jonathanagustin commited on
Commit
ff9c29b
1 Parent(s): 5096270

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +210 -131
README.md CHANGED
@@ -1,143 +1,222 @@
1
  ---
2
- # For reference on dataset card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/datasetcard.md?plain=1
3
- # Doc / guide: https://huggingface.co/docs/hub/datasets-cards
4
- {}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  ---
 
6
 
7
- # Dataset Card for Dataset Name
8
 
9
- <!-- Provide a quick summary of the dataset. -->
10
 
11
- This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1).
12
 
13
- ## Dataset Details
 
 
 
14
 
15
- ### Dataset Description
16
 
17
- <!-- Provide a longer summary of what this dataset is. -->
18
 
 
19
 
 
 
 
20
 
21
- - **Curated by:** [More Information Needed]
22
- - **Funded by [optional]:** [More Information Needed]
23
- - **Shared by [optional]:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
 
27
- ### Dataset Sources [optional]
28
-
29
- <!-- Provide the basic links for the dataset. -->
30
-
31
- - **Repository:** [More Information Needed]
32
- - **Paper [optional]:** [More Information Needed]
33
- - **Demo [optional]:** [More Information Needed]
34
-
35
- ## Uses
36
-
37
- <!-- Address questions around how the dataset is intended to be used. -->
38
-
39
- ### Direct Use
40
-
41
- <!-- This section describes suitable use cases for the dataset. -->
42
-
43
- [More Information Needed]
44
-
45
- ### Out-of-Scope Use
46
-
47
- <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
48
-
49
- [More Information Needed]
50
-
51
- ## Dataset Structure
52
-
53
- <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
54
-
55
- [More Information Needed]
56
-
57
- ## Dataset Creation
58
-
59
- ### Curation Rationale
60
-
61
- <!-- Motivation for the creation of this dataset. -->
62
-
63
- [More Information Needed]
64
-
65
- ### Source Data
66
-
67
- <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
68
-
69
- #### Data Collection and Processing
70
-
71
- <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
72
-
73
- [More Information Needed]
74
-
75
- #### Who are the source data producers?
76
-
77
- <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
78
-
79
- [More Information Needed]
80
-
81
- ### Annotations [optional]
82
-
83
- <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
84
-
85
- #### Annotation process
86
-
87
- <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
88
-
89
- [More Information Needed]
90
-
91
- #### Who are the annotators?
92
-
93
- <!-- This section describes the people or systems who created the annotations. -->
94
-
95
- [More Information Needed]
96
-
97
- #### Personal and Sensitive Information
98
-
99
- <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Bias, Risks, and Limitations
104
-
105
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
106
-
107
- [More Information Needed]
108
-
109
- ### Recommendations
110
-
111
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
112
-
113
- Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
114
-
115
- ## Citation [optional]
116
-
117
- <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
118
-
119
- **BibTeX:**
120
-
121
- [More Information Needed]
122
-
123
- **APA:**
124
-
125
- [More Information Needed]
126
-
127
- ## Glossary [optional]
128
-
129
- <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
130
-
131
- [More Information Needed]
132
-
133
- ## More Information [optional]
134
-
135
- [More Information Needed]
136
-
137
- ## Dataset Card Authors [optional]
138
-
139
- [More Information Needed]
140
-
141
- ## Dataset Card Contact
142
-
143
- [More Information Needed]
 
