Xkull commited on
Commit
2b39d77
·
verified ·
1 Parent(s): 18c5576

Upload 2 files

Browse files
Files changed (2) hide show
  1. README.md +1321 -0
  2. phao_dataset.py +306 -0
README.md ADDED
@@ -0,0 +1,1321 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - crowdsourced
4
+ - expert-generated
5
+ language_creators:
6
+ - found
7
+ language:
8
+ - en
9
+ license:
10
+ - bsd-3-clause
11
+ multilinguality:
12
+ - monolingual
13
+ size_categories:
14
+ - 10K<n<100K
15
+ source_datasets:
16
+ - extended|ade20k
17
+ task_categories:
18
+ - image-segmentation
19
+ task_ids:
20
+ - instance-segmentation
21
+ paperswithcode_id: ade20k
22
+ pretty_name: MIT Scene Parsing Benchmark
23
+ tags:
24
+ - scene-parsing
25
+ dataset_info:
26
+ - config_name: scene_parsing
27
+ features:
28
+ - name: image
29
+ dtype: image
30
+ - name: annotation
31
+ dtype: image
32
+ - name: scene_category
33
+ dtype:
34
+ class_label:
35
+ names:
36
+ '0': airport_terminal
37
+ '1': art_gallery
38
+ '2': badlands
39
+ '3': ball_pit
40
+ '4': bathroom
41
+ '5': beach
42
+ '6': bedroom
43
+ '7': booth_indoor
44
+ '8': botanical_garden
45
+ '9': bridge
46
+ '10': bullring
47
+ '11': bus_interior
48
+ '12': butte
49
+ '13': canyon
50
+ '14': casino_outdoor
51
+ '15': castle
52
+ '16': church_outdoor
53
+ '17': closet
54
+ '18': coast
55
+ '19': conference_room
56
+ '20': construction_site
57
+ '21': corral
58
+ '22': corridor
59
+ '23': crosswalk
60
+ '24': day_care_center
61
+ '25': sand
62
+ '26': elevator_interior
63
+ '27': escalator_indoor
64
+ '28': forest_road
65
+ '29': gangplank
66
+ '30': gas_station
67
+ '31': golf_course
68
+ '32': gymnasium_indoor
69
+ '33': harbor
70
+ '34': hayfield
71
+ '35': heath
72
+ '36': hoodoo
73
+ '37': house
74
+ '38': hunting_lodge_outdoor
75
+ '39': ice_shelf
76
+ '40': joss_house
77
+ '41': kiosk_indoor
78
+ '42': kitchen
79
+ '43': landfill
80
+ '44': library_indoor
81
+ '45': lido_deck_outdoor
82
+ '46': living_room
83
+ '47': locker_room
84
+ '48': market_outdoor
85
+ '49': mountain_snowy
86
+ '50': office
87
+ '51': orchard
88
+ '52': arbor
89
+ '53': bookshelf
90
+ '54': mews
91
+ '55': nook
92
+ '56': preserve
93
+ '57': traffic_island
94
+ '58': palace
95
+ '59': palace_hall
96
+ '60': pantry
97
+ '61': patio
98
+ '62': phone_booth
99
+ '63': establishment
100
+ '64': poolroom_home
101
+ '65': quonset_hut_outdoor
102
+ '66': rice_paddy
103
+ '67': sandbox
104
+ '68': shopfront
105
+ '69': skyscraper
106
+ '70': stone_circle
107
+ '71': subway_interior
108
+ '72': platform
109
+ '73': supermarket
110
+ '74': swimming_pool_outdoor
111
+ '75': television_studio
112
+ '76': indoor_procenium
113
+ '77': train_railway
114
+ '78': coral_reef
115
+ '79': viaduct
116
+ '80': wave
117
+ '81': wind_farm
118
+ '82': bottle_storage
119
+ '83': abbey
120
+ '84': access_road
121
+ '85': air_base
122
+ '86': airfield
123
+ '87': airlock
124
+ '88': airplane_cabin
125
+ '89': airport
126
+ '90': entrance
127
+ '91': airport_ticket_counter
128
+ '92': alcove
129
+ '93': alley
130
+ '94': amphitheater
131
+ '95': amusement_arcade
132
+ '96': amusement_park
133
+ '97': anechoic_chamber
134
+ '98': apartment_building_outdoor
135
+ '99': apse_indoor
136
+ '100': apse_outdoor
137
+ '101': aquarium
138
+ '102': aquatic_theater
139
+ '103': aqueduct
140
+ '104': arcade
141
+ '105': arch
142
+ '106': archaelogical_excavation
143
+ '107': archive
144
+ '108': basketball
145
+ '109': football
146
+ '110': hockey
147
+ '111': performance
148
+ '112': rodeo
149
+ '113': soccer
150
+ '114': armory
151
+ '115': army_base
152
+ '116': arrival_gate_indoor
153
+ '117': arrival_gate_outdoor
154
+ '118': art_school
155
+ '119': art_studio
156
+ '120': artists_loft
157
+ '121': assembly_line
158
+ '122': athletic_field_indoor
159
+ '123': athletic_field_outdoor
160
+ '124': atrium_home
161
+ '125': atrium_public
162
+ '126': attic
163
+ '127': auditorium
164
+ '128': auto_factory
165
+ '129': auto_mechanics_indoor
166
+ '130': auto_mechanics_outdoor
167
+ '131': auto_racing_paddock
168
+ '132': auto_showroom
169
+ '133': backstage
170
+ '134': backstairs
171
+ '135': badminton_court_indoor
172
+ '136': badminton_court_outdoor
173
+ '137': baggage_claim
174
+ '138': shop
175
+ '139': exterior
176
+ '140': balcony_interior
177
+ '141': ballroom
178
+ '142': bamboo_forest
179
+ '143': bank_indoor
180
+ '144': bank_outdoor
181
+ '145': bank_vault
182
+ '146': banquet_hall
183
+ '147': baptistry_indoor
184
+ '148': baptistry_outdoor
185
+ '149': bar
186
+ '150': barbershop
187
+ '151': barn
188
+ '152': barndoor
189
+ '153': barnyard
190
+ '154': barrack
191
+ '155': baseball_field
192
+ '156': basement
193
+ '157': basilica
194
+ '158': basketball_court_indoor
195
+ '159': basketball_court_outdoor
196
+ '160': bathhouse
197
+ '161': batters_box
198
+ '162': batting_cage_indoor
199
+ '163': batting_cage_outdoor
200
+ '164': battlement
201
+ '165': bayou
202
+ '166': bazaar_indoor
203
+ '167': bazaar_outdoor
204
+ '168': beach_house
205
+ '169': beauty_salon
206
+ '170': bedchamber
207
+ '171': beer_garden
208
+ '172': beer_hall
209
+ '173': belfry
210
+ '174': bell_foundry
211
+ '175': berth
212
+ '176': berth_deck
213
+ '177': betting_shop
214
+ '178': bicycle_racks
215
+ '179': bindery
216
+ '180': biology_laboratory
217
+ '181': bistro_indoor
218
+ '182': bistro_outdoor
219
+ '183': bleachers_indoor
220
+ '184': bleachers_outdoor
221
+ '185': boardwalk
222
+ '186': boat_deck
223
+ '187': boathouse
224
+ '188': bog
225
+ '189': bomb_shelter_indoor
226
+ '190': bookbindery
227
+ '191': bookstore
228
+ '192': bow_window_indoor
229
+ '193': bow_window_outdoor
230
+ '194': bowling_alley
231
+ '195': box_seat
232
+ '196': boxing_ring
233
+ '197': breakroom
234
+ '198': brewery_indoor
235
+ '199': brewery_outdoor
236
+ '200': brickyard_indoor
237
+ '201': brickyard_outdoor
238
+ '202': building_complex
239
+ '203': building_facade
240
+ '204': bullpen
241
+ '205': burial_chamber
242
+ '206': bus_depot_indoor
243
+ '207': bus_depot_outdoor
244
+ '208': bus_shelter
245
+ '209': bus_station_indoor
246
+ '210': bus_station_outdoor
247
+ '211': butchers_shop
248
+ '212': cabana
249
+ '213': cabin_indoor
250
+ '214': cabin_outdoor
251
+ '215': cafeteria
252
+ '216': call_center
253
+ '217': campsite
254
+ '218': campus
255
+ '219': natural
256
+ '220': urban
257
+ '221': candy_store
258
+ '222': canteen
259
+ '223': car_dealership
260
+ '224': backseat
261
+ '225': frontseat
262
+ '226': caravansary
263
+ '227': cardroom
264
+ '228': cargo_container_interior
265
+ '229': airplane
266
+ '230': boat
267
+ '231': freestanding
268
+ '232': carport_indoor
269
+ '233': carport_outdoor
270
+ '234': carrousel
271
+ '235': casino_indoor
272
+ '236': catacomb
273
+ '237': cathedral_indoor
274
+ '238': cathedral_outdoor
275
+ '239': catwalk
276
+ '240': cavern_indoor
277
+ '241': cavern_outdoor
278
+ '242': cemetery
279
+ '243': chalet
280
+ '244': chaparral
281
+ '245': chapel
282
+ '246': checkout_counter
283
+ '247': cheese_factory
284
+ '248': chemical_plant
285
+ '249': chemistry_lab
286
+ '250': chicken_coop_indoor
287
+ '251': chicken_coop_outdoor
288
+ '252': chicken_farm_indoor
289
+ '253': chicken_farm_outdoor
290
+ '254': childs_room
291
+ '255': choir_loft_interior
292
+ '256': church_indoor
293
+ '257': circus_tent_indoor
294
+ '258': circus_tent_outdoor
295
+ '259': city
296
+ '260': classroom
297
+ '261': clean_room
298
+ '262': cliff
299
+ '263': booth
300
+ '264': room
301
+ '265': clock_tower_indoor
302
+ '266': cloister_indoor
303
+ '267': cloister_outdoor
304
+ '268': clothing_store
305
+ '269': coast_road
306
+ '270': cockpit
307
+ '271': coffee_shop
308
+ '272': computer_room
309
+ '273': conference_center
310
+ '274': conference_hall
311
+ '275': confessional
312
+ '276': control_room
313
+ '277': control_tower_indoor
314
+ '278': control_tower_outdoor
315
+ '279': convenience_store_indoor
