Datasets:
Tasks:
Image Segmentation
Sub-tasks:
instance-segmentation
Languages:
English
Size:
10K<n<100K
ArXiv:
Tags:
scene-parsing
License:
File size: 50,028 Bytes
2b39d77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 |
---
annotations_creators:
- crowdsourced
- expert-generated
language_creators:
- found
language:
- en
license:
- bsd-3-clause
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- extended|ade20k
task_categories:
- image-segmentation
task_ids:
- instance-segmentation
paperswithcode_id: ade20k
pretty_name: MIT Scene Parsing Benchmark
tags:
- scene-parsing
dataset_info:
- config_name: scene_parsing
features:
- name: image
dtype: image
- name: annotation
dtype: image
- name: scene_category
dtype:
class_label:
names:
'0': airport_terminal
'1': art_gallery
'2': badlands
'3': ball_pit
'4': bathroom
'5': beach
'6': bedroom
'7': booth_indoor
'8': botanical_garden
'9': bridge
'10': bullring
'11': bus_interior
'12': butte
'13': canyon
'14': casino_outdoor
'15': castle
'16': church_outdoor
'17': closet
'18': coast
'19': conference_room
'20': construction_site
'21': corral
'22': corridor
'23': crosswalk
'24': day_care_center
'25': sand
'26': elevator_interior
'27': escalator_indoor
'28': forest_road
'29': gangplank
'30': gas_station
'31': golf_course
'32': gymnasium_indoor
'33': harbor
'34': hayfield
'35': heath
'36': hoodoo
'37': house
'38': hunting_lodge_outdoor
'39': ice_shelf
'40': joss_house
'41': kiosk_indoor
'42': kitchen
'43': landfill
'44': library_indoor
'45': lido_deck_outdoor
'46': living_room
'47': locker_room
'48': market_outdoor
'49': mountain_snowy
'50': office
'51': orchard
'52': arbor
'53': bookshelf
'54': mews
'55': nook
'56': preserve
'57': traffic_island
'58': palace
'59': palace_hall
'60': pantry
'61': patio
'62': phone_booth
'63': establishment
'64': poolroom_home
'65': quonset_hut_outdoor
'66': rice_paddy
'67': sandbox
'68': shopfront
'69': skyscraper
'70': stone_circle
'71': subway_interior
'72': platform
'73': supermarket
'74': swimming_pool_outdoor
'75': television_studio
'76': indoor_procenium
'77': train_railway
'78': coral_reef
'79': viaduct
'80': wave
'81': wind_farm
'82': bottle_storage
'83': abbey
'84': access_road
'85': air_base
'86': airfield
'87': airlock
'88': airplane_cabin
'89': airport
'90': entrance
'91': airport_ticket_counter
'92': alcove
'93': alley
'94': amphitheater
'95': amusement_arcade
'96': amusement_park
'97': anechoic_chamber
'98': apartment_building_outdoor
'99': apse_indoor
'100': apse_outdoor
'101': aquarium
'102': aquatic_theater
'103': aqueduct
'104': arcade
'105': arch
'106': archaelogical_excavation
'107': archive
'108': basketball
'109': football
'110': hockey
'111': performance
'112': rodeo
'113': soccer
'114': armory
'115': army_base
'116': arrival_gate_indoor
'117': arrival_gate_outdoor
'118': art_school
'119': art_studio
'120': artists_loft
'121': assembly_line
'122': athletic_field_indoor
'123': athletic_field_outdoor
'124': atrium_home
'125': atrium_public
'126': attic
'127': auditorium
'128': auto_factory
'129': auto_mechanics_indoor
'130': auto_mechanics_outdoor
'131': auto_racing_paddock
'132': auto_showroom
'133': backstage
'134': backstairs
'135': badminton_court_indoor
'136': badminton_court_outdoor
'137': baggage_claim
'138': shop
'139': exterior
'140': balcony_interior
'141': ballroom
'142': bamboo_forest
'143': bank_indoor
'144': bank_outdoor
'145': bank_vault
'146': banquet_hall
'147': baptistry_indoor
'148': baptistry_outdoor
'149': bar
'150': barbershop
'151': barn
'152': barndoor
'153': barnyard
'154': barrack
'155': baseball_field
'156': basement
'157': basilica
'158': basketball_court_indoor
'159': basketball_court_outdoor
'160': bathhouse
'161': batters_box
'162': batting_cage_indoor
'163': batting_cage_outdoor
'164': battlement
'165': bayou
'166': bazaar_indoor
'167': bazaar_outdoor
'168': beach_house
'169': beauty_salon
'170': bedchamber
'171': beer_garden
'172': beer_hall
'173': belfry
'174': bell_foundry
'175': berth
'176': berth_deck
'177': betting_shop
'178': bicycle_racks
'179': bindery
'180': biology_laboratory
'181': bistro_indoor
'182': bistro_outdoor
'183': bleachers_indoor
