
85
+ dataset_size: 5124354
86
+ configs:
87
+ - config_name: default
88
+ data_files:
89
+ - split: train
90
+ path: data/train-*
91
+ - split: validation
92
+ path: data/validation-*
93
+ - split: test
94
+ path: data/test-*
95
  ---
96
 
97
  # Dataset Card for "scicite"
data/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c43b73ca4544d5aabd57145ca734108e88d817c47746bc9e096090896bd60a58
3
+ size 625439
data/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:515531960693e29ae248e21f2568cc6a542ed9d1d42c98e0572859d65b59144b
3
+ size 2637978
data/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fac10c6583d69c3a7646950754c4b8b582ca2b45378722699675e10dab225d78
3
+ size 298137
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"default": {"description": "\nThis is a dataset for classifying citation intents in academic papers.\nThe main citation intent label for each Json object is specified with the label\nkey while the citation context is specified in with a context key. Example:\n{\n 'string': 'In chacma baboons, male-infant relationships can be linked to both\n formation of friendships and paternity success [30,31].'\n 'sectionName': 'Introduction',\n 'label': 'background',\n 'citingPaperId': '7a6b2d4b405439',\n 'citedPaperId': '9d1abadc55b5e0',\n ...\n }\nYou may obtain the full information about the paper using the provided paper ids\nwith the Semantic Scholar API (https://api.semanticscholar.org/).\nThe labels are:\nMethod, Background, Result\n", "citation": "\n@InProceedings{Cohan2019Structural,\n author={Arman Cohan and Waleed Ammar and Madeleine Van Zuylen and Field Cady},\n title={Structural Scaffolds for Citation Intent Classification in Scientific Publications},\n booktitle=\"NAACL\",\n year=\"2019\"\n}\n", "homepage": "https://github.com/allenai/scicite", "license": "", "features": {"string": {"dtype": "string", "id": null, "_type": "Value"}, "sectionName": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["method", "background", "result"], "names_file": null, "id": null, "_type": "ClassLabel"}, "citingPaperId": {"dtype": "string", "id": null, "_type": "Value"}, "citedPaperId": {"dtype": "string", "id": null, "_type": "Value"}, "excerpt_index": {"dtype": "int32", "id": null, "_type": "Value"}, "isKeyCitation": {"dtype": "bool", "id": null, "_type": "Value"}, "label2": {"num_classes": 4, "names": ["supportive", "not_supportive", "cant_determine", "none"], "names_file": null, "id": null, "_type": "ClassLabel"}, "citeEnd": {"dtype": "int64", "id": null, "_type": "Value"}, "citeStart": {"dtype": "int64", "id": null, "_type": "Value"}, "source": {"num_classes": 7, "names": ["properNoun", "andPhrase", "acronym", "etAlPhrase", "explicit", "acronymParen", "nan"], "names_file": null, "id": null, "_type": "ClassLabel"}, "label_confidence": {"dtype": "float32", "id": null, "_type": "Value"}, "label2_confidence": {"dtype": "float32", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "scicite", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 870809, "num_examples": 1859, "dataset_name": "scicite"}, "train": {"name": "train", "num_bytes": 3843904, "num_examples": 8194, "dataset_name": "scicite"}, "validation": {"name": "validation", "num_bytes": 430296, "num_examples": 916, "dataset_name": "scicite"}}, "download_checksums": {"https://s3-us-west-2.amazonaws.com/ai2-s2-research/scicite/scicite.tar.gz": {"num_bytes": 23189911, "checksum": "711ece2c4e61d116c8ae5bb07e9fbb2ee9ff7bba004b4cab7fbd0ac3af499193"}}, "download_size": 23189911, "dataset_size": 5145009, "size_in_bytes": 28334920}}
 
 
scicite.py DELETED
@@ -1,154 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- """TODO(scicite): Add a description here."""
18
-
19
-
20
- import json
21
-
22
- import datasets
23
-
24
-
25
- _CITATION = """
26
- @InProceedings{Cohan2019Structural,
27
- author={Arman Cohan and Waleed Ammar and Madeleine Van Zuylen and Field Cady},
28
- title={Structural Scaffolds for Citation Intent Classification in Scientific Publications},
29
- booktitle={NAACL},
30
- year={2019}
31
- }
32
- """
33
-
34
- _DESCRIPTION = """
35
- This is a dataset for classifying citation intents in academic papers.
36
- The main citation intent label for each Json object is specified with the label
37
- key while the citation context is specified in with a context key. Example:
38
- {
39
- 'string': 'In chacma baboons, male-infant relationships can be linked to both
40
- formation of friendships and paternity success [30,31].'