316
+ '280': convenience_store_outdoor
317
+ '281': corn_field
318
+ '282': cottage
319
+ '283': cottage_garden
320
+ '284': courthouse
321
+ '285': courtroom
322
+ '286': courtyard
323
+ '287': covered_bridge_interior
324
+ '288': crawl_space
325
+ '289': creek
326
+ '290': crevasse
327
+ '291': library
328
+ '292': cybercafe
329
+ '293': dacha
330
+ '294': dairy_indoor
331
+ '295': dairy_outdoor
332
+ '296': dam
333
+ '297': dance_school
334
+ '298': darkroom
335
+ '299': delicatessen
336
+ '300': dentists_office
337
+ '301': department_store
338
+ '302': departure_lounge
339
+ '303': vegetation
340
+ '304': desert_road
341
+ '305': diner_indoor
342
+ '306': diner_outdoor
343
+ '307': dinette_home
344
+ '308': vehicle
345
+ '309': dining_car
346
+ '310': dining_hall
347
+ '311': dining_room
348
+ '312': dirt_track
349
+ '313': discotheque
350
+ '314': distillery
351
+ '315': ditch
352
+ '316': dock
353
+ '317': dolmen
354
+ '318': donjon
355
+ '319': doorway_indoor
356
+ '320': doorway_outdoor
357
+ '321': dorm_room
358
+ '322': downtown
359
+ '323': drainage_ditch
360
+ '324': dress_shop
361
+ '325': dressing_room
362
+ '326': drill_rig
363
+ '327': driveway
364
+ '328': driving_range_indoor
365
+ '329': driving_range_outdoor
366
+ '330': drugstore
367
+ '331': dry_dock
368
+ '332': dugout
369
+ '333': earth_fissure
370
+ '334': editing_room
371
+ '335': electrical_substation
372
+ '336': elevated_catwalk
373
+ '337': door
374
+ '338': freight_elevator
375
+ '339': elevator_lobby
376
+ '340': elevator_shaft
377
+ '341': embankment
378
+ '342': embassy
379
+ '343': engine_room
380
+ '344': entrance_hall
381
+ '345': escalator_outdoor
382
+ '346': escarpment
383
+ '347': estuary
384
+ '348': excavation
385
+ '349': exhibition_hall
386
+ '350': fabric_store
387
+ '351': factory_indoor
388
+ '352': factory_outdoor
389
+ '353': fairway
390
+ '354': farm
391
+ '355': fastfood_restaurant
392
+ '356': fence
393
+ '357': cargo_deck
394
+ '358': ferryboat_indoor
395
+ '359': passenger_deck
396
+ '360': cultivated
397
+ '361': wild
398
+ '362': field_road
399
+ '363': fire_escape
400
+ '364': fire_station
401
+ '365': firing_range_indoor
402
+ '366': firing_range_outdoor
403
+ '367': fish_farm
404
+ '368': fishmarket
405
+ '369': fishpond
406
+ '370': fitting_room_interior
407
+ '371': fjord
408
+ '372': flea_market_indoor
409
+ '373': flea_market_outdoor
410
+ '374': floating_dry_dock
411
+ '375': flood
412
+ '376': florist_shop_indoor
413
+ '377': florist_shop_outdoor
414
+ '378': fly_bridge
415
+ '379': food_court
416
+ '380': football_field
417
+ '381': broadleaf
418
+ '382': needleleaf
419
+ '383': forest_fire
420
+ '384': forest_path
421
+ '385': formal_garden
422
+ '386': fort
423
+ '387': fortress
424
+ '388': foundry_indoor
425
+ '389': foundry_outdoor
426
+ '390': fountain
427
+ '391': freeway
428
+ '392': funeral_chapel
429
+ '393': funeral_home
430
+ '394': furnace_room
431
+ '395': galley
432
+ '396': game_room
433
+ '397': garage_indoor
434
+ '398': garage_outdoor
435
+ '399': garbage_dump
436
+ '400': gasworks
437
+ '401': gate
438
+ '402': gatehouse
439
+ '403': gazebo_interior
440
+ '404': general_store_indoor
441
+ '405': general_store_outdoor
442
+ '406': geodesic_dome_indoor
443
+ '407': geodesic_dome_outdoor
444
+ '408': ghost_town
445
+ '409': gift_shop
446
+ '410': glacier
447
+ '411': glade
448
+ '412': gorge
449
+ '413': granary
450
+ '414': great_hall
451
+ '415': greengrocery
452
+ '416': greenhouse_indoor
453
+ '417': greenhouse_outdoor
454
+ '418': grotto
455
+ '419': guardhouse
456
+ '420': gulch
457
+ '421': gun_deck_indoor
458
+ '422': gun_deck_outdoor
459
+ '423': gun_store
460
+ '424': hacienda
461
+ '425': hallway
462
+ '426': handball_court
463
+ '427': hangar_indoor
464
+ '428': hangar_outdoor
465
+ '429': hardware_store
466
+ '430': hat_shop
467
+ '431': hatchery
468
+ '432': hayloft
469
+ '433': hearth
470
+ '434': hedge_maze
471
+ '435': hedgerow
472
+ '436': heliport
473
+ '437': herb_garden
474
+ '438': highway
475
+ '439': hill
476
+ '440': home_office
477
+ '441': home_theater
478
+ '442': hospital
479
+ '443': hospital_room
480
+ '444': hot_spring
481
+ '445': hot_tub_indoor
482
+ '446': hot_tub_outdoor
483
+ '447': hotel_outdoor
484
+ '448': hotel_breakfast_area
485
+ '449': hotel_room
486
+ '450': hunting_lodge_indoor
487
+ '451': hut
488
+ '452': ice_cream_parlor
489
+ '453': ice_floe
490
+ '454': ice_skating_rink_indoor
491
+ '455': ice_skating_rink_outdoor
492
+ '456': iceberg
493
+ '457': igloo
494
+ '458': imaret
495
+ '459': incinerator_indoor
496
+ '460': incinerator_outdoor
497
+ '461': industrial_area
498
+ '462': industrial_park
499
+ '463': inn_indoor
500
+ '464': inn_outdoor
501
+ '465': irrigation_ditch
502
+ '466': islet
503
+ '467': jacuzzi_indoor
504
+ '468': jacuzzi_outdoor
505
+ '469': jail_indoor
506
+ '470': jail_outdoor
507
+ '471': jail_cell
508
+ '472': japanese_garden
509
+ '473': jetty
510
+ '474': jewelry_shop
511
+ '475': junk_pile
512
+ '476': junkyard
513
+ '477': jury_box
514
+ '478': kasbah
515
+ '479': kennel_indoor
516
+ '480': kennel_outdoor
517
+ '481': kindergarden_classroom
518
+ '482': kiosk_outdoor
519
+ '483': kitchenette
520
+ '484': lab_classroom
521
+ '485': labyrinth_indoor
522
+ '486': labyrinth_outdoor
523
+ '487': lagoon
524
+ '488': artificial
525
+ '489': landing
526
+ '490': landing_deck
527
+ '491': laundromat
528
+ '492': lava_flow
529
+ '493': lavatory
530
+ '494': lawn
531
+ '495': lean-to
532
+ '496': lecture_room
533
+ '497': legislative_chamber
534
+ '498': levee
535
+ '499': library_outdoor
536
+ '500': lido_deck_indoor
537
+ '501': lift_bridge
538
+ '502': lighthouse
539
+ '503': limousine_interior
540
+ '504': liquor_store_indoor
541
+ '505': liquor_store_outdoor
542
+ '506': loading_dock
543
+ '507': lobby
544
+ '508': lock_chamber
545
+ '509': loft
546
+ '510': lookout_station_indoor
547
+ '511': lookout_station_outdoor
548
+ '512': lumberyard_indoor
549
+ '513': lumberyard_outdoor
550
+ '514': machine_shop
551
+ '515': manhole
552
+ '516': mansion
553
+ '517': manufactured_home
554
+ '518': market_indoor
555
+ '519': marsh
556
+ '520': martial_arts_gym
557
+ '521': mastaba
558
+ '522': maternity_ward
559
+ '523': mausoleum
560
+ '524': medina
561
+ '525': menhir
562
+ '526': mesa
563
+ '527': mess_hall
564
+ '528': mezzanine
565
+ '529': military_hospital
566
+ '530': military_hut
567
+ '531': military_tent
568
+ '532': mine
569
+ '533': mineshaft
570
+ '534': mini_golf_course_indoor
571
+ '535': mini_golf_course_outdoor
572
+ '536': mission
573
+ '537': dry
574
+ '538': water
575
+ '539': mobile_home
576
+ '540': monastery_indoor
577
+ '541': monastery_outdoor
578
+ '542': moon_bounce
579
+ '543': moor
580
+ '544': morgue
581
+ '545': mosque_indoor
582
+ '546': mosque_outdoor
583
+ '547': motel
584
+ '548': mountain
585
+ '549': mountain_path
586
+ '550': mountain_road
587
+ '551': movie_theater_indoor
588
+ '552': movie_theater_outdoor
589
+ '553': mudflat
590
+ '554': museum_indoor
591
+ '555': museum_outdoor
592
+ '556': music_store
593
+ '557': music_studio
594
+ '558': misc
595
+ '559': natural_history_museum
596
+ '560': naval_base
597
+ '561': newsroom
598
+ '562': newsstand_indoor
599
+ '563': newsstand_outdoor
600
+ '564': nightclub
601
+ '565': nuclear_power_plant_indoor
602
+ '566': nuclear_power_plant_outdoor
603
+ '567': nunnery
604
+ '568': nursery
605
+ '569': nursing_home
606
+ '570': oasis
607
+ '571': oast_house
608
+ '572': observatory_indoor
609
+ '573': observatory_outdoor
610
+ '574': observatory_post
611
+ '575': ocean
612
+ '576': office_building
613
+ '577': office_cubicles
614
+ '578': oil_refinery_indoor
615
+ '579': oil_refinery_outdoor
616
+ '580': oilrig
617
+ '581': operating_room
618
+ '582': optician
619
+ '583': organ_loft_interior
620
+ '584': orlop_deck
621
+ '585': ossuary
622
+ '586': outcropping
623