'184': bleachers_outdoor
'185': boardwalk
'186': boat_deck
'187': boathouse
'188': bog
'189': bomb_shelter_indoor
'190': bookbindery
'191': bookstore
'192': bow_window_indoor
'193': bow_window_outdoor
'194': bowling_alley
'195': box_seat
'196': boxing_ring
'197': breakroom
'198': brewery_indoor
'199': brewery_outdoor
'200': brickyard_indoor
'201': brickyard_outdoor
'202': building_complex
'203': building_facade
'204': bullpen
'205': burial_chamber
'206': bus_depot_indoor
'207': bus_depot_outdoor
'208': bus_shelter
'209': bus_station_indoor
'210': bus_station_outdoor
'211': butchers_shop
'212': cabana
'213': cabin_indoor
'214': cabin_outdoor
'215': cafeteria
'216': call_center
'217': campsite
'218': campus
'219': natural
'220': urban
'221': candy_store
'222': canteen
'223': car_dealership
'224': backseat
'225': frontseat
'226': caravansary
'227': cardroom
'228': cargo_container_interior
'229': airplane
'230': boat
'231': freestanding
'232': carport_indoor
'233': carport_outdoor
'234': carrousel
'235': casino_indoor
'236': catacomb
'237': cathedral_indoor
'238': cathedral_outdoor
'239': catwalk
'240': cavern_indoor
'241': cavern_outdoor
'242': cemetery
'243': chalet
'244': chaparral
'245': chapel
'246': checkout_counter
'247': cheese_factory
'248': chemical_plant
'249': chemistry_lab
'250': chicken_coop_indoor
'251': chicken_coop_outdoor
'252': chicken_farm_indoor
'253': chicken_farm_outdoor
'254': childs_room
'255': choir_loft_interior
'256': church_indoor
'257': circus_tent_indoor
'258': circus_tent_outdoor
'259': city
'260': classroom
'261': clean_room
'262': cliff
'263': booth
'264': room
'265': clock_tower_indoor
'266': cloister_indoor
'267': cloister_outdoor
'268': clothing_store
'269': coast_road
'270': cockpit
'271': coffee_shop
'272': computer_room
'273': conference_center
'274': conference_hall
'275': confessional
'276': control_room
'277': control_tower_indoor
'278': control_tower_outdoor
'279': convenience_store_indoor
'280': convenience_store_outdoor
'281': corn_field
'282': cottage
'283': cottage_garden
'284': courthouse
'285': courtroom
'286': courtyard
'287': covered_bridge_interior
'288': crawl_space
'289': creek
'290': crevasse
'291': library
'292': cybercafe
'293': dacha
'294': dairy_indoor
'295': dairy_outdoor
'296': dam
'297': dance_school
'298': darkroom
'299': delicatessen
'300': dentists_office
'301': department_store
'302': departure_lounge
'303': vegetation
'304': desert_road
'305': diner_indoor
'306': diner_outdoor
'307': dinette_home
'308': vehicle
'309': dining_car
'310': dining_hall
'311': dining_room
'312': dirt_track
'313': discotheque
'314': distillery
'315': ditch
'316': dock
'317': dolmen
'318': donjon
'319': doorway_indoor
'320': doorway_outdoor
'321': dorm_room
'322': downtown
'323': drainage_ditch
'324': dress_shop
'325': dressing_room
'326': drill_rig
'327': driveway
'328': driving_range_indoor
'329': driving_range_outdoor
'330': drugstore
'331': dry_dock
'332': dugout
'333': earth_fissure
'334': editing_room
'335': electrical_substation
'336': elevated_catwalk
'337': door
'338': freight_elevator
'339': elevator_lobby
'340': elevator_shaft
'341': embankment
'342': embassy
'343': engine_room
'344': entrance_hall
'345': escalator_outdoor
'346': escarpment
'347': estuary
'348': excavation
'349': exhibition_hall
'350': fabric_store
'351': factory_indoor
'352': factory_outdoor
'353': fairway
'354': farm
'355': fastfood_restaurant
'356': fence
'357': cargo_deck
'358': ferryboat_indoor
'359': passenger_deck
'360': cultivated
'361': wild
'362': field_road
'363': fire_escape
'364': fire_station
'365': firing_range_indoor
'366': firing_range_outdoor
'367': fish_farm
'368': fishmarket
'369': fishpond
'370': fitting_room_interior
'371': fjord
'372': flea_market_indoor
'373': flea_market_outdoor
'374': floating_dry_dock
'375': flood
'376': florist_shop_indoor
'377': florist_shop_outdoor
'378': fly_bridge
'379': food_court
'380': football_field
'381': broadleaf
'382': needleleaf
'383': forest_fire
'384': forest_path
'385': formal_garden
'386': fort
'387': fortress
'388': foundry_indoor
'389': foundry_outdoor
'390': fountain
'391': freeway