1
  ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - tabular-classification
6
+ - churn-prediction
7
+ - telecom
8
+ - customer-retention
9
+ - demographics
10
+ - customer-service
11
+ pretty_name: Telco Customer Churn
12
+ dataset_info:
13
+ - config_name: default
14
+ features:
15
+ - name: Customer ID
16
+ dtype: string
17
+ - name: Gender
18
+ dtype: string
19
+ - name: Age
20
+ dtype: int64
21
+ - name: Under 30
22
+ dtype: bool
23
+ - name: Senior Citizen
24
+ dtype: bool
25
+ - name: Married
26
+ dtype: bool
27
+ - name: Dependents
28
+ dtype: bool
29
+ - name: Number of Dependents
30
+ dtype: int64
31
+ - name: Country
32
+ dtype: string
33
+ - name: State
34
+ dtype: string
35
+ - name: City
36
+ dtype: string
37
+ - name: Zip Code
38
+ dtype: string
39
+ - name: Lat Long
40
+ dtype: string
41
+ - name: Latitude
42
+ dtype: float64
43
+ - name: Longitude
44
+ dtype: float64
45
+ - name: Population
46
+ dtype: int64
47
+ - name: Quarter
48
+ dtype: string
49
+ - name: Referred a Friend
50
+ dtype: bool
51
+ - name: Number of Referrals
52
+ dtype: int64
53
+ - name: Tenure in Months
54
+ dtype: int64
55
+ - name: Offer
56
+ dtype: string
57
+ - name: Phone Service
58
+ dtype: bool
59
+ - name: Avg Monthly Long Distance Charges
60
+ dtype: float64
61
+ - name: Multiple Lines
62
+ dtype: string
63
+ - name: Internet Service
64
+ dtype: bool
65
+ - name: Internet Type
66
+ dtype: string
67
+ - name: Avg Monthly GB Download
68
+ dtype: float64
69
+ - name: Online Security
70
+ dtype: bool
71
+ - name: Online Backup
72
+ dtype: bool
73
+ - name: Device Protection Plan
74
+ dtype: bool
75
+ - name: Premium Tech Support
76
+ dtype: bool
77
+ - name: Streaming TV
78
+ dtype: bool
79
+ - name: Streaming Movies
80
+ dtype: bool
81
+ - name: Streaming Music
82
+ dtype: bool
83
+ - name: Unlimited Data
84
+ dtype: bool
85
+ - name: Contract
86
+ dtype: string
87
+ - name: Paperless Billing
88
+ dtype: bool
89
+ - name: Payment Method
90
+ dtype: string
91
+ - name: Monthly Charge
92
+ dtype: float64
93
+ - name: Total Charges
94
+ dtype: float64
95
+ - name: Total Refunds
96
+ dtype: float64
97
+ - name: Total Extra Data Charges
98
+ dtype: float64
99
+ - name: Total Long Distance Charges
100
+ dtype: float64
101
+ - name: Total Revenue
102
+ dtype: float64
103
+ - name: Satisfaction Score
104
+ dtype: int64
105
+ - name: Customer Status
106
+ dtype: string
107
+ - name: Churn Label
108
+ dtype: string
109
+ - name: Churn Value
110
+ dtype: int64
111
+ - name: Churn Score
112
+ dtype: int64
113
+ - name: CLTV
114
+ dtype: float64
115
+ - name: Churn Category
116
+ dtype: string
117
+ - name: Churn Reason
118
+ dtype: string
119
+ - name: Partner
120
+ dtype: bool
121
+ configs:
122
+ - config_name: default
123
+ data_files:
124
+ - split: train
125
+ path: train.csv
126
+ - split: test
127
+ path: test.csv
128
+ train-eval-index:
129
+ - config: default
130
+ task: text-classification
131
+ task_id: multi_label_classification
132
+ col_mapping:
133
+ Customer ID: id
134
+ Gender: Gender
135
+ Age: Age
136
+ Under 30: Under 30
137
+ Senior Citizen: Senior Citizen
138
+ Married: Married
139
+ Dependents: Dependents
140
+ Number of Dependents: Number of Dependents
141
+ Country: Country
142
+ State: State
143
+ City: City
144
+ Zip Code: Zip Code
145
+ Lat Long: Lat Long
146
+ Latitude: Latitude
147
+ Longitude: Longitude
148
+ Population: Population
149
+ Quarter: Quarter
150
+ Referred a Friend: Referred a Friend
151
+ Number of Referrals: Number of Referrals
152
+ Tenure in Months: Tenure in Months
153
+ Offer: Offer
154
+ Phone Service: Phone Service
155
+ Avg Monthly Long Distance Charges: Avg Monthly Long Distance Charges
156
+ Multiple Lines: Multiple Lines
157
+ Internet Service: Internet Service
158
+ Internet Type: Internet Type
159
+ Avg Monthly GB Download: Avg Monthly GB Download
160
+ Online Security: Online Security
161
+ Online Backup: Online Backup
162
+ Device Protection Plan: Device Protection Plan
163
+ Premium Tech Support: Premium Tech Support
164
+ Streaming TV: Streaming TV
165
+ Streaming Movies: Streaming Movies
166
+ Streaming Music: Streaming Music
167
+ Unlimited Data: Unlimited Data
168
+ Contract: Contract
169
+ Paperless Billing: Paperless Billing
170
+ Payment Method: Payment Method
171
+ Monthly Charge: Monthly Charge
172
+ Total Charges: Total Charges
173
+ Total Refunds: Total Refunds
174
+ Total Extra Data Charges: Total Extra Data Charges
175
+ Total Long Distance Charges: Total Long Distance Charges
176
+ Total Revenue: Total Revenue
177
+ Satisfaction Score: Satisfaction Score
178
+ Customer Status: Customer Status
179
+ Churn Label: label
180
+ Churn Value: Churn Value
181
+ Churn Score: Churn Score
182
+ CLTV: CLTV
183
+ Churn Category: Churn Category
184
+ Churn Reason: Churn Reason
185
+ Partner: Partner
186
+ metrics:
187
+ - type: accuracy
188
+ name: Accuracy
189
+ - type: precision
190
+ name: Precision
191
+ - type: recall
192
+ name: Recall
193
+ - type: f1
194
+ name: F1 Score
195
  ---
196
+ ## Telco Customer Churn
197
 