+ '587': outhouse_indoor
624
+ '588': outhouse_outdoor
625
+ '589': overpass
626
+ '590': oyster_bar
627
+ '591': oyster_farm
628
+ '592': acropolis
629
+ '593': aircraft_carrier_object
630
+ '594': amphitheater_indoor
631
+ '595': archipelago
632
+ '596': questionable
633
+ '597': assembly_hall
634
+ '598': assembly_plant
635
+ '599': awning_deck
636
+ '600': back_porch
637
+ '601': backdrop
638
+ '602': backroom
639
+ '603': backstage_outdoor
640
+ '604': backstairs_indoor
641
+ '605': backwoods
642
+ '606': ballet
643
+ '607': balustrade
644
+ '608': barbeque
645
+ '609': basin_outdoor
646
+ '610': bath_indoor
647
+ '611': bath_outdoor
648
+ '612': bathhouse_outdoor
649
+ '613': battlefield
650
+ '614': bay
651
+ '615': booth_outdoor
652
+ '616': bottomland
653
+ '617': breakfast_table
654
+ '618': bric-a-brac
655
+ '619': brooklet
656
+ '620': bubble_chamber
657
+ '621': buffet
658
+ '622': bulkhead
659
+ '623': bunk_bed
660
+ '624': bypass
661
+ '625': byroad
662
+ '626': cabin_cruiser
663
+ '627': cargo_helicopter
664
+ '628': cellar
665
+ '629': chair_lift
666
+ '630': cocktail_lounge
667
+ '631': corner
668
+ '632': country_house
669
+ '633': country_road
670
+ '634': customhouse
671
+ '635': dance_floor
672
+ '636': deck-house_boat_deck_house
673
+ '637': deck-house_deck_house
674
+ '638': dining_area
675
+ '639': diving_board
676
+ '640': embrasure
677
+ '641': entranceway_indoor
678
+ '642': entranceway_outdoor
679
+ '643': entryway_outdoor
680
+ '644': estaminet
681
+ '645': farm_building
682
+ '646': farmhouse
683
+ '647': feed_bunk
684
+ '648': field_house
685
+ '649': field_tent_indoor
686
+ '650': field_tent_outdoor
687
+ '651': fire_trench
688
+ '652': fireplace
689
+ '653': flashflood
690
+ '654': flatlet
691
+ '655': floating_dock
692
+ '656': flood_plain
693
+ '657': flowerbed
694
+ '658': flume_indoor
695
+ '659': flying_buttress
696
+ '660': foothill
697
+ '661': forecourt
698
+ '662': foreshore
699
+ '663': front_porch
700
+ '664': garden
701
+ '665': gas_well
702
+ '666': glen
703
+ '667': grape_arbor
704
+ '668': grove
705
+ '669': guardroom
706
+ '670': guesthouse
707
+ '671': gymnasium_outdoor
708
+ '672': head_shop
709
+ '673': hen_yard
710
+ '674': hillock
711
+ '675': housing_estate
712
+ '676': housing_project
713
+ '677': howdah
714
+ '678': inlet
715
+ '679': insane_asylum
716
+ '680': outside
717
+ '681': juke_joint
718
+ '682': jungle
719
+ '683': kraal
720
+ '684': laboratorywet
721
+ '685': landing_strip
722
+ '686': layby
723
+ '687': lean-to_tent
724
+ '688': loge
725
+ '689': loggia_outdoor
726
+ '690': lower_deck
727
+ '691': luggage_van
728
+ '692': mansard
729
+ '693': meadow
730
+ '694': meat_house
731
+ '695': megalith
732
+ '696': mens_store_outdoor
733
+ '697': mental_institution_indoor
734
+ '698': mental_institution_outdoor
735
+ '699': military_headquarters
736
+ '700': millpond
737
+ '701': millrace
738
+ '702': natural_spring
739
+ '703': nursing_home_outdoor
740
+ '704': observation_station
741
+ '705': open-hearth_furnace
742
+ '706': operating_table
743
+ '707': outbuilding
744
+ '708': palestra
745
+ '709': parkway
746
+ '710': patio_indoor
747
+ '711': pavement
748
+ '712': pawnshop_outdoor
749
+ '713': pinetum
750
+ '714': piste_road
751
+ '715': pizzeria_outdoor
752
+ '716': powder_room
753
+ '717': pumping_station
754
+ '718': reception_room
755
+ '719': rest_stop
756
+ '720': retaining_wall
757
+ '721': rift_valley
758
+ '722': road
759
+ '723': rock_garden
760
+ '724': rotisserie
761
+ '725': safari_park
762
+ '726': salon
763
+ '727': saloon
764
+ '728': sanatorium
765
+ '729': science_laboratory
766
+ '730': scrubland
767
+ '731': scullery
768
+ '732': seaside
769
+ '733': semidesert
770
+ '734': shelter
771
+ '735': shelter_deck
772
+ '736': shelter_tent
773
+ '737': shore
774
+ '738': shrubbery
775
+ '739': sidewalk
776
+ '740': snack_bar
777
+ '741': snowbank
778
+ '742': stage_set
779
+ '743': stall
780
+ '744': stateroom
781
+ '745': store
782
+ '746': streetcar_track
783
+ '747': student_center
784
+ '748': study_hall
785
+ '749': sugar_refinery
786
+ '750': sunroom
787
+ '751': supply_chamber
788
+ '752': t-bar_lift
789
+ '753': tannery
790
+ '754': teahouse
791
+ '755': threshing_floor
792
+ '756': ticket_window_indoor
793
+ '757': tidal_basin
794
+ '758': tidal_river
795
+ '759': tiltyard
796
+ '760': tollgate
797
+ '761': tomb
798
+ '762': tract_housing
799
+ '763': trellis
800
+ '764': truck_stop
801
+ '765': upper_balcony
802
+ '766': vestibule
803
+ '767': vinery
804
+ '768': walkway
805
+ '769': war_room
806
+ '770': washroom
807
+ '771': water_fountain
808
+ '772': water_gate
809
+ '773': waterscape
810
+ '774': waterway
811
+ '775': wetland
812
+ '776': widows_walk_indoor
813
+ '777': windstorm
814
+ '778': packaging_plant
815
+ '779': pagoda
816
+ '780': paper_mill
817
+ '781': park
818
+ '782': parking_garage_indoor
819
+ '783': parking_garage_outdoor
820
+ '784': parking_lot
821
+ '785': parlor
822
+ '786': particle_accelerator
823
+ '787': party_tent_indoor
824
+ '788': party_tent_outdoor
825
+ '789': pasture
826
+ '790': pavilion
827
+ '791': pawnshop
828
+ '792': pedestrian_overpass_indoor
829
+ '793': penalty_box
830
+ '794': pet_shop
831
+ '795': pharmacy
832
+ '796': physics_laboratory
833
+ '797': piano_store
834
+ '798': picnic_area
835
+ '799': pier
836
+ '800': pig_farm
837
+ '801': pilothouse_indoor
838
+ '802': pilothouse_outdoor
839
+ '803': pitchers_mound
840
+ '804': pizzeria
841
+ '805': planetarium_indoor
842
+ '806': planetarium_outdoor
843
+ '807': plantation_house
844
+ '808': playground
845
+ '809': playroom
846
+ '810': plaza
847
+ '811': podium_indoor
848
+ '812': podium_outdoor
849
+ '813': police_station
850
+ '814': pond
851
+ '815': pontoon_bridge
852
+ '816': poop_deck
853
+ '817': porch
854
+ '818': portico
855
+ '819': portrait_studio
856
+ '820': postern
857
+ '821': power_plant_outdoor
858
+ '822': print_shop
859
+ '823': priory
860
+ '824': promenade
861
+ '825': promenade_deck
862
+ '826': pub_indoor
863
+ '827': pub_outdoor
864
+ '828': pulpit
865
+ '829': putting_green
866
+ '830': quadrangle
867
+ '831': quicksand
868
+ '832': quonset_hut_indoor
869
+ '833': racecourse
870
+ '834': raceway
871
+ '835': raft
872
+ '836': railroad_track
873
+ '837': railway_yard
874
+ '838': rainforest
875
+ '839': ramp
876
+ '840': ranch
877
+ '841': ranch_house
878
+ '842': reading_room
879
+ '843': reception
880
+ '844': recreation_room
881
+ '845': rectory
882
+ '846': recycling_plant_indoor
883
+ '847': refectory
884
+ '848': repair_shop
885
+ '849': residential_neighborhood
886
+ '850': resort
887
+ '851': rest_area
888
+ '852': restaurant
889
+ '853': restaurant_kitchen
890
+ '854': restaurant_patio
891
+ '855': restroom_indoor
892
+ '856': restroom_outdoor
893
+ '857': revolving_door
894
+ '858': riding_arena
895
+ '859': river
896
+ '860': road_cut
897
+ '861': rock_arch
898
+ '862': roller_skating_rink_indoor
899
+ '863': roller_skating_rink_outdoor
900
+ '864': rolling_mill
901
+ '865': roof
902
+ '866': roof_garden
903
+ '867': root_cellar
904
+ '868': rope_bridge
905
+ '869': roundabout
906
+ '870': roundhouse
907
+ '871': rubble
908
+ '872': ruin
909
+ '873': runway
910
+ '874': sacristy
911
+ '875': salt_plain
912
+ '876': sand_trap
913
+ '877': sandbar
914
+ '878': sauna
915
+ '879': savanna
916
+ '880': sawmill
917
+ '881': schoolhouse
918
+ '882': schoolyard
919
+ '883': science_museum
920
+ '884': scriptorium
921
+ '885': sea_cliff
922
+ '886': seawall
923
+ '887': security_check_point
924
+ '888': server_room
925
+ '889': sewer
926
+ '890': sewing_room
927
+ '891': shed
928
+ '892': shipping_room
929
+ '893': shipyard_outdoor
930
+ '894': shoe_shop
931
+ '895': shopping_mall_indoor
932
+ '896': shopping_mall_outdoor
933
+ '897': shower
934
+ '898': shower_room
935
+ '899': shrine
936
+ '900': signal_box
937
+ '901': sinkhole
938
+ '902': ski_jump
939