'392': funeral_chapel
'393': funeral_home
'394': furnace_room
'395': galley
'396': game_room
'397': garage_indoor
'398': garage_outdoor
'399': garbage_dump
'400': gasworks
'401': gate
'402': gatehouse
'403': gazebo_interior
'404': general_store_indoor
'405': general_store_outdoor
'406': geodesic_dome_indoor
'407': geodesic_dome_outdoor
'408': ghost_town
'409': gift_shop
'410': glacier
'411': glade
'412': gorge
'413': granary
'414': great_hall
'415': greengrocery
'416': greenhouse_indoor
'417': greenhouse_outdoor
'418': grotto
'419': guardhouse
'420': gulch
'421': gun_deck_indoor
'422': gun_deck_outdoor
'423': gun_store
'424': hacienda
'425': hallway
'426': handball_court
'427': hangar_indoor
'428': hangar_outdoor
'429': hardware_store
'430': hat_shop
'431': hatchery
'432': hayloft
'433': hearth
'434': hedge_maze
'435': hedgerow
'436': heliport
'437': herb_garden
'438': highway
'439': hill
'440': home_office
'441': home_theater
'442': hospital
'443': hospital_room
'444': hot_spring
'445': hot_tub_indoor
'446': hot_tub_outdoor
'447': hotel_outdoor
'448': hotel_breakfast_area
'449': hotel_room
'450': hunting_lodge_indoor
'451': hut
'452': ice_cream_parlor
'453': ice_floe
'454': ice_skating_rink_indoor
'455': ice_skating_rink_outdoor
'456': iceberg
'457': igloo
'458': imaret
'459': incinerator_indoor
'460': incinerator_outdoor
'461': industrial_area
'462': industrial_park
'463': inn_indoor
'464': inn_outdoor
'465': irrigation_ditch
'466': islet
'467': jacuzzi_indoor
'468': jacuzzi_outdoor
'469': jail_indoor
'470': jail_outdoor
'471': jail_cell
'472': japanese_garden
'473': jetty
'474': jewelry_shop
'475': junk_pile
'476': junkyard
'477': jury_box
'478': kasbah
'479': kennel_indoor
'480': kennel_outdoor
'481': kindergarden_classroom
'482': kiosk_outdoor
'483': kitchenette
'484': lab_classroom
'485': labyrinth_indoor
'486': labyrinth_outdoor
'487': lagoon
'488': artificial
'489': landing
'490': landing_deck
'491': laundromat
'492': lava_flow
'493': lavatory
'494': lawn
'495': lean-to
'496': lecture_room
'497': legislative_chamber
'498': levee
'499': library_outdoor
'500': lido_deck_indoor
'501': lift_bridge
'502': lighthouse
'503': limousine_interior
'504': liquor_store_indoor
'505': liquor_store_outdoor
'506': loading_dock
'507': lobby
'508': lock_chamber
'509': loft
'510': lookout_station_indoor
'511': lookout_station_outdoor
'512': lumberyard_indoor
'513': lumberyard_outdoor
'514': machine_shop
'515': manhole
'516': mansion
'517': manufactured_home
'518': market_indoor
'519': marsh
'520': martial_arts_gym
'521': mastaba
'522': maternity_ward
'523': mausoleum
'524': medina
'525': menhir
'526': mesa
'527': mess_hall
'528': mezzanine
'529': military_hospital
'530': military_hut
'531': military_tent
'532': mine
'533': mineshaft
'534': mini_golf_course_indoor
'535': mini_golf_course_outdoor
'536': mission
'537': dry
'538': water
'539': mobile_home
'540': monastery_indoor
'541': monastery_outdoor
'542': moon_bounce
'543': moor
'544': morgue
'545': mosque_indoor
'546': mosque_outdoor
'547': motel
'548': mountain
'549': mountain_path
'550': mountain_road
'551': movie_theater_indoor
'552': movie_theater_outdoor
'553': mudflat
'554': museum_indoor
'555': museum_outdoor
'556': music_store
'557': music_studio
'558': misc
'559': natural_history_museum
'560': naval_base
'561': newsroom
'562': newsstand_indoor
'563': newsstand_outdoor
'564': nightclub
'565': nuclear_power_plant_indoor
'566': nuclear_power_plant_outdoor
'567': nunnery
'568': nursery
'569': nursing_home
'570': oasis
'571': oast_house
'572': observatory_indoor
'573': observatory_outdoor
'574': observatory_post
'575': ocean
'576': office_building
'577': office_cubicles
'578': oil_refinery_indoor
'579': oil_refinery_outdoor
'580': oilrig
'581': operating_room
'582': optician
'583': organ_loft_interior
'584': orlop_deck
'585': ossuary
'586': outcropping
'587': outhouse_indoor
'588': outhouse_outdoor
'589': overpass
'590': oyster_bar
'591': oyster_farm
'592': acropolis
'593': aircraft_carrier_object
'594': amphitheater_indoor
'595': archipelago
'596': questionable
'597': assembly_hall
'598': assembly_plant
'599': awning_deck
