Update Populus_Stomatal_Images_Datasets.py
Browse files- Populus_Stomatal_Images_Datasets.py +13 -115
Populus_Stomatal_Images_Datasets.py
CHANGED
@@ -1,20 +1,3 @@
|
|
1 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
# TODO: Address all TODOs and remove all explanatory comments
|
15 |
-
"""TODO: Add a description here."""
|
16 |
-
|
17 |
-
|
18 |
import csv
|
19 |
import json
|
20 |
import os
|
@@ -24,62 +7,31 @@ import pandas as pd
|
|
24 |
import datasets
|
25 |
|
26 |
|
27 |
-
|
28 |
-
# Find for instance the citation on arxiv or on the dataset repo/website
|
29 |
_CITATION = """\
|
30 |
-
@
|
31 |
-
title
|
32 |
-
author={
|
33 |
-
},
|
34 |
-
year={
|
35 |
-
}
|
36 |
"""
|
37 |
|
38 |
-
# TODO: Add description of the dataset here
|
39 |
-
# You can copy an official description
|
40 |
_DESCRIPTION = """\
|
41 |
-
This new dataset is designed to solve
|
42 |
"""
|
43 |
|
44 |
-
|
45 |
-
_HOMEPAGE = ""
|
46 |
|
47 |
-
# TODO: Add the licence for the dataset here if you can find it
|
48 |
-
_LICENSE = ""
|
49 |
|
50 |
-
|
51 |
-
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
52 |
-
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
53 |
-
# _URLS = {
|
54 |
-
# "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
|
55 |
-
# "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
|
56 |
-
# }
|
57 |
|
58 |
|
59 |
-
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
60 |
class NewDataset(datasets.GeneratorBasedBuilder):
|
61 |
"""TODO: Short description of my dataset."""
|
62 |
|
63 |
VERSION = datasets.Version("1.1.0")
|
64 |
|
65 |
-
|
66 |
-
# If you don't want/need to define several sub-sets in your dataset,
|
67 |
-
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
68 |
-
|
69 |
-
# If you need to make complex sub-parts in the datasets with configurable options
|
70 |
-
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
71 |
-
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
72 |
-
|
73 |
-
# You will be able to load one or the other configurations in the following list with
|
74 |
-
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
75 |
-
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
76 |
-
# BUILDER_CONFIGS = [
|
77 |
-
# datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"),
|
78 |
-
# datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"),
|
79 |
-
# ]
|
80 |
-
|
81 |
-
# DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
82 |
-
|
83 |
def _info(self):
|
84 |
features = datasets.Features({
|
85 |
"image_id": datasets.Value("string"),
|
@@ -125,7 +77,6 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
125 |
# Get all image filenames
|
126 |
all_image_filenames = species_info['FileName'].apply(lambda x: x + '.jpg').tolist()
|
127 |
|
128 |
-
# No longer need to randomize and split the dataset
|
129 |
return [datasets.SplitGenerator(
|
130 |
name=datasets.Split.TRAIN,
|
131 |
gen_kwargs={
|
@@ -136,8 +87,6 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
136 |
)]
|
137 |
|
138 |
|
139 |
-
|
140 |
-
|
141 |
def _parse_yolo_labels(self, label_path, width, height):
|
142 |
annotations = []
|
143 |
with open(label_path, 'r') as file:
|
@@ -178,13 +127,8 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
178 |
# Default values if not found
|
179 |
species = None
|
180 |
scientific_name = None
|
181 |
-
width = 1024
|
182 |
-
height = 768
|
183 |
-
|
184 |
-
# pics_array = None
|
185 |
-
# with Image.open(image_path) as img:
|
186 |
-
# pics_array = np.array(img)# Convert the PIL image to a numpy array and then to a list
|
187 |
-
# # print(pics_array.shape)
|
188 |
|
189 |
annotations = self._parse_yolo_labels(label_path, width, height)