+ '903': ski_lodge
940
+ '904': ski_resort
941
+ '905': ski_slope
942
+ '906': sky
943
+ '907': skywalk_indoor
944
+ '908': skywalk_outdoor
945
+ '909': slum
946
+ '910': snowfield
947
+ '911': massage_room
948
+ '912': mineral_bath
949
+ '913': spillway
950
+ '914': sporting_goods_store
951
+ '915': squash_court
952
+ '916': stable
953
+ '917': baseball
954
+ '918': stadium_outdoor
955
+ '919': stage_indoor
956
+ '920': stage_outdoor
957
+ '921': staircase
958
+ '922': starting_gate
959
+ '923': steam_plant_outdoor
960
+ '924': steel_mill_indoor
961
+ '925': storage_room
962
+ '926': storm_cellar
963
+ '927': street
964
+ '928': strip_mall
965
+ '929': strip_mine
966
+ '930': student_residence
967
+ '931': submarine_interior
968
+ '932': sun_deck
969
+ '933': sushi_bar
970
+ '934': swamp
971
+ '935': swimming_hole
972
+ '936': swimming_pool_indoor
973
+ '937': synagogue_indoor
974
+ '938': synagogue_outdoor
975
+ '939': taxistand
976
+ '940': taxiway
977
+ '941': tea_garden
978
+ '942': tearoom
979
+ '943': teashop
980
+ '944': television_room
981
+ '945': east_asia
982
+ '946': mesoamerican
983
+ '947': south_asia
984
+ '948': western
985
+ '949': tennis_court_indoor
986
+ '950': tennis_court_outdoor
987
+ '951': tent_outdoor
988
+ '952': terrace_farm
989
+ '953': indoor_round
990
+ '954': indoor_seats
991
+ '955': theater_outdoor
992
+ '956': thriftshop
993
+ '957': throne_room
994
+ '958': ticket_booth
995
+ '959': tobacco_shop_indoor
996
+ '960': toll_plaza
997
+ '961': tollbooth
998
+ '962': topiary_garden
999
+ '963': tower
1000
+ '964': town_house
1001
+ '965': toyshop
1002
+ '966': track_outdoor
1003
+ '967': trading_floor
1004
+ '968': trailer_park
1005
+ '969': train_interior
1006
+ '970': train_station_outdoor
1007
+ '971': station
1008
+ '972': tree_farm
1009
+ '973': tree_house
1010
+ '974': trench
1011
+ '975': trestle_bridge
1012
+ '976': tundra
1013
+ '977': rail_indoor
1014
+ '978': rail_outdoor
1015
+ '979': road_indoor
1016
+ '980': road_outdoor
1017
+ '981': turkish_bath
1018
+ '982': ocean_deep
1019
+ '983': ocean_shallow
1020
+ '984': utility_room
1021
+ '985': valley
1022
+ '986': van_interior
1023
+ '987': vegetable_garden
1024
+ '988': velodrome_indoor
1025
+ '989': velodrome_outdoor
1026
+ '990': ventilation_shaft
1027
+ '991': veranda
1028
+ '992': vestry
1029
+ '993': veterinarians_office
1030
+ '994': videostore
1031
+ '995': village
1032
+ '996': vineyard
1033
+ '997': volcano
1034
+ '998': volleyball_court_indoor
1035
+ '999': volleyball_court_outdoor
1036
+ '1000': voting_booth
1037
+ '1001': waiting_room
1038
+ '1002': walk_in_freezer
1039
+ '1003': warehouse_indoor
1040
+ '1004': warehouse_outdoor
1041
+ '1005': washhouse_indoor
1042
+ '1006': washhouse_outdoor
1043
+ '1007': watchtower
1044
+ '1008': water_mill
1045
+ '1009': water_park
1046
+ '1010': water_tower
1047
+ '1011': water_treatment_plant_indoor
1048
+ '1012': water_treatment_plant_outdoor
1049
+ '1013': block
1050
+ '1014': cascade
1051
+ '1015': cataract
1052
+ '1016': fan
1053
+ '1017': plunge
1054
+ '1018': watering_hole
1055
+ '1019': weighbridge
1056
+ '1020': wet_bar
1057
+ '1021': wharf
1058
+ '1022': wheat_field
1059
+ '1023': whispering_gallery
1060
+ '1024': widows_walk_interior
1061
+ '1025': windmill
1062
+ '1026': window_seat
1063
+ '1027': barrel_storage
1064
+ '1028': winery
1065
+ '1029': witness_stand
1066
+ '1030': woodland
1067
+ '1031': workroom
1068
+ '1032': workshop
1069
+ '1033': wrestling_ring_indoor
1070
+ '1034': wrestling_ring_outdoor
1071
+ '1035': yard
1072
+ '1036': youth_hostel
1073
+ '1037': zen_garden
1074
+ '1038': ziggurat
1075
+ '1039': zoo
1076
+ '1040': forklift
1077
+ '1041': hollow
1078
+ '1042': hutment
1079
+ '1043': pueblo
1080
+ '1044': vat
1081
+ '1045': perfume_shop
1082
+ '1046': steel_mill_outdoor
1083
+ '1047': orchestra_pit
1084
+ '1048': bridle_path
1085
+ '1049': lyceum
1086
+ '1050': one-way_street
1087
+ '1051': parade_ground
1088
+ '1052': pump_room
1089
+ '1053': recycling_plant_outdoor
1090
+ '1054': chuck_wagon
1091
+ splits:
1092
+ - name: train
1093
+ num_bytes: 8468086
1094
+ num_examples: 20210
1095
+ - name: test
1096
+ num_bytes: 744607
1097
+ num_examples: 3352
1098
+ - name: validation
1099
+ num_bytes: 838032
1100
+ num_examples: 2000
1101
+ download_size: 1179202534
1102
+ dataset_size: 10050725
1103
+ - config_name: instance_segmentation
1104
+ features:
1105
+ - name: image
1106
+ dtype: image
1107
+ - name: annotation
1108
+ dtype: image
1109
+ splits:
1110
+ - name: train
1111
+ num_bytes: 862611544
1112
+ num_examples: 20210
1113
+ - name: test
1114
+ num_bytes: 212493928
1115
+ num_examples: 3352
1116
+ - name: validation
1117
+ num_bytes: 87502294
1118
+ num_examples: 2000
1119
+ download_size: 1197393920
1120
+ dataset_size: 1162607766
1121
+ ---
1122
+
1123
+ # Dataset Card for MIT Scene Parsing Benchmark
1124
+
1125
+ ## Table of Contents
1126
+ - [Table of Contents](#table-of-contents)
1127
+ - [Dataset Description](#dataset-description)
1128
+ - [Dataset Summary](#dataset-summary)
1129
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
1130
+ - [Languages](#languages)
1131
+ - [Dataset Structure](#dataset-structure)
1132
+ - [Data Instances](#data-instances)
1133
+ - [Data Fields](#data-fields)
1134
+ - [Data Splits](#data-splits)
1135
+ - [Dataset Creation](#dataset-creation)
1136
+ - [Curation Rationale](#curation-rationale)
1137
+ - [Source Data](#source-data)
1138
+ - [Annotations](#annotations)
1139
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
1140
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
1141
+ - [Social Impact of Dataset](#social-impact-of-dataset)
1142
+ - [Discussion of Biases](#discussion-of-biases)
1143
+ - [Other Known Limitations](#other-known-limitations)
1144
+ - [Additional Information](#additional-information)
1145
+ - [Dataset Curators](#dataset-curators)
1146
+ - [Licensing Information](#licensing-information)
1147
+ - [Citation Information](#citation-information)
1148
+ - [Contributions](#contributions)
1149
+
1150
+ ## Dataset Description
1151
+
1152
+ - **Homepage:** [MIT Scene Parsing Benchmark homepage](http://sceneparsing.csail.mit.edu/)
1153
+ - **Repository:** [Scene Parsing repository (Caffe/Torch7)](https://github.com/CSAILVision/sceneparsing),[Scene Parsing repository (PyTorch)](https://github.com/CSAILVision/semantic-segmentation-pytorch) and [Instance Segmentation repository](https://github.com/CSAILVision/placeschallenge/tree/master/instancesegmentation)
1154
+ - **Paper:** [Scene Parsing through ADE20K Dataset](http://people.csail.mit.edu/bzhou/publication/scene-parse-camera-ready.pdf) and [Semantic Understanding of Scenes through ADE20K Dataset](https://arxiv.org/abs/1608.05442)
1155
+ - **Leaderboard:** [MIT Scene Parsing Benchmark leaderboard](http://sceneparsing.csail.mit.edu/#:~:text=twice%20per%20week.-,leaderboard,-Organizers)
1156
+ - **Point of Contact:** [Bolei Zhou](mailto:bzhou@ie.cuhk.edu.hk)
1157
+
1158
+ ### Dataset Summary
1159
+
1160
+ Scene parsing is the task of segmenting and parsing an image into different image regions associated with semantic categories, such as sky, road, person, and bed. MIT Scene Parsing Benchmark (SceneParse150) provides a standard training and evaluation platform for the algorithms of scene parsing. The data for this benchmark comes from ADE20K Dataset which contains more than 20K scene-centric images exhaustively annotated with objects and object parts. Specifically, the benchmark is divided into 20K images for training, 2K images for validation, and another batch of held-out images for testing. There are in total 150 semantic categories included for evaluation, which include e.g. sky, road, grass, and discrete objects like person, car, bed. Note that there are non-uniform distribution of objects occuring in the images, mimicking a more natural object occurrence in daily scene.
