Dataset Viewer
Auto-converted to Parquet
path
stringlengths
11
71
content
stringlengths
75
124k
Tactic.lean
import Mathlib.Tactic.Abel import Mathlib.Tactic.AdaptationNote import Mathlib.Tactic.ApplyAt import Mathlib.Tactic.ApplyCongr import Mathlib.Tactic.ApplyFun import Mathlib.Tactic.ApplyWith import Mathlib.Tactic.ArithMult import Mathlib.Tactic.ArithMult.Init import Mathlib.Tactic.Attr.Core import Mathlib.Tactic.Attr.Register import Mathlib.Tactic.Basic import Mathlib.Tactic.Bound import Mathlib.Tactic.Bound.Attribute import Mathlib.Tactic.Bound.Init import Mathlib.Tactic.ByContra import Mathlib.Tactic.CC import Mathlib.Tactic.CC.Addition import Mathlib.Tactic.CC.Datatypes import Mathlib.Tactic.CC.Lemmas import Mathlib.Tactic.CancelDenoms import Mathlib.Tactic.CancelDenoms.Core import Mathlib.Tactic.Cases import Mathlib.Tactic.CasesM import Mathlib.Tactic.CategoryTheory.BicategoricalComp import Mathlib.Tactic.CategoryTheory.BicategoryCoherence import Mathlib.Tactic.CategoryTheory.Coherence import Mathlib.Tactic.CategoryTheory.Elementwise import Mathlib.Tactic.CategoryTheory.Monoidal import Mathlib.Tactic.CategoryTheory.MonoidalComp import Mathlib.Tactic.CategoryTheory.Reassoc import Mathlib.Tactic.CategoryTheory.Slice import Mathlib.Tactic.Change import Mathlib.Tactic.Check import Mathlib.Tactic.Choose import Mathlib.Tactic.Clean import Mathlib.Tactic.ClearExcept import Mathlib.Tactic.ClearExclamation import Mathlib.Tactic.Clear_ import Mathlib.Tactic.Coe import Mathlib.Tactic.Common import Mathlib.Tactic.ComputeDegree import Mathlib.Tactic.CongrExclamation import Mathlib.Tactic.CongrM import Mathlib.Tactic.Constructor import Mathlib.Tactic.Continuity import Mathlib.Tactic.Continuity.Init import Mathlib.Tactic.ContinuousFunctionalCalculus import Mathlib.Tactic.Contrapose import Mathlib.Tactic.Conv import Mathlib.Tactic.Convert import Mathlib.Tactic.Core import Mathlib.Tactic.DefEqTransformations import Mathlib.Tactic.DeprecateMe import Mathlib.Tactic.DeriveFintype import Mathlib.Tactic.DeriveToExpr import Mathlib.Tactic.DeriveTraversable import Mathlib.Tactic.Eqns import Mathlib.Tactic.Eval import Mathlib.Tactic.ExistsI import Mathlib.Tactic.Explode import Mathlib.Tactic.Explode.Datatypes import Mathlib.Tactic.Explode.Pretty import Mathlib.Tactic.ExtendDoc import Mathlib.Tactic.ExtractGoal import Mathlib.Tactic.ExtractLets import Mathlib.Tactic.FBinop import Mathlib.Tactic.FailIfNoProgress import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.FinCases import Mathlib.Tactic.Find import Mathlib.Tactic.FunProp import Mathlib.Tactic.FunProp.AEMeasurable import Mathlib.Tactic.FunProp.Attr import Mathlib.Tactic.FunProp.ContDiff import Mathlib.Tactic.FunProp.Core import Mathlib.Tactic.FunProp.Decl import Mathlib.Tactic.FunProp.Differentiable import Mathlib.Tactic.FunProp.Elab import Mathlib.Tactic.FunProp.FunctionData import Mathlib.Tactic.FunProp.Mor import Mathlib.Tactic.FunProp.RefinedDiscrTree import Mathlib.Tactic.FunProp.StateList import Mathlib.Tactic.FunProp.Theorems import Mathlib.Tactic.FunProp.ToBatteries import Mathlib.Tactic.FunProp.Types import Mathlib.Tactic.GCongr import