Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Yoruba
Size:
1K<n<10K
License:
File size: 5,431 Bytes
ff0e785 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
languages:
- yo
licenses:
- Creative Commons 3-0
multilinguality:
- monolingual
size_categories:
- 200<n<1k
source_datasets:
- original
task_categories:
- structure-prediction
task_ids:
- named-entity-recognition
---
# Dataset Card for Yoruba GV NER Corpus
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:**
- **Repository:** [Yoruba GV NER](https://github.com/ajesujoba/YorubaTwi-Embedding/tree/master/Yoruba/Yoruba-NER)
- **Paper:** https://www.aclweb.org/anthology/2020.lrec-1.335/
- **Leaderboard:**
- **Point of Contact:** [David Adelani](mailto:didelani@lsv.uni-saarland.de)
### Dataset Summary
The Yoruba GV NER is a named entity recognition (NER) dataset for Yorùbá language based on the [Global Voices news](https://yo.globalvoices.org/) corpus. Global Voices (GV) is a multilingual news platform with articles contributed by journalists, translators, bloggers, and human rights activists from around the world with a coverage of over 50 languages. Most of the texts used in creating the Yoruba GV NER are translations from other languages to Yorùbá.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The language supported is Yorùbá.
## Dataset Structure
### Data Instances
A data point consists of sentences seperated by empty line and tab-seperated tokens and tags.
{'id': '0',
'ner_tags': [B-LOC, 0, 0, 0, 0],
'tokens': ['Tanzania', 'fi', 'Ajìjàgbara', 'Ọmọ', 'Orílẹ̀-èdèe']
}
### Data Fields
- `id`: id of the sample
- `tokens`: the tokens of the example text
- `ner_tags`: the NER tags of each token
The NER tags correspond to this list:
```
"O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "B-DATE", "I-DATE",
```
The NER tags have the same format as in the CoNLL shared task: a B denotes the first item of a phrase and an I any non-initial word. There are four types of phrases: person names (PER), organizations (ORG), locations (LOC) and dates & times (DATE). (O) is used for tokens not considered part of any named entity.
### Data Splits
Training (19,421 tokens), validation (2,695 tokens) and test split (5,235 tokens)
## Dataset Creation
### Curation Rationale
The data was created to help introduce resources to new language - Yorùbá.
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
The dataset is based on the news domain and was crawled from [Global Voices Yorùbá news](https://yo.globalvoices.org/).
[More Information Needed]
#### Who are the source language producers?
The dataset contributed by journalists, translators, bloggers, and human rights activists from around the world. Most of the texts used in creating the Yoruba GV NER are translations from other languages to Yorùbá
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
The data was annotated by Jesujoba Alabi and David Adelani for the paper:
[Massive vs. Curated Embeddings for Low-Resourced Languages: the case of Yorùbá and Twi](https://www.aclweb.org/anthology/2020.lrec-1.335/).
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
The annotated data sets were developed by students of Saarland University, Saarbrücken, Germany .
### Licensing Information
The data is under the [Creative Commons Attribution 3.0 ](https://creativecommons.org/licenses/by/3.0/)
### Citation Information
```
@inproceedings{alabi-etal-2020-massive,
title = "Massive vs. Curated Embeddings for Low-Resourced Languages: the Case of {Y}or{\`u}b{\'a} and {T}wi",
author = "Alabi, Jesujoba and
Amponsah-Kaakyire, Kwabena and
Adelani, David and
Espa{\~n}a-Bonet, Cristina",
booktitle = "Proceedings of the 12th Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://www.aclweb.org/anthology/2020.lrec-1.335",
pages = "2754--2762",
language = "English",
ISBN = "979-10-95546-34-4",
}
``` |