1161
+
1162
+ The goal of this benchmark is to segment and parse an image into different image regions associated with semantic categories, such as sky, road, person, and bedThis benchamark is similar to semantic segmentation tasks in COCO and Pascal Dataset, but the data is more scene-centric and with a diverse range of object categories. The data for this benchmark comes from ADE20K Dataset which contains more than 20K scene-centric images exhaustively annotated with objects and object parts.
1163
+
1164
+ ### Supported Tasks and Leaderboards
1165
+
1166
+ - `scene-parsing`: The goal of this task is to segment the whole image densely into semantic classes (image regions), where each pixel is assigned a class label such as the region of *tree* and the region of *building*.
1167
+ [The leaderboard](http://sceneparsing.csail.mit.edu/#:~:text=twice%20per%20week.-,leaderboard,-Organizers) for this task ranks the models by considering the mean of the pixel-wise accuracy and class-wise IoU as the final score. Pixel-wise accuracy indicates the ratio of pixels which are correctly predicted, while class-wise IoU indicates the Intersection of Union of pixels averaged over all the 150 semantic categories. Refer to the [Development Kit](https://github.com/CSAILVision/sceneparsing) for the detail.
1168
+
1169
+ - `instance-segmentation`: The goal of this task is to detect the object instances inside an image and further generate the precise segmentation masks of the objects. Its difference compared to the task of scene parsing is that in scene parsing there is no instance concept for the segmented regions, instead in instance segmentation if there are three persons in the scene, the network is required to segment each one of the person regions. This task doesn't have an active leaderboard. The performance of the instance segmentation algorithms is evaluated by Average Precision (AP, or mAP), following COCO evaluation metrics. For each image, at most 255 top-scoring instance masks are taken across all categories. Each instance mask prediction is only considered if its IoU with ground truth is above a certain threshold. There are 10 IoU thresholds of 0.50:0.05:0.95 for evaluation. The final AP is averaged across 10 IoU thresholds and 100 categories. You can refer to COCO evaluation page for more explanation: http://mscoco.org/dataset/#detections-eval
1170
+
1171
+ ### Languages
1172
+
1173
+ English.
1174
+
1175
+ ## Dataset Structure
1176
+
1177
+ ### Data Instances
1178
+
1179
+ A data point comprises an image and its annotation mask, which is `None` in the testing set. The `scene_parsing` configuration has an additional `scene_category` field.
1180
+
1181
+ #### `scene_parsing`
1182
+
1183
+ ```
1184
+ {
1185
+ 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=683x512 at 0x1FF32A3EDA0>,
1186
+ 'annotation': <PIL.PngImagePlugin.PngImageFile image mode=L size=683x512 at 0x1FF32E5B978>,
1187
+ 'scene_category': 0
1188
+ }
1189
+ ```
1190
+
1191
+ #### `instance_segmentation`
1192
+
1193
+ ```
1194
+ {
1195
+ 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=256x256 at 0x20B51B5C400>,
1196
+ 'annotation': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=256x256 at 0x20B57051B38>
1197
+ }
1198
+ ```
1199
+
1200
+ ### Data Fields
1201
+
1202
+ #### `scene_parsing`
1203
+
1204
+ - `image`: A `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`.
1205
+ - `annotation`: A `PIL.Image.Image` object containing the annotation mask.
1206
+ - `scene_category`: A scene category for the image (e.g. `airport_terminal`, `canyon`, `mobile_home`).
1207
+
1208
+ > **Note**: annotation masks contain labels ranging from 0 to 150, where 0 refers to "other objects". Those pixels are not considered in the official evaluation. Refer to [this file](https://github.com/CSAILVision/sceneparsing/blob/master/objectInfo150.csv) for the information about the labels of the 150 semantic categories, including indices, pixel ratios and names.
1209
+
1210
+ #### `instance_segmentation`
1211
+
1212
+ - `image`: A `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`.
1213
+ - `annotation`: A `PIL.Image.Image` object containing the annotation mask.
1214
+
1215
+ > **Note**: in the instance annotation masks, the R(ed) channel encodes category ID, and the G(reen) channel encodes instance ID. Each object instance has a unique instance ID regardless of its category ID. In the dataset, all images have <256 object instances. Refer to [this file (train split)](https://github.com/CSAILVision/placeschallenge/blob/master/instancesegmentation/instanceInfo100_train.txt) and to [this file (validation split)](https://github.com/CSAILVision/placeschallenge/blob/master/instancesegmentation/instanceInfo100_val.txt) for the information about the labels of the 100 semantic categories. To find the mapping between the semantic categories for `instance_segmentation` and `scene_parsing`, refer to [this file](https://github.com/CSAILVision/placeschallenge/blob/master/instancesegmentation/categoryMapping.txt).
1216
+
1217
+ ### Data Splits
1218
+
1219
+ The data is split into training, test and validation set. The training data contains 20210 images, the testing data contains 3352 images and the validation data contains 2000 images.
1220
+
1221
+ ## Dataset Creation
1222
+
1223
+ ### Curation Rationale
1224
+
1225
+ The rationale from the paper for the ADE20K dataset from which this benchmark originates:
1226
+
1227
+ > Semantic understanding of visual scenes is one of the holy grails of computer vision. Despite efforts of the community in data collection, there are still few image datasets covering a wide range of scenes and object categories with pixel-wise annotations for scene understanding. In this work, we present a densely annotated dataset ADE20K, which spans diverse annotations of scenes, objects, parts of objects, and
1228
+ in some cases even parts of parts.
1229
+
1230
+ > The motivation of this work is to collect a dataset that has densely annotated images (every pixel has a semantic label) with a large and an unrestricted open vocabulary. The
1231
+ images in our dataset are manually segmented in great detail, covering a diverse set of scenes, object and object part categories. The challenge for collecting such annotations is finding reliable annotators, as well as the fact that labeling is difficult if the class list is not defined in advance. On the other hand, open vocabulary naming also suffers from naming inconsistencies across different annotators. In contrast,
1232
+ our dataset was annotated by a single expert annotator, providing extremely detailed and exhaustive image annotations. On average, our annotator labeled 29 annotation segments per image, compared to the 16 segments per image labeled by external annotators (like workers from Amazon Mechanical Turk). Furthermore, the data consistency and quality are much higher than that of external annotators.
1233
+
1234
+ ### Source Data
1235
+
1236
+ #### Initial Data Collection and Normalization
1237
+
1238
+ Images come from the LabelMe, SUN datasets, and Places and were selected to cover the 900 scene categories defined in the SUN database.
1239
+
1240
+ This benchmark was built by selecting the top 150 objects ranked by their total pixel ratios from the ADE20K dataset. As the original images in the ADE20K dataset have various sizes, for simplicity those large-sized images were rescaled to make their minimum heights or widths as 512. Among the 150 objects, there are 35 stuff classes (i.e., wall, sky, road) and 115 discrete objects (i.e., car, person, table). The annotated pixels of the 150 objects occupy 92.75% of all the pixels in the dataset, where the stuff classes occupy 60.92%, and discrete objects occupy 31.83%.
1241
+
1242
+ #### Who are the source language producers?
1243
+
1244
+ The same as in the LabelMe, SUN datasets, and Places datasets.
