Datasets:
File size: 13,690 Bytes
302878f e55753f 302878f 52e62aa 302878f 52e62aa 302878f 52e62aa 302878f 52e62aa 302878f 52e62aa 302878f 52e62aa 302878f 52e62aa 302878f 52e62aa 302878f 324cb5f 302878f 52e62aa 302878f 52e62aa 302878f 324cb5f 302878f 324cb5f da10203 302878f 324cb5f 52e62aa da10203 52e62aa da10203 52e62aa da10203 302878f 52e62aa da10203 52e62aa 302878f 52e62aa 302878f 52e62aa 302878f 52e62aa 302878f da10203 52e62aa 302878f da10203 302878f da10203 302878f 279b335 302878f da10203 302878f 279b335 302878f 279b335 302878f 52e62aa 302878f 52e62aa 302878f 52e62aa 302878f 52e62aa 302878f 52e62aa 302878f 52e62aa 302878f 52e62aa 302878f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
import os
import subprocess
import shutil
import nibabel as nib
import matplotlib.pyplot as plt
import glob
import json
import rarfile
import numpy as np
import cv2
from pathlib import Path
import argparse
# ====================================
# Dataset Info [!]
# ====================================
# Dataset: Cephalogram400
# Data (original): https://figshare.com/s/37ec464af8e81ae6ebbf
# Data (HF): https://huggingface.co/datasets/YongchengYAO/Ceph-Biometrics-400
# Format (original): bm
# Format (HF): nii.gz
# ====================================
def convert_bmp_to_niigz(
bmp_dir,
niigz_dir,
slice_dim_type,
pseudo_voxel_size,
flip_dim0=False,
flip_dim1=False,
swap_dim01=False,
):
"""
Convert BMP image files to NIfTI (.nii.gz) format.
This function converts 2D BMP images to 3D NIfTI volumes with specified slice orientation.
The output NIfTI files will have RAS+ orientation with specified voxel size.
Args:
bmp_dir (str): Input directory containing BMP files to convert
niigz_dir (str): Output directory where NIfTI files will be saved
slice_dim_type (int): Slice dimension/orientation type:
0: Sagittal (YZ plane)
1: Coronal (XZ plane)
2: Axial (XY plane)
pseudo_voxel_size (list): List of 3 floats specifying voxel dimensions in mm [x,y,z]
flip_dim0 (bool, optional): If True, flip image along dimension 0. Defaults to False.
flip_dim1 (bool, optional): If True, flip image along dimension 1. Defaults to False.
swap_dim01 (bool, optional): If True, swap dimensions 0 and 1. Defaults to False.
Returns:
tuple: Original image dimensions (height, width) of the first converted BMP
"""
# Validate slice_dim_type
if slice_dim_type not in [0, 1, 2]:
raise ValueError("slice_dim_type must be 0, 1, or 2")
# Convert pseudo_voxel_size to list if it's not already
pseudo_voxel_size = list(pseudo_voxel_size)
# Create output directory
Path(niigz_dir).mkdir(parents=True, exist_ok=True)
# Get all BMP files
bmp_files = list(Path(bmp_dir).glob("*.bmp"))
print(f"Found {len(bmp_files)} .bmp files")
for bmp_file in bmp_files:
try:
print(f"Converting {bmp_file.name}")
# Read BMP image
img_2d = cv2.imread(str(bmp_file), cv2.IMREAD_GRAYSCALE)
img_size_dim0, img_size_dim1 = img_2d.shape
# Note: this is definitely correct, DO NOT SWAP the order of transformations
if flip_dim0:
img_2d = cv2.flip(img_2d, 0) # 0 means flip vertically
if flip_dim1:
img_2d = cv2.flip(img_2d, 1) # 1 means flip horizontally
if swap_dim01: # this line should be AFTER slip_x and slip_y
img_2d = np.swapaxes(img_2d, 0, 1)
# Create 3D array based on slice_dim_type
if slice_dim_type == 0: # Sagittal (YZ plane)
img_3d = np.zeros(
(1, img_2d.shape[0], img_2d.shape[1]), dtype=img_2d.dtype
)
img_3d[0, :, :] = img_2d
elif slice_dim_type == 1: # Coronal (XZ plane)
img_3d = np.zeros(
(img_2d.shape[0], 1, img_2d.shape[1]), dtype=img_2d.dtype
)
img_3d[:, 0, :] = img_2d
else: # Axial (XY plane)
img_3d = np.zeros(
(img_2d.shape[0], img_2d.shape[1], 1), dtype=img_2d.dtype
)
img_3d[:, :, 0] = img_2d
# Create affine matrix for RAS+ orientation
# Set voxel size to 0.1mm in all dimensions
affine = np.diag(pseudo_voxel_size + [1])
# Create NIfTI image
nii_img = nib.Nifti1Image(img_3d, affine)
# Set header information
nii_img.header.set_zooms(pseudo_voxel_size)
# Save as NIfTI file
output_file = Path(niigz_dir) / f"{bmp_file.stem}.nii.gz"
nib.save(nii_img, str(output_file))
print(f"Saved to {output_file}")
except Exception as e:
print(f"Error converting {bmp_file.name}: {e}")
return img_size_dim0, img_size_dim1
def process_landmarks_data(
landmarks_txt_dir: str,
landmarks_json_dir: str,
n: int,
img_sizes,
flip_dim0=False,
flip_dim1=False,
swap_dim01=False,
) -> None:
"""
Read landmark points from all txt files in a directory and save as JSON files.