'600': back_porch
'601': backdrop
'602': backroom
'603': backstage_outdoor
'604': backstairs_indoor
'605': backwoods
'606': ballet
'607': balustrade
'608': barbeque
'609': basin_outdoor
'610': bath_indoor
'611': bath_outdoor
'612': bathhouse_outdoor
'613': battlefield
'614': bay
'615': booth_outdoor
'616': bottomland
'617': breakfast_table
'618': bric-a-brac
'619': brooklet
'620': bubble_chamber
'621': buffet
'622': bulkhead
'623': bunk_bed
'624': bypass
'625': byroad
'626': cabin_cruiser
'627': cargo_helicopter
'628': cellar
'629': chair_lift
'630': cocktail_lounge
'631': corner
'632': country_house
'633': country_road
'634': customhouse
'635': dance_floor
'636': deck-house_boat_deck_house
'637': deck-house_deck_house
'638': dining_area
'639': diving_board
'640': embrasure
'641': entranceway_indoor
'642': entranceway_outdoor
'643': entryway_outdoor
'644': estaminet
'645': farm_building
'646': farmhouse
'647': feed_bunk
'648': field_house
'649': field_tent_indoor
'650': field_tent_outdoor
'651': fire_trench
'652': fireplace
'653': flashflood
'654': flatlet
'655': floating_dock
'656': flood_plain
'657': flowerbed
'658': flume_indoor
'659': flying_buttress
'660': foothill
'661': forecourt
'662': foreshore
'663': front_porch
'664': garden
'665': gas_well
'666': glen
'667': grape_arbor
'668': grove
'669': guardroom
'670': guesthouse
'671': gymnasium_outdoor
'672': head_shop
'673': hen_yard
'674': hillock
'675': housing_estate
'676': housing_project
'677': howdah
'678': inlet
'679': insane_asylum
'680': outside
'681': juke_joint
'682': jungle
'683': kraal
'684': laboratorywet
'685': landing_strip
'686': layby
'687': lean-to_tent
'688': loge
'689': loggia_outdoor
'690': lower_deck
'691': luggage_van
'692': mansard
'693': meadow
'694': meat_house
'695': megalith
'696': mens_store_outdoor
'697': mental_institution_indoor
'698': mental_institution_outdoor
'699': military_headquarters
'700': millpond
'701': millrace
'702': natural_spring
'703': nursing_home_outdoor
'704': observation_station
'705': open-hearth_furnace
'706': operating_table
'707': outbuilding
'708': palestra
'709': parkway
'710': patio_indoor
'711': pavement
'712': pawnshop_outdoor
'713': pinetum
'714': piste_road
'715': pizzeria_outdoor
'716': powder_room
'717': pumping_station
'718': reception_room
'719': rest_stop
'720': retaining_wall
'721': rift_valley
'722': road
'723': rock_garden
'724': rotisserie
'725': safari_park
'726': salon
'727': saloon
'728': sanatorium
'729': science_laboratory
'730': scrubland
'731': scullery
'732': seaside
'733': semidesert
'734': shelter
'735': shelter_deck
'736': shelter_tent
'737': shore
'738': shrubbery
'739': sidewalk
'740': snack_bar
'741': snowbank
'742': stage_set
'743': stall
'744': stateroom
'745': store
'746': streetcar_track
'747': student_center
'748': study_hall
'749': sugar_refinery
'750': sunroom
'751': supply_chamber
'752': t-bar_lift
'753': tannery
'754': teahouse
'755': threshing_floor
'756': ticket_window_indoor
'757': tidal_basin
'758': tidal_river
'759': tiltyard
'760': tollgate
'761': tomb
'762': tract_housing
'763': trellis
'764': truck_stop
'765': upper_balcony
'766': vestibule
'767': vinery
'768': walkway
'769': war_room
'770': washroom
'771': water_fountain
'772': water_gate
'773': waterscape
'774': waterway
'775': wetland
'776': widows_walk_indoor
'777': windstorm
'778': packaging_plant
'779': pagoda
'780': paper_mill
'781': park
'782': parking_garage_indoor
'783': parking_garage_outdoor
'784': parking_lot
'785': parlor
'786': particle_accelerator
'787': party_tent_indoor
'788': party_tent_outdoor
'789': pasture
'790': pavilion
'791': pawnshop
'792': pedestrian_overpass_indoor
'793': penalty_box
'794': pet_shop
'795': pharmacy
'796': physics_laboratory
'797': piano_store
'798': picnic_area
'799': pier
'800': pig_farm
'801': pilothouse_indoor
'802': pilothouse_outdoor
'803': pitchers_mound
'804': pizzeria
'805': planetarium_indoor
'806': planetarium_outdoor
'807': plantation_house
'808': playground
'809': playroom
'810': plaza
'811': podium_indoor
'812': podium_outdoor
'813': police_station
'814': pond
'815': pontoon_bridge
'816': poop_deck
'817': porch