1245
+
1246
+ ### Annotations
1247
+
1248
+ #### Annotation process
1249
+
1250
+ Annotation process for the ADE20K dataset:
1251
+
1252
+ > **Image Annotation.** For our dataset, we are interested in having a diverse set of scenes with dense annotations of all the objects present. Images come from the LabelMe, SUN datasets, and Places and were selected to cover the 900 scene categories defined in the SUN database. Images were annotated by a single expert worker using the LabelMe interface. Fig. 2 shows a snapshot of the annotation interface and one fully segmented image. The worker provided three types of annotations: object segments with names, object parts, and attributes. All object instances are segmented independently so that the dataset could be used to train and evaluate detection or segmentation algorithms. Datasets such as COCO, Pascal or Cityscape start by defining a set of object categories of interest. However, when labeling all the objects in a scene, working with a predefined list of objects is not possible as new categories
1253
+ appear frequently (see fig. 5.d). Here, the annotator created a dictionary of visual concepts where new classes were added constantly to ensure consistency in object naming. Object parts are associated with object instances. Note that parts can have parts too, and we label these associations as well. For example, the ‘rim’ is a part of a ‘wheel’, which in turn is part of a ‘car’. A ‘knob’ is a part of a ‘door’
1254
+ that can be part of a ‘cabinet’. The total part hierarchy has a depth of 3. The object and part hierarchy is in the supplementary materials.
1255
+
1256
+ > **Annotation Consistency.** Defining a labeling protocol is relatively easy when the labeling task is restricted to a fixed list of object classes, however it becomes challenging when the class list is openended. As the goal is to label all the objects within each image, the list of classes grows unbounded. >Many object classes appear only a few times across the entire collection of images. However, those rare >object classes cannot be ignored as they might be important elements for the interpretation of the scene. >Labeling in these conditions becomes difficult because we need to keep a growing list of all the object >classes in order to have a consistent naming across the entire dataset. Despite the annotator’s best effort, >the process is not free of noise. To analyze the annotation consistency we took a subset of 61 randomly >chosen images from the validation set, then asked our annotator to annotate them again (there is a time difference of six months). One expects that there are some differences between the two annotations. A few examples are shown in Fig 3. On average, 82.4% of the pixels got the same label. The remaining 17.6% of pixels had some errors for which we grouped into three error types as follows:
1257
+ >
1258
+ > • Segmentation quality: Variations in the quality of segmentation and outlining of the object boundary. One typical source of error arises when segmenting complex objects such as buildings and trees, which can be segmented with different degrees of precision. 5.7% of the pixels had this type of error.
1259
+ >
1260
+ > • Object naming: Differences in object naming (due to ambiguity or similarity between concepts, for instance calling a big car a ‘car’ in one segmentation and a ‘truck’ in the another one, or a ‘palm tree’ a‘tree’. 6.0% of the pixels had naming issues. These errors can be reduced by defining a very precise terminology, but this becomes much harder with a large growing vocabulary.
1261
+ >
1262
+ > • Segmentation quantity: Missing objects in one of the two segmentations. There is a very large number of objects in each image and some images might be annotated more thoroughly than others. For example, in the third column of Fig 3 the annotator missed some small objects in different annotations. 5.9% of the pixels are due to missing labels. A similar issue existed in segmentation datasets such as the Berkeley Image segmentation dataset.
1263
+ >
1264
+ > The median error values for the three error types are: 4.8%, 0.3% and 2.6% showing that the mean value is dominated by a few images, and that the most common type of error is segmentation quality.
1265
+ To further compare the annotation done by our single expert annotator and the AMT-like annotators, 20 images
1266
+ from the validation set are annotated by two invited external annotators, both with prior experience in image labeling. The first external annotator had 58.5% of inconsistent pixels compared to the segmentation provided by our annotator, and the second external annotator had 75% of the inconsistent pixels. Many of these inconsistencies are due to the poor quality of the segmentations provided by external annotators (as it has been observed with AMT which requires multiple verification steps for quality control). For the
1267
+ best external annotator (the first one), 7.9% of pixels have inconsistent segmentations (just slightly worse than our annotator), 14.9% have inconsistent object naming and 35.8% of the pixels correspond to missing objects, which is due to the much smaller number of objects annotated by the external annotator in comparison with the ones annotated by our expert annotator. The external annotators labeled on average 16 segments per image while our annotator provided 29 segments per image.
1268
+
1269
+ #### Who are the annotators?
1270
+
1271
+ Three expert annotators and the AMT-like annotators.
1272
+
1273
+ ### Personal and Sensitive Information
1274
+
1275
+ [More Information Needed]
1276
+
1277
+ ## Considerations for Using the Data
1278
+
1279
+ ### Social Impact of Dataset
1280
+
1281
+ [More Information Needed]
1282
+
1283
+ ### Discussion of Biases
1284
+
1285
+ [More Information Needed]
1286
+
1287
+ ### Other Known Limitations
1288
+
1289
+ Refer to the `Annotation Consistency` subsection of `Annotation Process`.
1290
+
1291
+ ## Additional Information
1292
+
1293
+ ### Dataset Curators
1294
+
1295
+ Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso and Antonio Torralba.
1296
+
1297
+ ### Licensing Information
1298
+
1299
+ The MIT Scene Parsing Benchmark dataset is licensed under a [BSD 3-Clause License](https://github.com/CSAILVision/sceneparsing/blob/master/LICENSE).
1300
+
1301
+ ### Citation Information
1302
+
1303
+ ```bibtex
1304
+ @inproceedings{zhou2017scene,
1305
+ title={Scene Parsing through ADE20K Dataset},
1306
+ author={Zhou, Bolei and Zhao, Hang and Puig, Xavier and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio},
1307
+ booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
1308
+ year={2017}
1309
+ }
1310
+
1311
+ @article{zhou2016semantic,
1312
+ title={Semantic understanding of scenes through the ade20k dataset},
1313
+ author={Zhou, Bolei and Zhao, Hang and Puig, Xavier and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio},
1314
+ journal={arXiv preprint arXiv:1608.05442},
1315
+ year={2016}
1316
+ }
1317
+ ```
1318
+
1319
+ ### Contributions
1320
+
1321
+ Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
phao_dataset.py ADDED
@@ -0,0 +1,306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """MIT Scene Parsing Benchmark."""
15
+
16
+
17
+ import os
18
+
19
+ import pandas as pd
20
+
21
+ import datasets
22
+
23
+
24
+ _CITATION = """\
25
+ @inproceedings{zhou2017scene,
26
+ title={Scene Parsing through ADE20K Dataset},
27
+ author={Zhou, Bolei and Zhao, Hang and Puig, Xavier and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio},
28
+ booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
29
+ year={2017}
30
+ }
31
+
32
+ @article{zhou2016semantic,
33
+ title={Semantic understanding of scenes through the ade20k dataset},
34
+ author={Zhou, Bolei and Zhao, Hang and Puig, Xavier and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio},
35
+ journal={arXiv preprint arXiv:1608.05442},
36
+ year={2016}
37
+ }
38
+ """
39
+
40
+ _DESCRIPTION = """\
41
+ Scene parsing is to segment and parse an image into different image regions associated with semantic categories, such as sky, road, person, and bed.
42
+ MIT Scene Parsing Benchmark (SceneParse150) provides a standard training and evaluation platform for the algorithms of scene parsing.
43
+ The data for this benchmark comes from ADE20K Dataset which contains more than 20K scene-centric images exhaustively annotated with objects and object parts.
44
+ Specifically, the benchmark is divided into 20K images for training, 2K images for validation, and another batch of held-out images for testing.
45
+ There are totally 150 semantic categories included for evaluation, which include stuffs like sky, road, grass, and discrete objects like person, car, bed.
46
+ Note that there are non-uniform distribution of objects occuring in the images, mimicking a more natural object occurrence in daily scene.