Args:
in_dir (str): Directory containing the txt files
out_dir (str): Directory where JSON files will be saved
n (int): Number of lines to read from each file
height_width_orig: Original height and width of the image
swap_xy (bool): Whether to swap x and y coordinates
slip_x (bool): Whether to flip coordinates along x-axis
slip_y (bool): Whether to flip coordinates along y-axis
"""
(
os.makedirs(landmarks_json_dir, exist_ok=True)
if not os.path.exists(landmarks_json_dir)
else None
)
for txt_file in glob.glob(os.path.join(landmarks_txt_dir, "*.txt")):
landmarks = {}
filename = os.path.basename(txt_file)
json_path = os.path.join(landmarks_json_dir, filename.replace(".txt", ".json"))
try:
with open(txt_file, "r") as f:
for i in range(n):
line = f.readline().strip()
if not line:
break
# Note: this is correct, DO NOT SWAP idx_dim0 and idx_dim1
# Assuming an image with height and width:
# - The data array read from bmp file is of size (height, width) -- dim0 is height, dim1 is width
# - The landmark coordinates are defined as the indices in width (dim1) and height (dim0) directions
idx_dim1, idx_dim0 = map(int, line.split(","))
# Apply transformations
# Note: this is correct
# DO NOT SWAP the order of transformations
if flip_dim0:
idx_dim0 = img_sizes[0] - idx_dim0
if flip_dim1:
idx_dim1 = img_sizes[1] - idx_dim1
if swap_dim01: # this line should be AFTER slip_x and slip_y
idx_dim0, idx_dim1 = idx_dim1, idx_dim0
# Save landmark coordinates in 0-based indices
landmarks[f"P{i+1}"] = [
coord - 1 for coord in [1, idx_dim0, idx_dim1]
]
# This data structure is designed to be compatible with biometric data constructed from segmentation masks
json_dict = {
"slice_landmarks_x": [
{
"slice_idx": 1,
"landmarks": landmarks,
},
],
"slice_landmarks_y": [],
"slice_landmarks_z": [],
}
# Save to JSON
with open(json_path, "w") as f:
json.dump(json_dict, f, indent=4)
except FileNotFoundError:
print(f"Error: File {txt_file} not found")
except ValueError:
print(f"Error: Invalid format in file {txt_file}")
except Exception as e:
print(f"Error reading file {txt_file}: {str(e)}")
def plot_sagittal_slice_with_landmarks(
nii_path: str, json_path: str, fig_path: str = None
):
"""Plot first slice from NIfTI file and overlay landmarks from JSON file.
Args:
nii_path (str): Path to .nii.gz file
json_path (str): Path to landmarks JSON file
fig_path (str, optional): Path to save the plot. If None, displays plot
"""
# Load NIfTI image and extract first slice
nii_img = nib.load(nii_path)
slice_data = nii_img.get_fdata()[0, :, :]
# Load landmark coordinates from JSON
with open(json_path, "r") as f:
landmarks_json = json.load(f)
# Setup visualization
plt.figure(figsize=(12, 12))
plt.imshow(
slice_data.T, cmap="gray", origin="lower"
) # the transpose is necessary only for visualization
# Extract and plot landmark coordinates
coords_dim0 = []
coords_dim1 = []
landmarks = landmarks_json["slice_landmarks_x"][0]["landmarks"]
for point_id, coords in landmarks.items():
if len(coords) == 3: # Check for valid [1, x, y] format
# Note: this is definitely correct, DO NOT SWAP coords[1] and coords[2]
coords_dim0.append(coords[1])
coords_dim1.append(coords[2])
# Add landmarks and labels
plt.scatter(
coords_dim0,
coords_dim1,
facecolors="#18A727",
edgecolors="black",
marker="o",
s=80,
linewidth=1.5,
)
for i, (x, y) in enumerate(zip(coords_dim0, coords_dim1), 1):
plt.annotate(
f"$\\mathbf{{{i}}}$",
(x, y),
xytext=(2, 2),
textcoords="offset points",
color="#FE9100",
fontsize=14,
)
# Configure plot appearance
plt.xlabel("Anterior →", fontsize=14)
plt.ylabel("Superior →", fontsize=14)
plt.margins(0)
# Save or display the plot
plt.savefig(fig_path, bbox_inches="tight", dpi=300)
print(f"Plot saved to: {fig_path}")
plt.close()
def plot_sagittal_slice_with_landmarks_batch(
image_dir: str, landmark_dir: str, fig_dir: str
):
"""Plot all cases from given directories.