'818': portico
'819': portrait_studio
'820': postern
'821': power_plant_outdoor
'822': print_shop
'823': priory
'824': promenade
'825': promenade_deck
'826': pub_indoor
'827': pub_outdoor
'828': pulpit
'829': putting_green
'830': quadrangle
'831': quicksand
'832': quonset_hut_indoor
'833': racecourse
'834': raceway
'835': raft
'836': railroad_track
'837': railway_yard
'838': rainforest
'839': ramp
'840': ranch
'841': ranch_house
'842': reading_room
'843': reception
'844': recreation_room
'845': rectory
'846': recycling_plant_indoor
'847': refectory
'848': repair_shop
'849': residential_neighborhood
'850': resort
'851': rest_area
'852': restaurant
'853': restaurant_kitchen
'854': restaurant_patio
'855': restroom_indoor
'856': restroom_outdoor
'857': revolving_door
'858': riding_arena
'859': river
'860': road_cut
'861': rock_arch
'862': roller_skating_rink_indoor
'863': roller_skating_rink_outdoor
'864': rolling_mill
'865': roof
'866': roof_garden
'867': root_cellar
'868': rope_bridge
'869': roundabout
'870': roundhouse
'871': rubble
'872': ruin
'873': runway
'874': sacristy
'875': salt_plain
'876': sand_trap
'877': sandbar
'878': sauna
'879': savanna
'880': sawmill
'881': schoolhouse
'882': schoolyard
'883': science_museum
'884': scriptorium
'885': sea_cliff
'886': seawall
'887': security_check_point
'888': server_room
'889': sewer
'890': sewing_room
'891': shed
'892': shipping_room
'893': shipyard_outdoor
'894': shoe_shop
'895': shopping_mall_indoor
'896': shopping_mall_outdoor
'897': shower
'898': shower_room
'899': shrine
'900': signal_box
'901': sinkhole
'902': ski_jump
'903': ski_lodge
'904': ski_resort
'905': ski_slope
'906': sky
'907': skywalk_indoor
'908': skywalk_outdoor
'909': slum
'910': snowfield
'911': massage_room
'912': mineral_bath
'913': spillway
'914': sporting_goods_store
'915': squash_court
'916': stable
'917': baseball
'918': stadium_outdoor
'919': stage_indoor
'920': stage_outdoor
'921': staircase
'922': starting_gate
'923': steam_plant_outdoor
'924': steel_mill_indoor
'925': storage_room
'926': storm_cellar
'927': street
'928': strip_mall
'929': strip_mine
'930': student_residence
'931': submarine_interior
'932': sun_deck
'933': sushi_bar
'934': swamp
'935': swimming_hole
'936': swimming_pool_indoor
'937': synagogue_indoor
'938': synagogue_outdoor
'939': taxistand
'940': taxiway
'941': tea_garden
'942': tearoom
'943': teashop
'944': television_room
'945': east_asia
'946': mesoamerican
'947': south_asia
'948': western
'949': tennis_court_indoor
'950': tennis_court_outdoor
'951': tent_outdoor
'952': terrace_farm
'953': indoor_round
'954': indoor_seats
'955': theater_outdoor
'956': thriftshop
'957': throne_room
'958': ticket_booth
'959': tobacco_shop_indoor
'960': toll_plaza
'961': tollbooth
'962': topiary_garden
'963': tower
'964': town_house
'965': toyshop
'966': track_outdoor
'967': trading_floor
'968': trailer_park
'969': train_interior
'970': train_station_outdoor
'971': station
'972': tree_farm
'973': tree_house
'974': trench
'975': trestle_bridge
'976': tundra
'977': rail_indoor
'978': rail_outdoor
'979': road_indoor
'980': road_outdoor
'981': turkish_bath
'982': ocean_deep
'983': ocean_shallow
'984': utility_room
'985': valley
'986': van_interior
'987': vegetable_garden
'988': velodrome_indoor
'989': velodrome_outdoor
'990': ventilation_shaft
'991': veranda
'992': vestry
'993': veterinarians_office
'994': videostore
'995': village
'996': vineyard
'997': volcano
'998': volleyball_court_indoor
'999': volleyball_court_outdoor
'1000': voting_booth
'1001': waiting_room
'1002': walk_in_freezer
'1003': warehouse_indoor
'1004': warehouse_outdoor
'1005': washhouse_indoor
'1006': washhouse_outdoor
'1007': watchtower
'1008': water_mill
'1009': water_park
'1010': water_tower
'1011': water_treatment_plant_indoor
'1012': water_treatment_plant_outdoor
'1013': block
'1014': cascade
'1015': cataract
'1016': fan
'1017': plunge
'1018': watering_hole
'1019': weighbridge
'1020': wet_bar
'1021': wharf
'1022': wheat_field
'1023': whispering_gallery
'1024': widows_walk_interior
'1025': windmill
'1026': window_seat
'1027': barrel_storage
'1028': winery
'1029': witness_stand
