File size: 9,069 Bytes
5f80e1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52ccd53
 
5f80e1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52ccd53
5f80e1a
 
 
79c132b
5f80e1a
 
 
 
52ccd53
5f80e1a
 
 
79c132b
5f80e1a
 
 
 
52ccd53
5f80e1a
 
 
 
 
 
 
 
 
52ccd53
5f80e1a
 
 
 
79c132b
5f80e1a
 
 
 
 
 
 
 
79c132b
5f80e1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""The Russian Spellcheck Benchmark"""

import os
import json
import pandas as pd
from typing import List, Dict, Optional

import datasets


_RUSSIAN_SPELLCHECK_BENCHMARK_DESCRIPTION = """
                Russian Spellcheck Benchmark is a new benchmark for spelling correction in Russian language.
                It includes four datasets, each of which consists of pairs of sentences in Russian language. 
                Each pair embodies sentence, which may contain spelling errors, and its corresponding correction. 
                Datasets were gathered from various sources and domains including social networks, internet blogs, github commits, 
                medical anamnesis, literature, news, reviews and more.
                """

_MULTIDOMAIN_GOLD_DESCRIPTION = """
                MultidomainGold is a dataset of 3500 sentence pairs 
                dedicated to a problem of automatic spelling correction in Russian language. 
                The dataset is gathered from seven different domains including news, Russian classic literature,
                social media texts, open web, strategic documents, subtitles and reviews.
                It has been passed through two-stage manual labeling process with native speakers as annotators
                to correct spelling violation and preserve original style of text at the same time.
                """

_GITHUB_TYPO_CORPUS_RU_DESCRIPTION = """
                GitHubTypoCorpusRu is a manually labeled part of GitHub Typo Corpus https://arxiv.org/abs/1911.12893.
                The sentences with "ru" tag attached to them have been extracted from GitHub Typo Corpus 
                and pass them through manual labeling to ensure the corresponding corrections are right.
                """

_RUSPELLRU_DESCRIPTION = """
                RUSpellRU is a first benchmark on the task of automatic spelling correction for Russian language 
                introduced in https://www.dialog-21.ru/media/3427/sorokinaaetal.pdf. 
                Original sentences are drawn from social media domain and labeled by
                human annotators. 
                """

_MEDSPELLCHECK_DESCRIPTION = """
                The dataset is taken from GitHub repo associated with eponymos project https://github.com/DmitryPogrebnoy/MedSpellChecker.
                Original sentences are taken from anonymized medical anamnesis and passed through 
                two-stage manual labeling pipeline. 
                """

_RUSSIAN_SPELLCHECK_BENCHMARK_CITATION = """ # TODO: add citation"""

_MULTIDOMAIN_GOLD_CITATION = """ # TODO: add citation from Dialog"""

_GITHUB_TYPO_CORPUS_RU_CITATION = """
@article{DBLP:journals/corr/abs-1911-12893,
                author       = {Masato Hagiwara and
                                Masato Mita},
                title        = {GitHub Typo Corpus: {A} Large-Scale Multilingual Dataset of Misspellings
                                and Grammatical Errors},
                journal      = {CoRR},
                volume       = {abs/1911.12893},
                year         = {2019},
                url          = {http://arxiv.org/abs/1911.12893},
                eprinttype    = {arXiv},
                eprint       = {1911.12893},
                timestamp    = {Wed, 08 Jan 2020 15:28:22 +0100},
                biburl       = {https://dblp.org/rec/journals/corr/abs-1911-12893.bib},
                bibsource    = {dblp computer science bibliography, https://dblp.org}
                }
"""

_RUSPELLRU_CITATION = """
@inproceedings{Shavrina2016SpellRuevalT,
                title={SpellRueval : the FiRSt Competition on automatiC Spelling CoRReCtion FoR RuSSian},
                author={Tatiana Shavrina and Россия Москва and Москва Яндекс and Россия and Россия Долгопрудный},
                year={2016}
                }
"""