198
+ **This dataset is a valuable resource for exploring and predicting customer churn in the telecommunications industry. It provides a comprehensive snapshot of customer demographics, service usage patterns, billing information, and churn status, making it ideal for training machine learning models to predict customer churn and develop effective customer retention strategies.**
199
 
200
+ **Content and Structure:**
201
 
202
+ The dataset is structured in a tabular format, with each row representing a unique customer and each column containing attributes about that customer.
203
 
204
+ * **Customer Demographics:** Features like gender, age, marital status, and dependents provide insights into customer profiles.
205
+ * **Service Usage:** Details customer subscriptions to services such as phone, internet, multiple lines, online security, online backup, device protection, tech support, and streaming options.
206
+ * **Billing Information:** Provides data on tenure, contract type, payment method, monthly charges, and total charges.
207
+ * **Churn Information:** Includes labels indicating whether a customer churned, the reason for churn (if applicable), and churn scores for analysis.
208
 
209
+ **Data Collection and Curation:**
210
 
211
+ This dataset is a fictional dataset created by IBM data scientists as a sample dataset for exploring customer churn prediction. It is not based on real-world data and should be treated as a simulation for learning and experimentation.
212
 
213
+ **Usage Examples:**
214
 
215
+ * **Customer Churn Prediction:** Train classification models to predict churn based on customer demographics, service usage, and billing information.
216
+ * **Customer Segmentation:** Analyze the dataset to identify customer segments with different churn probabilities, allowing for targeted retention strategies.
217
+ * **Feature Engineering:** Experiment with feature engineering techniques to improve churn prediction model accuracy.
218
 
219
+ **Additional Information:**
 
 
 
 
220
 
221
+ * **Industry Relevance:** Relevant for businesses in the telecommunications industry and other sectors that deal with customer churn.
222
+ * **Ethical Considerations:** This is a fictional dataset and does not contain real personal or sensitive information.