47
+ """
48
+
49
+ _HOMEPAGE = "http://sceneparsing.csail.mit.edu/"
50
+
51
+ _LICENSE = "BSD 3-Clause License"
52
+
53
+ _URLS = {
54
+ "scene_parsing": {
55
+ "train/val": "https://phaodataset.s3.ap-southeast-2.amazonaws.com/LabelPhao.zip",
56
+ "test": "https://phaodataset.s3.ap-southeast-2.amazonaws.com/release_test.zip",
57
+ },
58
+ "instance_segmentation": {
59
+ "images": "https://phaodataset.s3.ap-southeast-2.amazonaws.com/images.zip",
60
+ "annotations": "https://phaodataset.s3.ap-southeast-2.amazonaws.com/annotations_instance.zip",
61
+ "test": "https://phaodataset.s3.ap-southeast-2.amazonaws.com/testing.zip",
62
+ },
63
+ }
64
+
65
+ _SCENE_CATEGORIES = """\
66
+ airport_terminal art_gallery badlands ball_pit bathroom beach bedroom booth_indoor botanical_garden bridge bullring
67
+ bus_interior butte canyon casino_outdoor castle church_outdoor closet coast conference_room construction_site corral
68
+ corridor crosswalk day_care_center sand elevator_interior escalator_indoor forest_road gangplank gas_station
69
+ golf_course gymnasium_indoor harbor hayfield heath hoodoo house hunting_lodge_outdoor ice_shelf joss_house kiosk_indoor
70
+ kitchen landfill library_indoor lido_deck_outdoor living_room locker_room market_outdoor mountain_snowy office orchard
71
+ arbor bookshelf mews nook preserve traffic_island palace palace_hall pantry patio phone_booth establishment
72
+ poolroom_home quonset_hut_outdoor rice_paddy sandbox shopfront skyscraper stone_circle subway_interior platform
73
+ supermarket swimming_pool_outdoor television_studio indoor_procenium train_railway coral_reef viaduct wave wind_farm
74
+ bottle_storage abbey access_road air_base airfield airlock airplane_cabin airport entrance airport_ticket_counter
75
+ alcove alley amphitheater amusement_arcade amusement_park anechoic_chamber apartment_building_outdoor apse_indoor
76
+ apse_outdoor aquarium aquatic_theater aqueduct arcade arch archaelogical_excavation archive basketball football hockey
77
+ performance rodeo soccer armory army_base arrival_gate_indoor arrival_gate_outdoor art_school art_studio artists_loft
78
+ assembly_line athletic_field_indoor athletic_field_outdoor atrium_home atrium_public attic auditorium auto_factory
79
+ auto_mechanics_indoor auto_mechanics_outdoor auto_racing_paddock auto_showroom backstage backstairs
80
+ badminton_court_indoor badminton_court_outdoor baggage_claim shop exterior balcony_interior ballroom bamboo_forest
81
+ bank_indoor bank_outdoor bank_vault banquet_hall baptistry_indoor baptistry_outdoor bar barbershop barn barndoor
82
+ barnyard barrack baseball_field basement basilica basketball_court_indoor basketball_court_outdoor bathhouse
83
+ batters_box batting_cage_indoor batting_cage_outdoor battlement bayou bazaar_indoor bazaar_outdoor beach_house
84
+ beauty_salon bedchamber beer_garden beer_hall belfry bell_foundry berth berth_deck betting_shop bicycle_racks bindery
85
+ biology_laboratory bistro_indoor bistro_outdoor bleachers_indoor bleachers_outdoor boardwalk boat_deck boathouse bog
86
+ bomb_shelter_indoor bookbindery bookstore bow_window_indoor bow_window_outdoor bowling_alley box_seat boxing_ring
87
+ breakroom brewery_indoor brewery_outdoor brickyard_indoor brickyard_outdoor building_complex building_facade bullpen
88
+ burial_chamber bus_depot_indoor bus_depot_outdoor bus_shelter bus_station_indoor bus_station_outdoor butchers_shop
89
+ cabana cabin_indoor cabin_outdoor cafeteria call_center campsite campus natural urban candy_store canteen
90
+ car_dealership backseat frontseat caravansary cardroom cargo_container_interior airplane boat freestanding
91
+ carport_indoor carport_outdoor carrousel casino_indoor catacomb cathedral_indoor cathedral_outdoor catwalk
92
+ cavern_indoor cavern_outdoor cemetery chalet chaparral chapel checkout_counter cheese_factory chemical_plant
93
+ chemistry_lab chicken_coop_indoor chicken_coop_outdoor chicken_farm_indoor chicken_farm_outdoor childs_room
94
+ choir_loft_interior church_indoor circus_tent_indoor circus_tent_outdoor city classroom clean_room cliff booth room
95
+ clock_tower_indoor cloister_indoor cloister_outdoor clothing_store coast_road cockpit coffee_shop computer_room
96
+ conference_center conference_hall confessional control_room control_tower_indoor control_tower_outdoor
97
+ convenience_store_indoor convenience_store_outdoor corn_field cottage cottage_garden courthouse courtroom courtyard
98
+ covered_bridge_interior crawl_space creek crevasse library cybercafe dacha dairy_indoor dairy_outdoor dam dance_school
99
+ darkroom delicatessen dentists_office department_store departure_lounge vegetation desert_road diner_indoor
100
+ diner_outdoor dinette_home vehicle dining_car dining_hall dining_room dirt_track discotheque distillery ditch dock
101
+ dolmen donjon doorway_indoor doorway_outdoor dorm_room downtown drainage_ditch dress_shop dressing_room drill_rig
102
+ driveway driving_range_indoor driving_range_outdoor drugstore dry_dock dugout earth_fissure editing_room
103
+ electrical_substation elevated_catwalk door freight_elevator elevator_lobby elevator_shaft embankment embassy
104
+ engine_room entrance_hall escalator_outdoor escarpment estuary excavation exhibition_hall fabric_store factory_indoor
105
+ factory_outdoor fairway farm fastfood_restaurant fence cargo_deck ferryboat_indoor passenger_deck cultivated wild
106
+ field_road fire_escape fire_station firing_range_indoor firing_range_outdoor fish_farm fishmarket fishpond
107
+ fitting_room_interior fjord flea_market_indoor flea_market_outdoor floating_dry_dock flood florist_shop_indoor
108
+ florist_shop_outdoor fly_bridge food_court football_field broadleaf needleleaf forest_fire forest_path formal_garden
109
+ fort fortress foundry_indoor foundry_outdoor fountain freeway funeral_chapel funeral_home furnace_room galley game_room
110
+ garage_indoor garage_outdoor garbage_dump gasworks gate gatehouse gazebo_interior general_store_indoor
111
+ general_store_outdoor geodesic_dome_indoor geodesic_dome_outdoor ghost_town gift_shop glacier glade gorge granary
112
+ great_hall greengrocery greenhouse_indoor greenhouse_outdoor grotto guardhouse gulch gun_deck_indoor gun_deck_outdoor
113
+ gun_store hacienda hallway handball_court hangar_indoor hangar_outdoor hardware_store hat_shop hatchery hayloft hearth
114
+ hedge_maze hedgerow heliport herb_garden highway hill home_office home_theater hospital hospital_room hot_spring
115
+ hot_tub_indoor hot_tub_outdoor hotel_outdoor hotel_breakfast_area hotel_room hunting_lodge_indoor hut ice_cream_parlor
116
+ ice_floe ice_skating_rink_indoor ice_skating_rink_outdoor iceberg igloo imaret incinerator_indoor incinerator_outdoor
117
+ industrial_area industrial_park inn_indoor inn_outdoor irrigation_ditch islet jacuzzi_indoor jacuzzi_outdoor
118
+ jail_indoor jail_outdoor jail_cell japanese_garden jetty jewelry_shop junk_pile junkyard jury_box kasbah kennel_indoor
119
+ kennel_outdoor kindergarden_classroom kiosk_outdoor kitchenette lab_classroom labyrinth_indoor labyrinth_outdoor lagoon
120
+ artificial landing landing_deck laundromat lava_flow lavatory lawn lean-to lecture_room legislative_chamber levee
121
+ library_outdoor lido_deck_indoor lift_bridge lighthouse limousine_interior liquor_store_indoor liquor_store_outdoor
122
+ loading_dock lobby lock_chamber loft lookout_station_indoor lookout_station_outdoor lumberyard_indoor
123
+ lumberyard_outdoor machine_shop manhole mansion manufactured_home market_indoor marsh martial_arts_gym mastaba
124
+ maternity_ward mausoleum medina menhir mesa mess_hall mezzanine military_hospital military_hut military_tent mine
125
+ mineshaft mini_golf_course_indoor mini_golf_course_outdoor mission dry water mobile_home monastery_indoor
126
+ monastery_outdoor moon_bounce moor morgue mosque_indoor mosque_outdoor motel mountain mountain_path mountain_road
127
+ movie_theater_indoor movie_theater_outdoor mudflat museum_indoor museum_outdoor music_store music_studio misc
128
+ natural_history_museum naval_base newsroom newsstand_indoor newsstand_outdoor nightclub nuclear_power_plant_indoor
129
+ nuclear_power_plant_outdoor nunnery nursery nursing_home oasis oast_house observatory_indoor observatory_outdoor
130
+ observatory_post ocean office_building office_cubicles oil_refinery_indoor oil_refinery_outdoor oilrig operating_room
131
+ optician organ_loft_interior orlop_deck ossuary outcropping outhouse_indoor outhouse_outdoor overpass oyster_bar
132
+ oyster_farm acropolis aircraft_carrier_object amphitheater_indoor archipelago questionable assembly_hall assembly_plant
133
+ awning_deck back_porch backdrop backroom backstage_outdoor backstairs_indoor backwoods ballet balustrade barbeque
134
+ basin_outdoor bath_indoor bath_outdoor bathhouse_outdoor battlefield bay booth_outdoor bottomland breakfast_table
135
+ bric-a-brac brooklet bubble_chamber buffet bulkhead bunk_bed bypass byroad cabin_cruiser cargo_helicopter cellar
136
+ chair_lift cocktail_lounge corner country_house country_road customhouse dance_floor deck-house_boat_deck_house
137
+ deck-house_deck_house dining_area diving_board embrasure entranceway_indoor entranceway_outdoor entryway_outdoor
138
+ estaminet farm_building farmhouse feed_bunk field_house field_tent_indoor field_tent_outdoor fire_trench fireplace
139
+ flashflood flatlet floating_dock flood_plain flowerbed flume_indoor flying_buttress foothill forecourt foreshore