41
- 'sectionName': 'Introduction',
42
- 'label': 'background',
43
- 'citingPaperId': '7a6b2d4b405439',
44
- 'citedPaperId': '9d1abadc55b5e0',
45
- ...
46
- }
47
- You may obtain the full information about the paper using the provided paper ids
48
- with the Semantic Scholar API (https://api.semanticscholar.org/).
49
- The labels are:
50
- Method, Background, Result
51
- """
52
-
53
- _SOURCE_NAMES = ["properNoun", "andPhrase", "acronym", "etAlPhrase", "explicit", "acronymParen", "nan"]
54
-
55
-
56
- class Scicite(datasets.GeneratorBasedBuilder):
57
- """This is a dataset for classifying citation intents in academic papers."""
58
-
59
- VERSION = datasets.Version("1.0.0")
60
-
61
- def _info(self):
62
- return datasets.DatasetInfo(
63
- # This is the description that will appear on the datasets page.
64
- description=_DESCRIPTION,
65
- # datasets.features.FeatureConnectors
66
- features=datasets.Features(
67
- {
68
- "string": datasets.Value("string"),
69
- "sectionName": datasets.Value("string"),
70
- "label": datasets.features.ClassLabel(names=["method", "background", "result"]),
71
- "citingPaperId": datasets.Value("string"),
72
- "citedPaperId": datasets.Value("string"),
73
- "excerpt_index": datasets.Value("int32"),
74
- "isKeyCitation": datasets.Value("bool"),
75
- "label2": datasets.features.ClassLabel(
76
- names=["supportive", "not_supportive", "cant_determine", "none"]
77
- ),
78
- "citeEnd": datasets.Value("int64"),
79
- "citeStart": datasets.Value("int64"),
80
- "source": datasets.features.ClassLabel(names=_SOURCE_NAMES),
81
- "label_confidence": datasets.Value("float32"),
82
- "label2_confidence": datasets.Value("float32"),
83
- "id": datasets.Value("string"),
84
- }
85
- ),
86
- # If there's a common (input, target) tuple from the features,
87
- # specify them here. They'll be used if as_supervised=True in
88
- # builder.as_dataset.
89
- supervised_keys=None,
90
- # Homepage of the dataset for documentation
91
- homepage="https://github.com/allenai/scicite",
92
- citation=_CITATION,
93
- )
94
-
95
- def _split_generators(self, dl_manager):
96
- """Returns SplitGenerators."""
97
- archive = dl_manager.download("https://s3-us-west-2.amazonaws.com/ai2-s2-research/scicite/scicite.tar.gz")
98
- return [
99
- datasets.SplitGenerator(
100
- name=datasets.Split.TRAIN,
101
- gen_kwargs={
102
- "filepath": "/".join(["scicite", "train.jsonl"]),
103
- "files": dl_manager.iter_archive(archive),
104
- },
105
- ),
106
- datasets.SplitGenerator(
107
- name=datasets.Split.VALIDATION,
108
- gen_kwargs={"filepath": "/".join(["scicite", "dev.jsonl"]), "files": dl_manager.iter_archive(archive)},
109
- ),
110
- datasets.SplitGenerator(
111
- name=datasets.Split.TEST,
112
- gen_kwargs={
113
- "filepath": "/".join(["scicite", "test.jsonl"]),
114
- "files": dl_manager.iter_archive(archive),
115
- },
116
- ),
117
- ]
118
-
119
- def _generate_examples(self, filepath, files):
120
- """Yields examples."""
121
- for path, f in files:
122
- if path == filepath:
123
- unique_ids = {}
124
- for line in f:
125
- d = json.loads(line.decode("utf-8"))
126
- unique_id = str(d["unique_id"])
127
- if unique_id in unique_ids:
128
- continue
129
- unique_ids[unique_id] = True
130
- yield unique_id, {
131
- "string": d["string"],
132
- "label": str(d["label"]),
133
- "sectionName": str(d["sectionName"]),
134
- "citingPaperId": str(d["citingPaperId"]),
135
- "citedPaperId": str(d["citedPaperId"]),
136
- "excerpt_index": int(d["excerpt_index"]),
137
- "isKeyCitation": bool(d["isKeyCitation"]),
138
- "label2": str(d.get("label2", "none")),
139
- "citeEnd": _safe_int(d["citeEnd"]),
140
- "citeStart": _safe_int(d["citeStart"]),
141
- "source": str(d["source"]),
142
- "label_confidence": float(d.get("label_confidence", 0.0)),
143
- "label2_confidence": float(d.get("label2_confidence", 0.0)),
144
- "id": str(d["id"]),
145
- }
146
- break
147
-
148
-
149
- def _safe_int(a):
150
- try:
151
- # skip NaNs
152
- return int(a)
153
- except ValueError:
154
- return -1