'1030': woodland
'1031': workroom
'1032': workshop
'1033': wrestling_ring_indoor
'1034': wrestling_ring_outdoor
'1035': yard
'1036': youth_hostel
'1037': zen_garden
'1038': ziggurat
'1039': zoo
'1040': forklift
'1041': hollow
'1042': hutment
'1043': pueblo
'1044': vat
'1045': perfume_shop
'1046': steel_mill_outdoor
'1047': orchestra_pit
'1048': bridle_path
'1049': lyceum
'1050': one-way_street
'1051': parade_ground
'1052': pump_room
'1053': recycling_plant_outdoor
'1054': chuck_wagon
splits:
- name: train
num_bytes: 8468086
num_examples: 20210
- name: test
num_bytes: 744607
num_examples: 3352
- name: validation
num_bytes: 838032
num_examples: 2000
download_size: 1179202534
dataset_size: 10050725
- config_name: instance_segmentation
features:
- name: image
dtype: image
- name: annotation
dtype: image
splits:
- name: train
num_bytes: 862611544
num_examples: 20210
- name: test
num_bytes: 212493928
num_examples: 3352
- name: validation
num_bytes: 87502294
num_examples: 2000
download_size: 1197393920
dataset_size: 1162607766
---
# Dataset Card for MIT Scene Parsing Benchmark
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [MIT Scene Parsing Benchmark homepage](http://sceneparsing.csail.mit.edu/)
- **Repository:** [Scene Parsing repository (Caffe/Torch7)](https://github.com/CSAILVision/sceneparsing),[Scene Parsing repository (PyTorch)](https://github.com/CSAILVision/semantic-segmentation-pytorch) and [Instance Segmentation repository](https://github.com/CSAILVision/placeschallenge/tree/master/instancesegmentation)
- **Paper:** [Scene Parsing through ADE20K Dataset](http://people.csail.mit.edu/bzhou/publication/scene-parse-camera-ready.pdf) and [Semantic Understanding of Scenes through ADE20K Dataset](https://arxiv.org/abs/1608.05442)
- **Leaderboard:** [MIT Scene Parsing Benchmark leaderboard](http://sceneparsing.csail.mit.edu/#:~:text=twice%20per%20week.-,leaderboard,-Organizers)
- **Point of Contact:** [Bolei Zhou](mailto:bzhou@ie.cuhk.edu.hk)
### Dataset Summary
Scene parsing is the task of segmenting and parsing an image into different image regions associated with semantic categories, such as sky, road, person, and bed. MIT Scene Parsing Benchmark (SceneParse150) provides a standard training and evaluation platform for the algorithms of scene parsing. The data for this benchmark comes from ADE20K Dataset which contains more than 20K scene-centric images exhaustively annotated with objects and object parts. Specifically, the benchmark is divided into 20K images for training, 2K images for validation, and another batch of held-out images for testing. There are in total 150 semantic categories included for evaluation, which include e.g. sky, road, grass, and discrete objects like person, car, bed. Note that there are non-uniform distribution of objects occuring in the images, mimicking a more natural object occurrence in daily scene.
The goal of this benchmark is to segment and parse an image into different image regions associated with semantic categories, such as sky, road, person, and bedThis benchamark is similar to semantic segmentation tasks in COCO and Pascal Dataset, but the data is more scene-centric and with a diverse range of object categories. The data for this benchmark comes from ADE20K Dataset which contains more than 20K scene-centric images exhaustively annotated with objects and object parts.
### Supported Tasks and Leaderboards
- `scene-parsing`: The goal of this task is to segment the whole image densely into semantic classes (image regions), where each pixel is assigned a class label such as the region of *tree* and the region of *building*.
[The leaderboard](http://sceneparsing.csail.mit.edu/#:~:text=twice%20per%20week.-,leaderboard,-Organizers) for this task ranks the models by considering the mean of the pixel-wise accuracy and class-wise IoU as the final score. Pixel-wise accuracy indicates the ratio of pixels which are correctly predicted, while class-wise IoU indicates the Intersection of Union of pixels averaged over all the 150 semantic categories. Refer to the [Development Kit](https://github.com/CSAILVision/sceneparsing) for the detail.