Mathlib.Tactic.GCongr.Core import Mathlib.Tactic.GCongr.ForwardAttr import Mathlib.Tactic.Generalize import Mathlib.Tactic.GeneralizeProofs import Mathlib.Tactic.Group import Mathlib.Tactic.GuardGoalNums import Mathlib.Tactic.GuardHypNums import Mathlib.Tactic.Have import Mathlib.Tactic.HaveI import Mathlib.Tactic.HelpCmd import Mathlib.Tactic.HigherOrder import Mathlib.Tactic.Hint import Mathlib.Tactic.ITauto import Mathlib.Tactic.InferParam import Mathlib.Tactic.Inhabit import Mathlib.Tactic.IntervalCases import Mathlib.Tactic.IrreducibleDef import Mathlib.Tactic.Lemma import Mathlib.Tactic.Lift import Mathlib.Tactic.LiftLets import Mathlib.Tactic.Linarith import Mathlib.Tactic.Linarith.Datatypes import Mathlib.Tactic.Linarith.Frontend import Mathlib.Tactic.Linarith.Lemmas import Mathlib.Tactic.Linarith.Oracle.FourierMotzkin import Mathlib.Tactic.Linarith.Oracle.SimplexAlgorithm import Mathlib.Tactic.Linarith.Oracle.SimplexAlgorithm.Datatypes import Mathlib.Tactic.Linarith.Oracle.SimplexAlgorithm.Gauss import Mathlib.Tactic.Linarith.Oracle.SimplexAlgorithm.PositiveVector import Mathlib.Tactic.Linarith.Oracle.SimplexAlgorithm.SimplexAlgorithm import Mathlib.Tactic.Linarith.Parsing import Mathlib.Tactic.Linarith.Preprocessing import Mathlib.Tactic.Linarith.Verification import Mathlib.Tactic.LinearCombination import Mathlib.Tactic.Linter import Mathlib.Tactic.Linter.GlobalAttributeIn import Mathlib.Tactic.Linter.HashCommandLinter import Mathlib.Tactic.Linter.HaveLetLinter import Mathlib.Tactic.Linter.Lint import Mathlib.Tactic.Linter.MinImports import Mathlib.Tactic.Linter.OldObtain import Mathlib.Tactic.Linter.RefineLinter import Mathlib.Tactic.Linter.Style import Mathlib.Tactic.Linter.TextBased import Mathlib.Tactic.Linter.UnusedTactic import Mathlib.Tactic.Measurability import Mathlib.Tactic.Measurability.Init import Mathlib.Tactic.MinImports import Mathlib.Tactic.MkIffOfInductiveProp import Mathlib.Tactic.ModCases import Mathlib.Tactic.Monotonicity import Mathlib.Tactic.Monotonicity.Attr import Mathlib.Tactic.Monotonicity.Basic import Mathlib.Tactic.Monotonicity.Lemmas import Mathlib.Tactic.MoveAdd import Mathlib.Tactic.NoncommRing import Mathlib.Tactic.Nontriviality import Mathlib.Tactic.Nontriviality.Core import Mathlib.Tactic.NormNum import Mathlib.Tactic.NormNum.Basic import Mathlib.Tactic.NormNum.BigOperators import Mathlib.Tactic.NormNum.Core import Mathlib.Tactic.NormNum.DivMod import Mathlib.Tactic.NormNum.Eq import Mathlib.Tactic.NormNum.GCD import Mathlib.Tactic.NormNum.Ineq import Mathlib.Tactic.NormNum.Inv import Mathlib.Tactic.NormNum.IsCoprime import Mathlib.Tactic.NormNum.LegendreSymbol import Mathlib.Tactic.NormNum.NatFib import Mathlib.Tactic.NormNum.NatSqrt import Mathlib.Tactic.NormNum.OfScientific import Mathlib.Tactic.NormNum.Pow import Mathlib.Tactic.NormNum.Prime import Mathlib.Tactic.NormNum.Result import Mathlib.Tactic.NthRewrite import Mathlib.Tactic.Observe import Mathlib.Tactic.PPWithUniv import Mathlib.Tactic.Peel import Mathlib.Tactic.Polyrith import Mathlib.Tactic.Positivity import Mathlib.Tactic.Positivity.Basic import Mathlib.Tactic.Positivity.Core