File size: 5,718 Bytes
a62c8cb fc20259 8baeea4 a62c8cb 431e811 a62c8cb 431e811 a62c8cb 431e811 a62c8cb 431e811 a62c8cb 431e811 a62c8cb d2599ae a62c8cb 3615276 a62c8cb 431e811 a62c8cb 02b5ff2 e000a58 e786d5d 02b5ff2 d3c5791 02b5ff2 d3c5791 a62c8cb f3dacf5 7ac7cd2 787cb93 173fe72 afb6bc0 173fe72 5c31efa 4f297f5 787cb93 4f297f5 ee683e8 4f297f5 3ddf48a 4f297f5 ee683e8 8906b34 ae01135 e000a58 4f297f5 ae01135 e000a58 ae01135 e000a58 ae01135 4f297f5 431e811 e000a58 ae01135 80d0a83 e000a58 ae01135 431e811 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import csv
import json
import os
from PIL import Image
import numpy as np
import pandas as pd
import datasets
_CITATION = """\
@article{nature},
title={Labeled temperate hardwood tree stomatal image datasets from seven taxa of Populus and 17 hardwood species},
author={Jiaxin Wang, Heidi J. Renninger and Qin Ma},
journal={Sci Data 11, 1 (2024)},
year={2024}
"""
_DESCRIPTION = """\
This new dataset is designed to solve image classification and segmentation tasks and is crafted with a lot of care.
"""
_HOMEPAGE = "https://zenodo.org/records/8271253"
_LICENSE = "https://creativecommons.org/licenses/by/4.0/"
class NewDataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.1.0")
def _info(self):
features = datasets.Features({
"image_id": datasets.Value("string"),
"species": datasets.Value("string"),
"scientific_name": datasets.Value("string"),
"image_path": datasets.Value("string"),
"image": datasets.Image(),
# datasets.Array3D(dtype="uint8", shape=(3,768, 1024)), # Assuming images are RGB with shape 768x1024
"image_resolution": {
"width": datasets.Value("int32"),
"height": datasets.Value("int32"),
},
"annotations": datasets.Sequence({
"category_id": datasets.Value("int32"),
"bounding_box": {
"x_min": datasets.Value("float32"),
"y_min": datasets.Value("float32"),
"x_max": datasets.Value("float32"),
"y_max": datasets.Value("float32"),
},
}),
})
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features, # Here we define them because they are different between the two configurations
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_files = dl_manager.download_and_extract({
"csv": "https://huggingface.co/datasets/XintongHe/Populus_Stomatal_Images_Datasets/resolve/main/data/Labeled Stomatal Images.csv",
"zip": "https://huggingface.co/datasets/XintongHe/Populus_Stomatal_Images_Datasets/resolve/main/data/Labeled Stomatal Images.zip",
"annotations_json": "https://huggingface.co/datasets/XintongHe/Populus_Stomatal_Images_Datasets/resolve/main/data/annotations.json"
})
species_info = pd.read_csv(data_files["csv"])
extracted_images_path = os.path.join(data_files["zip"], "Labeled Stomatal Images")
# Get all image filenames
all_image_filenames = species_info['FileName'].apply(lambda x: x + '.jpg').tolist()
return [datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepaths": all_image_filenames,
"species_info": species_info,
"data_dir": extracted_images_path
},
)]
def _parse_yolo_labels(self, label_path, width, height):
annotations = []
with open(label_path, 'r') as file:
yolo_data = file.readlines()
for line in yolo_data:
class_id, x_center_rel, y_center_rel, width_rel, height_rel = map(float, line.split())
x_min = (x_center_rel - width_rel / 2) * width
y_min = (y_center_rel - height_rel / 2) * height
x_max = (x_center_rel + width_rel / 2) * width
y_max = (y_center_rel + height_rel / 2) * height
annotations.append({
"category_id": int(class_id),
"bounding_box": {
"x_min": x_min,
"y_min": y_min,
"x_max": x_max,
"y_max": y_max
}
})
return annotations
def _generate_examples(self, filepaths, species_info, data_dir):
"""Yields examples as (key, example) tuples."""
for file_name in filepaths:
image_id = os.path.splitext(file_name)[0] # Extract the base name without the file extension
image_path = os.path.join(data_dir, f"{image_id}.jpg")
label_path = os.path.join(data_dir, f"{image_id}.txt")
img = Image.open(image_path)
# Find the corresponding row in the CSV for the current image
species_row = species_info.loc[species_info['FileName'] == image_id]
if not species_row.empty:
species = species_row['Species'].values[0]
scientific_name = species_row['ScientificName'].values[0]
width = species_row['Witdh'].values[0]
height = species_row['Heigth'].values[0]
else:
# Default values if not found
species = None
scientific_name = None
width = 1024
height = 768
annotations = self._parse_yolo_labels(label_path, width, height)
# Yield the dataset example
yield image_id, {
"image_id": image_id,
"species": species,
"scientific_name": scientific_name,
#"pics_array": pics_array.tolist(), # Convert numpy array to list for JSON serializability
"image_path": image_path,
"image": img,
"image_resolution": {"width": width, "height": height},
"annotations": annotations
} |