- `instance-segmentation`: The goal of this task is to detect the object instances inside an image and further generate the precise segmentation masks of the objects. Its difference compared to the task of scene parsing is that in scene parsing there is no instance concept for the segmented regions, instead in instance segmentation if there are three persons in the scene, the network is required to segment each one of the person regions. This task doesn't have an active leaderboard. The performance of the instance segmentation algorithms is evaluated by Average Precision (AP, or mAP), following COCO evaluation metrics. For each image, at most 255 top-scoring instance masks are taken across all categories. Each instance mask prediction is only considered if its IoU with ground truth is above a certain threshold. There are 10 IoU thresholds of 0.50:0.05:0.95 for evaluation. The final AP is averaged across 10 IoU thresholds and 100 categories. You can refer to COCO evaluation page for more explanation: http://mscoco.org/dataset/#detections-eval
### Languages
English.
## Dataset Structure
### Data Instances
A data point comprises an image and its annotation mask, which is `None` in the testing set. The `scene_parsing` configuration has an additional `scene_category` field.
#### `scene_parsing`
```
{
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=683x512 at 0x1FF32A3EDA0>,
'annotation': <PIL.PngImagePlugin.PngImageFile image mode=L size=683x512 at 0x1FF32E5B978>,
'scene_category': 0
}
```
#### `instance_segmentation`
```
{
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=256x256 at 0x20B51B5C400>,
'annotation': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=256x256 at 0x20B57051B38>
}
```
### Data Fields
#### `scene_parsing`
- `image`: A `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`.
- `annotation`: A `PIL.Image.Image` object containing the annotation mask.
- `scene_category`: A scene category for the image (e.g. `airport_terminal`, `canyon`, `mobile_home`).
> **Note**: annotation masks contain labels ranging from 0 to 150, where 0 refers to "other objects". Those pixels are not considered in the official evaluation. Refer to [this file](https://github.com/CSAILVision/sceneparsing/blob/master/objectInfo150.csv) for the information about the labels of the 150 semantic categories, including indices, pixel ratios and names.
#### `instance_segmentation`
- `image`: A `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`.
- `annotation`: A `PIL.Image.Image` object containing the annotation mask.
> **Note**: in the instance annotation masks, the R(ed) channel encodes category ID, and the G(reen) channel encodes instance ID. Each object instance has a unique instance ID regardless of its category ID. In the dataset, all images have <256 object instances. Refer to [this file (train split)](https://github.com/CSAILVision/placeschallenge/blob/master/instancesegmentation/instanceInfo100_train.txt) and to [this file (validation split)](https://github.com/CSAILVision/placeschallenge/blob/master/instancesegmentation/instanceInfo100_val.txt) for the information about the labels of the 100 semantic categories. To find the mapping between the semantic categories for `instance_segmentation` and `scene_parsing`, refer to [this file](https://github.com/CSAILVision/placeschallenge/blob/master/instancesegmentation/categoryMapping.txt).
### Data Splits
The data is split into training, test and validation set. The training data contains 20210 images, the testing data contains 3352 images and the validation data contains 2000 images.
## Dataset Creation
### Curation Rationale
The rationale from the paper for the ADE20K dataset from which this benchmark originates:
> Semantic understanding of visual scenes is one of the holy grails of computer vision. Despite efforts of the community in data collection, there are still few image datasets covering a wide range of scenes and object categories with pixel-wise annotations for scene understanding. In this work, we present a densely annotated dataset ADE20K, which spans diverse annotations of scenes, objects, parts of objects, and
in some cases even parts of parts.
> The motivation of this work is to collect a dataset that has densely annotated images (every pixel has a semantic label) with a large and an unrestricted open vocabulary. The
images in our dataset are manually segmented in great detail, covering a diverse set of scenes, object and object part categories. The challenge for collecting such annotations is finding reliable annotators, as well as the fact that labeling is difficult if the class list is not defined in advance. On the other hand, open vocabulary naming also suffers from naming inconsistencies across different annotators. In contrast,
our dataset was annotated by a single expert annotator, providing extremely detailed and exhaustive image annotations. On average, our annotator labeled 29 annotation segments per image, compared to the 16 segments per image labeled by external annotators (like workers from Amazon Mechanical Turk). Furthermore, the data consistency and quality are much higher than that of external annotators.
### Source Data
#### Initial Data Collection and Normalization
Images come from the LabelMe, SUN datasets, and Places and were selected to cover the 900 scene categories defined in the SUN database.
This benchmark was built by selecting the top 150 objects ranked by their total pixel ratios from the ADE20K dataset. As the original images in the ADE20K dataset have various sizes, for simplicity those large-sized images were rescaled to make their minimum heights or widths as 512. Among the 150 objects, there are 35 stuff classes (i.e., wall, sky, road) and 115 discrete objects (i.e., car, person, table). The annotated pixels of the 150 objects occupy 92.75% of all the pixels in the dataset, where the stuff classes occupy 60.92%, and discrete objects occupy 31.83%.
#### Who are the source language producers?
The same as in the LabelMe, SUN datasets, and Places datasets.
