File size: 4,145 Bytes
0e490a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import pandas as pd\n",
    "import torch\n",
    "from torch_geometric.data import Data\n",
    "import tqdm\n",
    "import pickle\n",
    "from torch_sparse import SparseTensor"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "p1 = np.load(\"68841_tweets_multiclasses_filtered_0722_part2.npy\", allow_pickle=True)\n",
    "p2 = np.load(\"68841_tweets_multiclasses_filtered_0722_part2.npy\", allow_pickle=True)\n",
    "g = np.concatenate((p1, p2), axis=0)\n",
    "df = pd.DataFrame(data=g, columns=[\"event_id\", \"tweet_id\", \"text\", \"user_id\", \"created_at\", \"user_loc\",\n",
    "\t\t\t\"place_type\", \"place_full_name\", \"place_country_code\", \"hashtags\", \"user_mentions\", \"image_urls\", \"entities\",\n",
    "\t\t\t\"words\", \"filtered_words\", \"sampled_words\"])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "67682it [00:04, 15665.18it/s]\n"
     ]
    }
   ],
   "source": [
    "tweet_id2idx = {}\n",
    "user_id2idx = {}\n",
    "user = []\n",
    "tweet = []\n",
    "text_edges = []\n",
    "text_nodes = [-1] * len(df) * 20\n",
    "count = 0\n",
    "\n",
    "# Use df instead of g for iteration\n",
    "for _, row in tqdm.tqdm(df.iterrows()):\n",
    "    # Convert tweet_id and user_id to string to ensure consistency\n",
    "    tweet_id = str(row['tweet_id'])\n",
    "    user_id = str(row['user_id'])\n",
    "    \n",
    "    if tweet_id not in tweet_id2idx:\n",
    "        tweet_id2idx[tweet_id] = count\n",
    "        tweet.append(count)\n",
    "        count += 1\n",
    "    else:\n",
    "        tweet.append(tweet_id2idx[tweet_id])\n",
    "    text_nodes[tweet_id2idx[tweet_id]] = f\"tweet{tweet_id2idx[tweet_id]} of event{row['event_id']}\"\n",
    "    \n",
    "    if user_id not in user_id2idx:\n",
    "        user_id2idx[user_id] = count\n",
    "        user.append(count)\n",
    "        count += 1\n",
    "    else:\n",
    "        user.append(user_id2idx[user_id])\n",
    "    text_nodes[user_id2idx[user_id]] = f\"user\"\n",
    "    \n",
    "    text_edges.append(row['text'])\n",
    "    \n",
    "    for mention in row['user_mentions']:\n",
    "        if mention not in user_id2idx:\n",
    "            user_id2idx[mention] = count\n",
    "            user.append(count)\n",
    "            count += 1\n",
    "        else:\n",
    "            user.append(user_id2idx[mention])\n",
    "        tweet.append(tweet_id2idx[tweet_id])\n",
    "        text_nodes[user_id2idx[mention]] = f\"mentioned user\"\n",
    "        text_edges.append(row['text'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "text_nodes = text_nodes[:count]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "edge_index = [user, tweet]\n",
    "graph = Data(\n",
    "\t\t\ttext_nodes=text_nodes,\n",
    "\t\t\ttext_edges=text_edges,\n",
    "\t\t\tedge_index=torch.tensor(edge_index, dtype=torch.long)\n",
    "\t\t)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [],
   "source": [
    "with open('../processed/twitter.pkl', 'wb') as f:\n",
    "    pickle.dump(graph, f)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}