Args:
image_dir (str): Directory containing .nii.gz files
landmark_dir (str): Directory containing landmark JSON files
fig_dir (str): Directory to save output figures
"""
# Create output directory if it doesn't exist
os.makedirs(fig_dir, exist_ok=True)
# Process each .nii.gz file
for nii_path in glob.glob(os.path.join(image_dir, "*.nii.gz")):
base_name = os.path.splitext(os.path.splitext(os.path.basename(nii_path))[0])[0]
json_path = os.path.join(landmark_dir, f"{base_name}.json")
fig_path = os.path.join(fig_dir, f"{base_name}.png")
# Plot and save
if os.path.exists(json_path):
plot_sagittal_slice_with_landmarks(nii_path, json_path, fig_path)
else:
print(f"Warning: No landmark file found for {base_name}")
def download_and_extract(dataset_dir, dataset_name):
# Download files
print(f"Downloading {dataset_name} dataset to {dataset_dir}...")
# ====================================
# Add download logic here [!]
# ====================================
# Download the file using curl
url = "https://figshare.com/ndownloader/articles/3471833?private_link=37ec464af8e81ae6ebbf"
output_file = "Cephalogram400.zip"
subprocess.run(["curl", url, "-o", output_file], check=True)
# Extract the ZIP file
print("Extracting ZIP file...")
subprocess.run(["unzip", output_file], check=True)
# Find and extract all RAR files
print("Extracting RAR files...")
for file in os.listdir("."):
if file.endswith(".rar"):
with rarfile.RarFile(file) as rf:
rf.extractall()
# Create the Images-raw directory
os.makedirs("Images-raw", exist_ok=True)
# Move all BMP files from RawImage to Images-raw using glob
for src_path in glob.glob(f"RawImage/**/*.bmp", recursive=True):
shutil.move(src_path, os.path.join("Images-raw", os.path.basename(src_path)))
# Convert BMP files to 3D nii.gz
Flag_flip_dim0 = True
Flag_flip_dim1 = False
Flag_swap_dim01 = True
img_size_dim0, img_size_dim1 = convert_bmp_to_niigz(
"Images-raw",
"Images",
slice_dim_type=0,
pseudo_voxel_size=[0.1, 0.1, 0.1],
flip_dim0=Flag_flip_dim0,
flip_dim1=Flag_flip_dim1,
swap_dim01=Flag_swap_dim01,
)
# Read landmark points from txt files and save as JSON
process_landmarks_data(
"400_senior",
"Landmarks",
19,
img_sizes=[img_size_dim0, img_size_dim1],
flip_dim0=Flag_flip_dim0,
flip_dim1=Flag_flip_dim1,
swap_dim01=Flag_swap_dim01,
)
# Plot slices with landmarks
plot_sagittal_slice_with_landmarks_batch("Images", "Landmarks", "Landmarks-fig")
# Clean up
for dir_name in [
"RawImage",
"400_junior",
"400_senior",
"Images-raw",
"EvaluationCode",
]:
shutil.rmtree(dir_name, ignore_errors=True)
for file in os.listdir("."):
if file.endswith((".rar", ".zip")):
os.remove(file)
# ====================================
print(f"Download and extraction completed for {dataset_name}")
if __name__ == "__main__":
# Set up argument parser
parser = argparse.ArgumentParser(description="Download and extract dataset")
parser.add_argument(
"-d",
"--dir_datasets_data",
help="Directory path where datasets will be stored",
required=True,
)
parser.add_argument(
"-n",
"--dataset_name",
help="Name of the dataset",
required=True,
)
args = parser.parse_args()
# Create dataset directory
dataset_dir = os.path.join(args.dir_datasets_data, args.dataset_name)
os.makedirs(dataset_dir, exist_ok=True)
# Change to dataset directory
os.chdir(dataset_dir)
# Download and extract dataset
download_and_extract(dataset_dir, args.dataset_name)
|