_LICENSE = "apache-2.0"


class RussianSpellcheckBenchmarkConfig(datasets.BuilderConfig):
    """BuilderConfig for RussianSpellcheckBenchmark."""

    def __init__(
        self, 
        data_urls: Dict[str,str], 
        features: List[str],
        citation: str,
        **kwargs,
    ):
        """BuilderConfig for RussianSpellcheckBenchmark.
        Args:
        features: *list[string]*, list of the features that will appear in the
            feature dict. Should not include "label".
        data_urls: *dict[string]*, urls to download the zip file from.
        **kwargs: keyword arguments forwarded to super.
        """
        super(RussianSpellcheckBenchmarkConfig, self).__init__(version=datasets.Version("0.0.1"), **kwargs)
        self.data_urls = data_urls
        self.features = features
        self.citation = citation


class RussianSpellcheckBenchmark(datasets.GeneratorBasedBuilder):
    """Russian Spellcheck Benchmark."""

    BUILDER_CONFIGS = [
        RussianSpellcheckBenchmarkConfig(
            name="GitHubTypoCorpusRu",
            description=_GITHUB_TYPO_CORPUS_RU_DESCRIPTION,
            data_urls={
                "test": "data/GitHubTypoCorpusRu/test.json",
            },
            features=["source", "correction", "domain"],
            citation=_GITHUB_TYPO_CORPUS_RU_CITATION,
        ),
        RussianSpellcheckBenchmarkConfig(
            name="MedSpellchecker",
            description=_MEDSPELLCHECK_DESCRIPTION,
            data_urls={
                "test": "data/MedSpellchecker/test.json",
            },
            features=["source", "correction", "domain"],
            citation="",
        ),
        RussianSpellcheckBenchmarkConfig(
            name="MultidomainGold",
            description=_MULTIDOMAIN_GOLD_DESCRIPTION,
            data_urls={
                "train": "data/MultidomainGold/train.json",
                "test": "data/MultidomainGold/test.json",
            },
            features=["source", "correction", "domain"],
            citation=_MULTIDOMAIN_GOLD_CITATION,
        ),
        RussianSpellcheckBenchmarkConfig(
            name="RUSpellRU",
            description=_RUSPELLRU_DESCRIPTION,
            data_urls={
                "test": "data/RUSpellRU/test.json",
                "train": "data/RUSpellRU/train.json",
            },
            features=["source", "correction", "domain"],
            citation=_RUSPELLRU_CITATION,
        ),
    ]

    def _info(self) -> datasets.DatasetInfo:
        features = {
                "source": datasets.Value("string"),
                "correction": datasets.Value("string"),
                "domain": datasets.Value("string"),
            }

        return datasets.DatasetInfo(
            features=datasets.Features(features),
            description=_RUSSIAN_SPELLCHECK_BENCHMARK_DESCRIPTION + self.config.description,
            license=_LICENSE,
            citation=self.config.citation + "\n" + _RUSSIAN_SPELLCHECK_BENCHMARK_CITATION,
        )

    def _split_generators(
        self, dl_manager: datasets.DownloadManager
    ) -> List[datasets.SplitGenerator]:
        urls_to_download = self.config.data_urls
        downloaded_files = dl_manager.download_and_extract(urls_to_download)
        if self.config.name == "GitHubTypoCorpusRu" or \
           self.config.name == "MedSpellchecker":
           return [
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "data_file": downloaded_files["test"],
                    "split": datasets.Split.TEST,
                },
            )
        ] 
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "data_file": downloaded_files["train"],
                    "split": datasets.Split.TRAIN,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "data_file": downloaded_files["test"],
                    "split": datasets.Split.TEST,
                },
            )
        ]

    def _generate_examples(self, data_file, split):
        with open(data_file, encoding="utf-8") as f:
            key = 0
            for line in f:
                row = json.loads(line)
                example = {feature: row[feature] for feature in self.config.features}
                yield key, example
                key += 1