import Mathlib.Tactic.Positivity.Finset import Mathlib.Tactic.ProdAssoc import Mathlib.Tactic.ProjectionNotation import Mathlib.Tactic.Propose import Mathlib.Tactic.ProxyType import Mathlib.Tactic.PushNeg import Mathlib.Tactic.Qify import Mathlib.Tactic.RSuffices import Mathlib.Tactic.Recall import Mathlib.Tactic.Recover import Mathlib.Tactic.ReduceModChar import Mathlib.Tactic.ReduceModChar.Ext import Mathlib.Tactic.Relation.Rfl import Mathlib.Tactic.Relation.Symm import Mathlib.Tactic.Relation.Trans import Mathlib.Tactic.Rename import Mathlib.Tactic.RenameBVar import Mathlib.Tactic.Replace import Mathlib.Tactic.RewriteSearch import Mathlib.Tactic.Rify import Mathlib.Tactic.Ring import Mathlib.Tactic.Ring.Basic import Mathlib.Tactic.Ring.PNat import Mathlib.Tactic.Ring.RingNF import Mathlib.Tactic.Sat.FromLRAT import Mathlib.Tactic.Says import Mathlib.Tactic.ScopedNS import Mathlib.Tactic.Set import Mathlib.Tactic.SetLike import Mathlib.Tactic.SimpIntro import Mathlib.Tactic.SimpRw import Mathlib.Tactic.Simps.Basic import Mathlib.Tactic.Simps.NotationClass import Mathlib.Tactic.SlimCheck import Mathlib.Tactic.SplitIfs import Mathlib.Tactic.Spread import Mathlib.Tactic.Subsingleton import Mathlib.Tactic.Substs import Mathlib.Tactic.SuccessIfFailWithMsg import Mathlib.Tactic.SudoSetOption import Mathlib.Tactic.SuppressCompilation import Mathlib.Tactic.SwapVar import Mathlib.Tactic.TFAE import Mathlib.Tactic.Tauto import Mathlib.Tactic.TermCongr import Mathlib.Tactic.ToAdditive import Mathlib.Tactic.ToAdditive.Frontend import Mathlib.Tactic.ToExpr import Mathlib.Tactic.ToLevel import Mathlib.Tactic.Trace import Mathlib.Tactic.TryThis import Mathlib.Tactic.TypeCheck import Mathlib.Tactic.TypeStar import Mathlib.Tactic.UnsetOption import Mathlib.Tactic.Use import Mathlib.Tactic.Variable import Mathlib.Tactic.WLOG import Mathlib.Tactic.Widget.Calc import Mathlib.Tactic.Widget.CommDiag import Mathlib.Tactic.Widget.CongrM import Mathlib.Tactic.Widget.Conv import Mathlib.Tactic.Widget.GCongr import Mathlib.Tactic.Widget.InteractiveUnfold import Mathlib.Tactic.Widget.SelectInsertParamsClass import Mathlib.Tactic.Widget.SelectPanelUtils import Mathlib.Tactic.Widget.StringDiagram import Mathlib.Tactic.Zify
Algebra\AddTorsor.lean
/- Copyright (c) 2020 Joseph Myers. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Myers, Yury Kudryashov -/ import Mathlib.Data.Set.Pointwise.SMul /-! # Torsors of additive group actions This file defines torsors of additive group actions. ## Notations The group elements are referred to as acting on points. This file defines the notation `+ᵥ` for adding a group element to a point and `-ᵥ` for subtracting two points to produce a group element. ## Implementation notes Affine spaces are the motivating example of torsors of additive group actions. It may be appropriate to refactor in terms of the general definition of group actions, via `to_additive`, when there is a use for multiplicative torsors (currently mathlib only develops the theory of group actions for multiplicative group actions). ## Notations * `v +ᵥ p` is a notation for `VAdd.vadd`, the left action of an additive