### Annotations
#### Annotation process
Annotation process for the ADE20K dataset:
> **Image Annotation.** For our dataset, we are interested in having a diverse set of scenes with dense annotations of all the objects present. Images come from the LabelMe, SUN datasets, and Places and were selected to cover the 900 scene categories defined in the SUN database. Images were annotated by a single expert worker using the LabelMe interface. Fig. 2 shows a snapshot of the annotation interface and one fully segmented image. The worker provided three types of annotations: object segments with names, object parts, and attributes. All object instances are segmented independently so that the dataset could be used to train and evaluate detection or segmentation algorithms. Datasets such as COCO, Pascal or Cityscape start by defining a set of object categories of interest. However, when labeling all the objects in a scene, working with a predefined list of objects is not possible as new categories
appear frequently (see fig. 5.d). Here, the annotator created a dictionary of visual concepts where new classes were added constantly to ensure consistency in object naming. Object parts are associated with object instances. Note that parts can have parts too, and we label these associations as well. For example, the ‘rim’ is a part of a ‘wheel’, which in turn is part of a ‘car’. A ‘knob’ is a part of a ‘door’
that can be part of a ‘cabinet’. The total part hierarchy has a depth of 3. The object and part hierarchy is in the supplementary materials.
> **Annotation Consistency.** Defining a labeling protocol is relatively easy when the labeling task is restricted to a fixed list of object classes, however it becomes challenging when the class list is openended. As the goal is to label all the objects within each image, the list of classes grows unbounded. >Many object classes appear only a few times across the entire collection of images. However, those rare >object classes cannot be ignored as they might be important elements for the interpretation of the scene. >Labeling in these conditions becomes difficult because we need to keep a growing list of all the object >classes in order to have a consistent naming across the entire dataset. Despite the annotator’s best effort, >the process is not free of noise. To analyze the annotation consistency we took a subset of 61 randomly >chosen images from the validation set, then asked our annotator to annotate them again (there is a time difference of six months). One expects that there are some differences between the two annotations. A few examples are shown in Fig 3. On average, 82.4% of the pixels got the same label. The remaining 17.6% of pixels had some errors for which we grouped into three error types as follows:
>
> • Segmentation quality: Variations in the quality of segmentation and outlining of the object boundary. One typical source of error arises when segmenting complex objects such as buildings and trees, which can be segmented with different degrees of precision. 5.7% of the pixels had this type of error.
>
> • Object naming: Differences in object naming (due to ambiguity or similarity between concepts, for instance calling a big car a ‘car’ in one segmentation and a ‘truck’ in the another one, or a ‘palm tree’ a‘tree’. 6.0% of the pixels had naming issues. These errors can be reduced by defining a very precise terminology, but this becomes much harder with a large growing vocabulary.
>
> • Segmentation quantity: Missing objects in one of the two segmentations. There is a very large number of objects in each image and some images might be annotated more thoroughly than others. For example, in the third column of Fig 3 the annotator missed some small objects in different annotations. 5.9% of the pixels are due to missing labels. A similar issue existed in segmentation datasets such as the Berkeley Image segmentation dataset.
>
> The median error values for the three error types are: 4.8%, 0.3% and 2.6% showing that the mean value is dominated by a few images, and that the most common type of error is segmentation quality.
To further compare the annotation done by our single expert annotator and the AMT-like annotators, 20 images
from the validation set are annotated by two invited external annotators, both with prior experience in image labeling. The first external annotator had 58.5% of inconsistent pixels compared to the segmentation provided by our annotator, and the second external annotator had 75% of the inconsistent pixels. Many of these inconsistencies are due to the poor quality of the segmentations provided by external annotators (as it has been observed with AMT which requires multiple verification steps for quality control). For the
best external annotator (the first one), 7.9% of pixels have inconsistent segmentations (just slightly worse than our annotator), 14.9% have inconsistent object naming and 35.8% of the pixels correspond to missing objects, which is due to the much smaller number of objects annotated by the external annotator in comparison with the ones annotated by our expert annotator. The external annotators labeled on average 16 segments per image while our annotator provided 29 segments per image.
#### Who are the annotators?
Three expert annotators and the AMT-like annotators.
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
Refer to the `Annotation Consistency` subsection of `Annotation Process`.
## Additional Information
### Dataset Curators
Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso and Antonio Torralba.
### Licensing Information
The MIT Scene Parsing Benchmark dataset is licensed under a [BSD 3-Clause License](https://github.com/CSAILVision/sceneparsing/blob/master/LICENSE).
### Citation Information
```bibtex
@inproceedings{zhou2017scene,
title={Scene Parsing through ADE20K Dataset},
author={Zhou, Bolei and Zhao, Hang and Puig, Xavier and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
year={2017}
}
@article{zhou2016semantic,
title={Semantic understanding of scenes through the ade20k dataset},
author={Zhou, Bolei and Zhao, Hang and Puig, Xavier and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio},
journal={arXiv preprint arXiv:1608.05442},
year={2016}
}
```
### Contributions
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset. |