|
190 |
|
@@ -198,50 +142,4 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
198 |
"image": img,
|
199 |
"image_resolution": {"width": width, "height": height},
|
200 |
"annotations": annotations
|
201 |
-
}
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
# def _generate_examples(self, filepaths, species_info, data_dir, annotations_file):
|
207 |
-
# """Yields examples as (key, example) tuples."""
|
208 |
-
# # Load annotations from JSON file
|
209 |
-
# with open(annotations_file, 'r') as file:
|
210 |
-
# annotations_dict = json.load(file)
|
211 |
-
|
212 |
-
# for file_name in filepaths:
|
213 |
-
# image_id = os.path.splitext(file_name)[0] # Extract the base name without the file extension
|
214 |
-
# image_path = os.path.join(data_dir, f"{image_id}.jpg")
|
215 |
-
|
216 |
-
# # Find the corresponding row in the CSV for the current image
|
217 |
-
# species_row = species_info.loc[species_info['FileName'] == image_id]
|
218 |
-
# if not species_row.empty:
|
219 |
-
# species = species_row['Species'].values[0]
|
220 |
-
# scientific_name = species_row['ScientificName'].values[0]
|
221 |
-
# width = species_row['Witdh'].values[0] # Corrected field name from 'Witdh'
|
222 |
-
# height = species_row['Heigth'].values[0] # Corrected field name from 'Heigth'
|
223 |
-
# else:
|
224 |
-
# # Default values if not found
|
225 |
-
# species = None
|
226 |
-
# scientific_name = None
|
227 |
-
# width = 1024 # Default value
|
228 |
-
# height = 768 # Default value
|
229 |
-
|
230 |
-
# # pics_array = None
|
231 |
-
# # with Image.open(image_path) as img:
|
232 |
-
# # pics_array = np.array(img) # Convert the PIL image to a numpy array
|
233 |
-
|
234 |
-
# # Retrieve annotations for the current image from the dictionary
|
235 |
-
# annotations = annotations_dict.get(image_id, [])
|
236 |
-
|
237 |
-
# # Yield the dataset example
|
238 |
-
# yield image_id, {
|
239 |
-
# "image_id": image_id,
|
240 |
-
# "species": species,
|
241 |
-
# "scientific_name": scientific_name,
|
242 |
-
# #"pics_array": pics_array.tolist(), # Convert numpy array to list for JSON serializability
|
243 |
-
# "image_path": image_path,
|
244 |
-
# "image": img,
|
245 |
-
# "image_resolution": {"width": width, "height": height},
|
246 |
-
# "annotations": annotations
|
247 |
-
# }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import csv
|
2 |
import json
|
3 |
import os
|
|
|
7 |
import datasets
|
8 |
|
9 |
|
10 |
+
|
|
|
11 |
_CITATION = """\
|
12 |
+
@article{nature},
|
13 |
+
title={Labeled temperate hardwood tree stomatal image datasets from seven taxa of Populus and 17 hardwood species},
|
14 |
+
author={Jiaxin Wang, Heidi J. Renninger and Qin Ma},
|
15 |
+
journal={Sci Data 11, 1 (2024)},
|
16 |
+
year={2024}
|
|
|
17 |
"""
|
18 |
|
|
|
|
|
19 |
_DESCRIPTION = """\
|
20 |
+
This new dataset is designed to solve image classification and segmentation tasks and is crafted with a lot of care.
|
21 |
"""
|
22 |
|
23 |
+
_HOMEPAGE = "https://zenodo.org/records/8271253"
|
|
|
24 |
|
|
|
|
|
25 |
|
26 |
+
_LICENSE = "https://creativecommons.org/licenses/by/4.0/"
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
|
|
|
29 |
class NewDataset(datasets.GeneratorBasedBuilder):
|
30 |
"""TODO: Short description of my dataset."""
|
31 |
|
32 |
VERSION = datasets.Version("1.1.0")
|
33 |
|
34 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
def _info(self):
|
36 |
features = datasets.Features({
|
37 |
"image_id": datasets.Value("string"),
|
|
|
77 |
# Get all image filenames
|
78 |
all_image_filenames = species_info['FileName'].apply(lambda x: x + '.jpg').tolist()
|
79 |
|
|
|
80 |
return [datasets.SplitGenerator(
|
81 |
name=datasets.Split.TRAIN,
|
82 |
gen_kwargs={
|
|
|
87 |
)]
|
88 |
|
89 |
|
|
|
|
|
90 |
def _parse_yolo_labels(self, label_path, width, height):
|
91 |
annotations = []
|
92 |
with open(label_path, 'r') as file:
|
|
|
127 |
# Default values if not found
|
128 |
species = None
|
129 |
scientific_name = None
|
130 |
+
width = 1024
|
131 |
+
height = 768
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
annotations = self._parse_yolo_labels(label_path, width, height)
|
134 |
|
|
|
142 |
"image": img,
|
143 |
"image_resolution": {"width": width, "height": height},
|
144 |
"annotations": annotations
|
145 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|