monoid; * `p₁ -ᵥ p₂` is a notation for `VSub.vsub`, difference between two points in an additive torsor as an element of the corresponding additive group; ## References * https://en.wikipedia.org/wiki/Principal_homogeneous_space * https://en.wikipedia.org/wiki/Affine_space -/ /-- An `AddTorsor G P` gives a structure to the nonempty type `P`, acted on by an `AddGroup G` with a transitive and free action given by the `+ᵥ` operation and a corresponding subtraction given by the `-ᵥ` operation. In the case of a vector space, it is an affine space. -/ class AddTorsor (G : outParam Type*) (P : Type*) [AddGroup G] extends AddAction G P, VSub G P where [nonempty : Nonempty P] /-- Torsor subtraction and addition with the same element cancels out. -/ vsub_vadd' : ∀ p₁ p₂ : P, (p₁ -ᵥ p₂ : G) +ᵥ p₂ = p₁ /-- Torsor addition and subtraction with the same element cancels out. -/ vadd_vsub' : ∀ (g : G) (p : P), g +ᵥ p -ᵥ p = g -- Porting note(#12096): removed `nolint instance_priority`; lint not ported yet attribute [instance 100] AddTorsor.nonempty -- Porting note(#12094): removed nolint; dangerous_instance linter not ported yet --attribute [nolint dangerous_instance] AddTorsor.toVSub /-- An `AddGroup G` is a torsor for itself. -/ -- Porting note(#12096): linter not ported yet --@[nolint instance_priority] instance addGroupIsAddTorsor (G : Type*) [AddGroup G] : AddTorsor G G where vsub := Sub.sub vsub_vadd' := sub_add_cancel vadd_vsub' := add_sub_cancel_right /-- Simplify subtraction for a torsor for an `AddGroup G` over itself. -/ @[simp] theorem vsub_eq_sub {G : Type*} [AddGroup G] (g₁ g₂ : G) : g₁ -ᵥ g₂ = g₁ - g₂ := rfl section General variable {G : Type*} {P : Type*} [AddGroup G] [T : AddTorsor G P] /-- Adding the result of subtracting from another point produces that point. -/ @[simp] theorem vsub_vadd (p₁ p₂ : P) : p₁ -ᵥ p₂ +ᵥ p₂ = p₁ := AddTorsor.vsub_vadd' p₁ p₂ /-- Adding a group element then subtracting the original point produces that group element. -/ @[simp] theorem vadd_vsub (g : G) (p : P) : g +ᵥ p -ᵥ p = g := AddTorsor.vadd_vsub' g p /-- If the same point added to two group elements produces equal results, those group elements are equal. -/ theorem vadd_right_cancel {g₁ g₂ : G} (p : P) (h : g₁ +ᵥ p = g₂ +ᵥ p) : g₁ = g₂ := by -- Porting note: vadd_vsub g₁ → vadd_vsub g₁ p rw [← vadd_vsub g₁ p, h, vadd_vsub] @[simp] theorem vadd_right_cancel_iff {g₁ g₂ : G} (p : P) : g₁ +ᵥ p = g₂ +ᵥ p ↔ g₁ = g₂ := ⟨vadd_right_cancel p, fun h => h ▸ rfl⟩ /-- Adding a group element to the point `p` is an injective function. -/ theorem vadd_right_injective (p : P) : Function.Injective ((· +ᵥ p) : G → P) := fun _ _ => vadd_right_cancel p /-- Adding a group element to a point, then subtracting another point, produces the same result as subtracting the points then adding the group element. -/ theorem vadd_vsub_assoc (g : G) (p₁ p₂ : P) : g +ᵥ p₁ -ᵥ p₂ = g + (p₁ -ᵥ p₂) := by apply vadd_right_cancel p₂ rw [vsub_vadd, add_vadd, vsub_vadd] /-- Subtracting a point from itself produces 0. -/ @[simp] theorem vsub_self (p : P) : p -ᵥ p = (0 : G) := by rw [← zero_add (p -ᵥ p), ← vadd_vsub_assoc, vadd_vsub] /-- If