140
+ front_porch garden gas_well glen grape_arbor grove guardroom guesthouse gymnasium_outdoor head_shop hen_yard hillock
141
+ housing_estate housing_project howdah inlet insane_asylum outside juke_joint jungle kraal laboratorywet landing_strip
142
+ layby lean-to_tent loge loggia_outdoor lower_deck luggage_van mansard meadow meat_house megalith mens_store_outdoor
143
+ mental_institution_indoor mental_institution_outdoor military_headquarters millpond millrace natural_spring
144
+ nursing_home_outdoor observation_station open-hearth_furnace operating_table outbuilding palestra parkway patio_indoor
145
+ pavement pawnshop_outdoor pinetum piste_road pizzeria_outdoor powder_room pumping_station reception_room rest_stop
146
+ retaining_wall rift_valley road rock_garden rotisserie safari_park salon saloon sanatorium science_laboratory scrubland
147
+ scullery seaside semidesert shelter shelter_deck shelter_tent shore shrubbery sidewalk snack_bar snowbank stage_set
148
+ stall stateroom store streetcar_track student_center study_hall sugar_refinery sunroom supply_chamber t-bar_lift
149
+ tannery teahouse threshing_floor ticket_window_indoor tidal_basin tidal_river tiltyard tollgate tomb tract_housing
150
+ trellis truck_stop upper_balcony vestibule vinery walkway war_room washroom water_fountain water_gate waterscape
151
+ waterway wetland widows_walk_indoor windstorm packaging_plant pagoda paper_mill park parking_garage_indoor
152
+ parking_garage_outdoor parking_lot parlor particle_accelerator party_tent_indoor party_tent_outdoor pasture pavilion
153
+ pawnshop pedestrian_overpass_indoor penalty_box pet_shop pharmacy physics_laboratory piano_store picnic_area pier
154
+ pig_farm pilothouse_indoor pilothouse_outdoor pitchers_mound pizzeria planetarium_indoor planetarium_outdoor
155
+ plantation_house playground playroom plaza podium_indoor podium_outdoor police_station pond pontoon_bridge poop_deck
156
+ porch portico portrait_studio postern power_plant_outdoor print_shop priory promenade promenade_deck pub_indoor
157
+ pub_outdoor pulpit putting_green quadrangle quicksand quonset_hut_indoor racecourse raceway raft railroad_track
158
+ railway_yard rainforest ramp ranch ranch_house reading_room reception recreation_room rectory recycling_plant_indoor
159
+ refectory repair_shop residential_neighborhood resort rest_area restaurant restaurant_kitchen restaurant_patio
160
+ restroom_indoor restroom_outdoor revolving_door riding_arena river road_cut rock_arch roller_skating_rink_indoor
161
+ roller_skating_rink_outdoor rolling_mill roof roof_garden root_cellar rope_bridge roundabout roundhouse rubble ruin
162
+ runway sacristy salt_plain sand_trap sandbar sauna savanna sawmill schoolhouse schoolyard science_museum scriptorium
163
+ sea_cliff seawall security_check_point server_room sewer sewing_room shed shipping_room shipyard_outdoor shoe_shop
164
+ shopping_mall_indoor shopping_mall_outdoor shower shower_room shrine signal_box sinkhole ski_jump ski_lodge ski_resort
165
+ ski_slope sky skywalk_indoor skywalk_outdoor slum snowfield massage_room mineral_bath spillway sporting_goods_store
166
+ squash_court stable baseball stadium_outdoor stage_indoor stage_outdoor staircase starting_gate steam_plant_outdoor
167
+ steel_mill_indoor storage_room storm_cellar street strip_mall strip_mine student_residence submarine_interior sun_deck
168
+ sushi_bar swamp swimming_hole swimming_pool_indoor synagogue_indoor synagogue_outdoor taxistand taxiway tea_garden
169
+ tearoom teashop television_room east_asia mesoamerican south_asia western tennis_court_indoor tennis_court_outdoor
170
+ tent_outdoor terrace_farm indoor_round indoor_seats theater_outdoor thriftshop throne_room ticket_booth
171
+ tobacco_shop_indoor toll_plaza tollbooth topiary_garden tower town_house toyshop track_outdoor trading_floor
172
+ trailer_park train_interior train_station_outdoor station tree_farm tree_house trench trestle_bridge tundra rail_indoor
173
+ rail_outdoor road_indoor road_outdoor turkish_bath ocean_deep ocean_shallow utility_room valley van_interior
174
+ vegetable_garden velodrome_indoor velodrome_outdoor ventilation_shaft veranda vestry veterinarians_office videostore
175
+ village vineyard volcano volleyball_court_indoor volleyball_court_outdoor voting_booth waiting_room walk_in_freezer
176
+ warehouse_indoor warehouse_outdoor washhouse_indoor washhouse_outdoor watchtower water_mill water_park water_tower
177
+ water_treatment_plant_indoor water_treatment_plant_outdoor block cascade cataract fan plunge watering_hole weighbridge
178
+ wet_bar wharf wheat_field whispering_gallery widows_walk_interior windmill window_seat barrel_storage winery
179
+ witness_stand woodland workroom workshop wrestling_ring_indoor wrestling_ring_outdoor yard youth_hostel zen_garden
180
+ ziggurat zoo forklift hollow hutment pueblo vat perfume_shop steel_mill_outdoor orchestra_pit bridle_path lyceum
181
+ one-way_street parade_ground pump_room recycling_plant_outdoor chuck_wagon
182
+ """
183
+ _SCENE_CATEGORIES = _SCENE_CATEGORIES.strip().split()
184
+
185
+
186
+ class SceneParse150(datasets.GeneratorBasedBuilder):
187
+ """MIT Scene Parsing Benchmark dataset."""
188
+
189
+ VERSION = datasets.Version("1.0.0")
190
+
191
+ BUILDER_CONFIGS = [
192
+ datasets.BuilderConfig(name="scene_parsing", version=VERSION, description="The scene parsing variant."),
193
+ datasets.BuilderConfig(
194
+ name="instance_segmentation", version=VERSION, description="The instance segmentation variant."
195
+ ),
196
+ ]
197
+
198
+ DEFAULT_CONFIG_NAME = "scene_parsing"
199
+
200
+ def _info(self):
201
+ if self.config.name == "scene_parsing":
202
+ features = datasets.Features(
203
+ {
204
+ "image": datasets.Image(),
205
+ "annotation": datasets.Image(),
206
+ "scene_category": datasets.ClassLabel(names=_SCENE_CATEGORIES),
207
+ }
208
+ )
209
+ else:
210
+ features = datasets.Features(
211
+ {
212
+ "image": datasets.Image(),
213
+ "annotation": datasets.Image(),
214
+ }
215
+ )
216
+ return datasets.DatasetInfo(
217
+ description=_DESCRIPTION,
218
+ features=features,
219
+ homepage=_HOMEPAGE,
220
+ license=_LICENSE,
221
+ citation=_CITATION,
222
+ )
223
+
224
+ def _split_generators(self, dl_manager):
225
+ urls = _URLS[self.config.name]
226
+
227
+ if self.config.name == "scene_parsing":
228
+ data_dirs = dl_manager.download_and_extract(urls)
229
+ train_data = val_data = os.path.join(data_dirs["train/val"], "ADEChallengeData2016")
230
+ test_data = os.path.join(data_dirs["test"], "release_test")
231
+ else:
232
+ data_dirs = dl_manager.download(urls)
233
+ train_data = dl_manager.iter_archive(data_dirs["images"]), dl_manager.iter_archive(
234
+ data_dirs["annotations"]
235
+ )
236
+ val_data = dl_manager.iter_archive(data_dirs["images"]), dl_manager.iter_archive(data_dirs["annotations"])
237
+ test_data = dl_manager.iter_archive(data_dirs["test"])
238
+ return [
239
+ datasets.SplitGenerator(
240
+ name=datasets.Split.TRAIN,
241
+ gen_kwargs={
242
+ "data": train_data,
243
+ "split": "training",
244
+ },
245
+ ),
246
+ datasets.SplitGenerator(
247
+ name=datasets.Split.TEST,
248
+ gen_kwargs={"data": test_data, "split": "testing"},
249
+ ),
250
+ datasets.SplitGenerator(
251
+ name=datasets.Split.VALIDATION,
252
+ gen_kwargs={
253
+ "data": val_data,
254
+ "split": "validation",
255
+ },
256
+ ),
257
+ ]
258
+
259
+ def _generate_examples(self, data, split):
260
+ if self.config.name == "scene_parsing":
261
+ if split == "testing":
262
+ image_dir = os.path.join(data, split)
263
+ for idx, image_file in enumerate(os.listdir(image_dir)):
264
+ yield idx, {
265
+ "image": os.path.join(image_dir, image_file),
266
+ "annotation": None,
267
+ "scene_category": None,
268
+ }
269
+ else:
270
+ image_id2cat = pd.read_csv(
271
+ os.path.join(data, "sceneCategories.txt"), sep=" ", names=["image_id", "scene_category"]
272
+ )
273
+ image_id2cat = image_id2cat.set_index("image_id")
274
+ images_dir = os.path.join(data, "images", split)
275
+ annotations_dir = os.path.join(data, "annotations", split)
276
+ for idx, image_file in enumerate(os.listdir(images_dir)):
277
+ image_id = image_file.split(".")[0]
278
+ yield idx, {
279
+ "image": os.path.join(images_dir, image_file),
280
+ "annotation": os.path.join(annotations_dir, image_id + ".png"),
281
+ "scene_category": image_id2cat.loc[image_id, "scene_category"],
282
+ }
283
+ else:
284
+ if split == "testing":
285
+ for idx, (path, file) in enumerate(data):
286
+ if path.endswith(".jpg"):
287
+ yield idx, {
288
+ "image": {"path": path, "bytes": file.read()},
289
+ "annotation": None,
290
+ }
291
+ else:
292
+ images, annotations = data
293
+ image_id2annot = {}
294
+ # loads the annotations for the split into RAM (less than 100 MB) to support streaming
295
+ for path_annot, file_annot in annotations:
296
+ if split in path_annot and path_annot.endswith(".png"):
297
+ image_id = os.path.basename(path_annot).split(".")[0]
298
+ image_id2annot[image_id] = (path_annot, file_annot.read())
299
+ for idx, (path_img, file_img) in enumerate(images):
300
+ if split in path_img and path_img.endswith(".jpg"):
301
+ image_id = os.path.basename(path_img).split(".")[0]
302
+ path_annot, bytes_annot = image_id2annot[image_id]
303
+ yield idx, {
304
+ "image": {"path": path_img, "bytes": file_img.read()},
305
+ "annotation": {"path": path_annot, "bytes": bytes_annot},
306
+ }