subtracting two points produces 0, they are equal. -/ theorem eq_of_vsub_eq_zero {p₁ p₂ : P} (h : p₁ -ᵥ p₂ = (0 : G)) : p₁ = p₂ := by rw [← vsub_vadd p₁ p₂, h, zero_vadd] /-- Subtracting two points produces 0 if and only if they are equal. -/ @[simp] theorem vsub_eq_zero_iff_eq {p₁ p₂ : P} : p₁ -ᵥ p₂ = (0 : G) ↔ p₁ = p₂ := Iff.intro eq_of_vsub_eq_zero fun h => h ▸ vsub_self _ theorem vsub_ne_zero {p q : P} : p -ᵥ q ≠ (0 : G) ↔ p ≠ q := not_congr vsub_eq_zero_iff_eq /-- Cancellation adding the results of two subtractions. -/ @[simp] theorem vsub_add_vsub_cancel (p₁ p₂ p₃ : P) : p₁ -ᵥ p₂ + (p₂ -ᵥ p₃) = p₁ -ᵥ p₃ := by apply vadd_right_cancel p₃ rw [add_vadd, vsub_vadd, vsub_vadd, vsub_vadd] /-- Subtracting two points in the reverse order produces the negation of subtracting them. -/ @[simp] theorem neg_vsub_eq_vsub_rev (p₁ p₂ : P) : -(p₁ -ᵥ p₂) = p₂ -ᵥ p₁ := by refine neg_eq_of_add_eq_zero_right (vadd_right_cancel p₁ ?_) rw [vsub_add_vsub_cancel, vsub_self] theorem vadd_vsub_eq_sub_vsub (g : G) (p q : P) : g +ᵥ p -ᵥ q = g - (q -ᵥ p) := by rw [vadd_vsub_assoc, sub_eq_add_neg, neg_vsub_eq_vsub_rev] /-- Subtracting the result of adding a group element produces the same result as subtracting the points and subtracting that group element. -/ theorem vsub_vadd_eq_vsub_sub (p₁ p₂ : P) (g : G) : p₁ -ᵥ (g +ᵥ p₂) = p₁ -ᵥ p₂ - g := by rw [← add_right_inj (p₂ -ᵥ p₁ : G), vsub_add_vsub_cancel, ← neg_vsub_eq_vsub_rev, vadd_vsub, ← add_sub_assoc, ← neg_vsub_eq_vsub_rev, neg_add_self, zero_sub] /-- Cancellation subtracting the results of two subtractions. -/ @[simp] theorem vsub_sub_vsub_cancel_right (p₁ p₂ p₃ : P) : p₁ -ᵥ p₃ - (p₂ -ᵥ p₃) = p₁ -ᵥ p₂ := by rw [← vsub_vadd_eq_vsub_sub, vsub_vadd] /-- Convert between an equality with adding a group element to a point and an equality of a subtraction of two points with a group element. -/ theorem eq_vadd_iff_vsub_eq (p₁ : P) (g : G) (p₂ : P) : p₁ = g +ᵥ p₂ ↔ p₁ -ᵥ p₂ = g := ⟨fun h => h.symm ▸ vadd_vsub _ _, fun h => h ▸ (vsub_vadd _ _).symm⟩ theorem vadd_eq_vadd_iff_neg_add_eq_vsub {v₁ v₂ : G} {p₁ p₂ : P} : v₁ +ᵥ p₁ = v₂ +ᵥ p₂ ↔ -v₁ + v₂ = p₁ -ᵥ p₂ := by rw [eq_vadd_iff_vsub_eq, vadd_vsub_assoc, ← add_right_inj (-v₁), neg_add_cancel_left, eq_comm] namespace Set open Pointwise -- porting note (#10618): simp can prove this --@[simp] theorem singleton_vsub_self (p : P) : ({p} : Set P) -ᵥ {p} = {(0 : G)} := by rw [Set.singleton_vsub_singleton, vsub_self] end Set @[simp] theorem vadd_vsub_vadd_cancel_right (v₁ v₂ : G) (p : P) : v₁ +ᵥ p -ᵥ (v₂ +ᵥ p) = v₁ - v₂ := by rw [vsub_vadd_eq_vsub_sub, vadd_vsub_assoc, vsub_self, add_zero] /-- If the same point subtracted from two points produces equal results, those points are equal. -/ theorem vsub_left_cancel {p₁ p₂ p : P} (h : p₁ -ᵥ p = p₂ -ᵥ p) : p₁ = p₂ := by rwa [← sub_eq_zero, vsub_sub_vsub_cancel_right, vsub_eq_zero_iff_eq] at h /-- The same point subtracted from two points produces equal results if and only if those points are equal. -/ @[simp] theorem vsub_left_cancel_iff {p₁ p₂ p : P} : p₁ -ᵥ p = p₂ -ᵥ p ↔ p₁ = p₂ := ⟨vsub_left_cancel, fun h => h ▸ rfl⟩ /-- Subtracting the point `p` is an injective function. -/ theorem vsub_left_injective (p : P) : Function.Injective ((· -ᵥ p) : P → G) := fun _ _ => vsub_left_cancel /-- If subtracting two points from the same point produces equal results, those points are equal. -/ theorem vsub_right_cancel {p₁ p₂ p : P} (h : p -ᵥ p₁ = p -ᵥ p₂) : p₁ = p₂ := by refine vadd_left_cancel (p -ᵥ p₂) ?_ rw [vsub_vadd, ← h, vsub_vadd] /-- Subtracting two points from the same point produces equal results if and only if those points are equal. -/ @[simp] theorem vsub_right_cancel_iff {p₁ p₂ p : P} : p -ᵥ p₁ = p -ᵥ p₂ ↔ p₁ = p₂ := ⟨vsub_right_cancel, fun h => h ▸ rfl⟩ /-- Subtracting a point from the point `p` is an injective function. -/ theorem vsub_right_injective (p : P) : Function.Injective ((p -ᵥ ·) : P → G) := fun _ _ => vsub_right_cancel end General section comm variable {G : Type*} {P : Type*} [AddCommGroup G] [AddTorsor G P] /-- Cancellation subtracting the results of two subtractions. -/ @[simp] theorem vsub_sub_vsub_cancel_left (p₁ p₂ p₃ : P) : p₃ -ᵥ p₂ - (p₃ -ᵥ p₁) = p₁ -ᵥ p₂ := by rw [sub_eq_add_neg, neg_vsub_eq_vsub_rev, add_comm, vsub_add_vsub_cancel] @[simp] theorem vadd_vsub_vadd_cancel_left (v : G) (p₁ p₂ : P) : v +ᵥ p₁ -ᵥ (v +ᵥ p₂) = p₁ -ᵥ p₂ := by rw [vsub_vadd_eq_vsub_sub, vadd_vsub_assoc, add_sub_cancel_left] theorem vsub_vadd_comm (p₁ p₂ p₃ : P) : (p₁ -ᵥ p₂ : G) +ᵥ p₃ = p₃ -ᵥ p₂ +ᵥ p₁ := by rw [← @vsub_eq_zero_iff_eq G, vadd_vsub_assoc, vsub_vadd_eq_vsub_sub] simp theorem vadd_eq_vadd_iff_sub_eq_vsub {v₁ v₂ : G} {p₁ p₂ : P} : v₁ +ᵥ p₁ = v₂ +ᵥ p₂ ↔ v₂ - v₁ = p₁ -ᵥ p₂ := by rw [vadd_eq_vadd_iff_neg_add_eq_vsub, neg_add_eq_sub] theorem vsub_sub_vsub_comm (p₁ p₂ p₃ p₄ : P) : p₁ -ᵥ p₂ - (p₃ -ᵥ p₄) = p₁ -ᵥ p₃ - (p₂ -ᵥ p₄) := by rw [← vsub_vadd_eq_vsub_sub, vsub_vadd_comm, vsub_vadd_eq_vsub_sub] end comm namespace Prod variable {G G' P P' : Type*} [AddGroup G] [AddGroup G'] [AddTorsor G P] [AddTorsor G' P'] instance instAddTorsor : AddTorsor (G × G') (P × P') where vadd v p := (v.1 +ᵥ p.1, v.2 +ᵥ p.2) zero_vadd _ := Prod.ext (zero_vadd _ _) (zero_vadd _ _) add_vadd _ _ _ := Prod.ext (add_vadd _ _ _) (add_vadd _ _ _) vsub p₁ p₂ := (p₁.1 -ᵥ p₂.1, p₁.2 -ᵥ p₂.2) nonempty := Prod.instNonempty vsub_vadd' _ _ := Prod.ext (vsub_vadd _ _) (vsub_vadd _ _) vadd_vsub' _ _ := Prod.ext (vadd_vsub _ _) (vadd_vsub _ _) -- Porting note: The proofs above used to be shorter: -- zero_vadd p := by simp ⊢ 0 +ᵥ p = p -- add_vadd := by simp [add_vadd] ⊢ ∀ (a : G) (b : G') (a_1 : G) (b_1 : G') (a_2 : P) (b_2 : P'), -- (a + a_1, b + b_1) +ᵥ (a_2, b_2) = (a, b) +ᵥ ((a_1, b_1) +ᵥ (a_2, b_2)) -- vsub_vadd' p₁ p₂ := show (p₁.1 -ᵥ p₂.1 +ᵥ p₂.1, _) = p₁ by simp -- ⊢ (p₁.fst -ᵥ p₂.fst +ᵥ p₂.fst, ((p₁.fst -ᵥ p₂.fst, p₁.snd -ᵥ p₂.snd) +ᵥ p₂).snd) = p₁ -- vadd_vsub' v p := show (v.1 +ᵥ p.1 -ᵥ p.1, v.2 +ᵥ p.2 -ᵥ p.2) = v by simp -- ⊢ (v.fst +ᵥ p.fst -ᵥ p.fst, v.snd) = v @[simp] theorem fst_vadd (v : G × G') (p : P × P') : (v +ᵥ p).1 = v.1 +ᵥ p.1 := rfl @[simp] theorem snd_vadd (v : G × G') (p : P × P') : (v +ᵥ p).2 = v.2 +ᵥ p.2 := rfl @[simp] theorem mk_vadd_mk (v : G) (v' : G') (p : P) (p' : P') : (v, v') +ᵥ (p, p') = (v +ᵥ p, v' +ᵥ p') := rfl @[simp] theorem fst_vsub (p₁ p₂ : P × P') : (p₁ -ᵥ p₂ : G × G').1 = p₁.1 -ᵥ p₂.1 := rfl @[simp] theorem snd_vsub (p₁ p₂ : P × P') : (p₁ -ᵥ p₂ : G × G').2 = p₁.2 -ᵥ p₂.2 := rfl @[simp] theorem mk_vsub_mk (p₁ p₂ : P) (p₁' p₂' : P') : ((p₁, p₁') -ᵥ (p₂, p₂') : G × G') = (p₁ -ᵥ p₂, p₁' -ᵥ p₂') := rfl end Prod namespace Pi universe u v w variable {I : Type u} {fg : I → Type v} [∀ i, AddGroup (fg i)] {fp : I → Type w} open AddAction AddTorsor /-- A product of `AddTorsor`s is an `AddTorsor`. -/ instance instAddTorsor [∀ i, AddTorsor (fg i) (fp i)] : AddTorsor (∀ i, fg i) (∀ i, fp i) where vadd g p i := g i +ᵥ p i zero_vadd p := funext fun i => zero_vadd (fg i) (p i) add_vadd g₁ g₂ p := funext fun i => add_vadd (g₁ i) (g₂ i) (p i) vsub p₁ p₂ i := p₁ i -ᵥ p₂ i vsub_vadd' p₁ p₂ := funext fun i => vsub_vadd (p₁ i) (p₂ i) vadd_vsub' g p := funext fun i => vadd_vsub (g i) (p i) end Pi namespace Equiv variable {G : Type*} {P : Type*} [AddGroup G] [AddTorsor G P] /-- `v ↦ v +ᵥ p` as an equivalence. -/ def vaddConst (p : P) : G ≃ P where toFun v := v +ᵥ p invFun p' := p' -ᵥ p left_inv _ := vadd_vsub _ _ right_inv _ := vsub_vadd _ _ @[simp] theorem coe_vaddConst (p : P) : ⇑(vaddConst p) = fun v => v +ᵥ p := rfl @[simp] theorem coe_vaddConst_symm (p : P) : ⇑(vaddConst p).symm = fun p' => p' -ᵥ p := rfl /-- `p' ↦ p -ᵥ p'` as an equivalence. -/ def constVSub (p : P) : P ≃ G where toFun := (p -ᵥ ·) invFun := (-· +ᵥ p) left_inv p' := by simp right_inv v := by simp [vsub_vadd_eq_vsub_sub] @[simp] lemma coe_constVSub (p : P) : ⇑(constVSub p) = (p -ᵥ ·) := rfl @[simp] theorem coe_constVSub_symm (p : P) : ⇑(constVSub p).symm = fun (v : G) => -v +ᵥ p := rfl variable (P) /-- The permutation given by `p ↦ v +ᵥ p`. -/ def constVAdd (v : G) : Equiv.Perm P where toFun := (v +ᵥ ·) invFun := (-v +ᵥ ·) left_inv p := by simp [vadd_vadd] right_inv p := by simp [vadd_vadd] @[simp] lemma coe_constVAdd (v : G) : ⇑(constVAdd P v) = (v +ᵥ ·) := rfl variable (G) @[simp] theorem constVAdd_zero : constVAdd P (0 : G) = 1 := ext <| zero_vadd G variable {G} @[simp] theorem constVAdd_add (v₁ v₂ : G) : constVAdd P (v₁ + v₂) = constVAdd P v₁ * constVAdd P v₂ := ext <| add_vadd v₁ v₂ /-- `Equiv.constVAdd` as a homomorphism from `Multiplicative G` to `Equiv.perm P` -/ def constVAddHom : Multiplicative G →* Equiv.Perm P where toFun v := constVAdd P (Multiplicative.toAdd v) map_one' := constVAdd_zero G P map_mul' := constVAdd_add P variable {P} -- Porting note: Previous code was: -- open _Root_.Function open Function /-- Point reflection in `x` as a permutation. -/ def pointReflection (x : P) : Perm P := (constVSub x).trans (vaddConst x) theorem pointReflection_apply (x y : P) : pointReflection x y = x -ᵥ y +ᵥ x := rfl @[simp] theorem pointReflection_vsub_left (x y : P) : pointReflection x y -ᵥ x = x -ᵥ y := vadd_vsub .. @[simp] theorem left_vsub_pointReflection (x y : P) : x -ᵥ pointReflection x y = y -ᵥ x := neg_injective <| by simp @[simp] theorem pointReflection_vsub_right (x y : P) : pointReflection x y -ᵥ y = 2 • (x -ᵥ y) := by simp [pointReflection, two_nsmul, vadd_vsub_assoc] @[simp] theorem right_vsub_pointReflection (x y : P) : y -ᵥ pointReflection x y = 2 • (y -ᵥ x) := neg_injective <| by simp [← neg_nsmul] @[simp] theorem pointReflection_symm (x : P) : (pointReflection x).symm = pointReflection x := ext <| by simp [pointReflection] @[simp] theorem pointReflection_self (x : P) : pointReflection x x = x := vsub_vadd _ _ theorem pointReflection_involutive (x : P) : Involutive (pointReflection x : P → P) := fun y => (Equiv.apply_eq_iff_eq_symm_apply _).2 <| by rw [pointReflection_symm] /-- `x` is the only fixed point of `pointReflection x`. This lemma requires `x + x = y + y ↔ x = y`. There is no typeclass to use here, so we add it as an explicit argument. -/ theorem pointReflection_fixed_iff_of_injective_bit0 {x y : P} (h : Injective (2 • · : G → G)) : pointReflection x y = y ↔ y = x := by rw [pointReflection_apply, eq_comm, eq_vadd_iff_vsub_eq, ← neg_vsub_eq_vsub_rev, neg_eq_iff_add_eq_zero, ← two_nsmul, ← nsmul_zero 2, h.eq_iff, vsub_eq_zero_iff_eq, eq_comm] -- Porting note: need this to calm down CI theorem injective_pointReflection_left_of_injective_bit0 {G P : Type*} [AddCommGroup G] [AddTorsor G P] (h : Injective (2 • · : G → G)) (y : P) : Injective fun x : P => pointReflection x y := fun x₁ x₂ (hy : pointReflection x₁ y = pointReflection x₂ y) => by rwa [pointReflection_apply, pointReflection_apply, vadd_eq_vadd_iff_sub_eq_vsub, vsub_sub_vsub_cancel_right, ← neg_vsub_eq_vsub_rev, neg_eq_iff_add_eq_zero, ← two_nsmul, ← nsmul_zero 2, h.eq_iff, vsub_eq_zero_iff_eq] at hy end Equiv theorem AddTorsor.subsingleton_iff (G P : Type*) [AddGroup G] [AddTorsor G P] : Subsingleton G ↔ Subsingleton P := by inhabit P exact (Equiv.vaddConst default).subsingleton_congr
Algebra\AlgebraicCard.lean
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Algebra.Polynomial.Cardinal import Mathlib.RingTheory.Algebraic /-! ### Cardinality of algebraic numbers In this file, we prove variants of the following result: the cardinality of algebraic numbers under an R-algebra is at most `# R[X] * ℵ₀`. Although this can be used to prove that real or complex transcendental numbers exist, a more direct proof is given by `Liouville.is_transcendental`. -/ universe u v open Cardinal Polynomial Set open Cardinal Polynomial namespace Algebraic theorem infinite_of_charZero (R A : Type*) [CommRing R] [IsDomain R] [Ring A] [Algebra R A] [CharZero A] : { x : A | IsAlgebraic R x }.Infinite := infinite_of_injective_forall_mem Nat.cast_injective isAlgebraic_nat theorem aleph0_le_cardinal_mk_of_charZero (R A : Type*) [CommRing R] [IsDomain R] [Ring A] [Algebra R A] [CharZero A] : ℵ₀ ≤ #{ x : A // IsAlgebraic R x } := infinite_iff.1 (Set.infinite_coe_iff.2 <| infinite_of_charZero R A) section lift variable (R : Type u) (A : Type v) [CommRing R] [CommRing A] [IsDomain A] [Algebra R A] [NoZeroSMulDivisors R A] theorem cardinal_mk_lift_le_mul : Cardinal.lift.{u} #{ x : A // IsAlgebraic R x } ≤ Cardinal.lift.{v} #R[X] * ℵ₀ := by rw [← mk_uLift, ← mk_uLift] choose g hg₁ hg₂ using fun x : { x : A | IsAlgebraic R x } => x.coe_prop refine lift_mk_le_lift_mk_mul_of_lift_mk_preimage_le g fun f => ?_ rw [lift_le_aleph0, le_aleph0_iff_set_countable] suffices MapsTo (↑) (g ⁻¹' {f}) (f.rootSet A) from this.countable_of_injOn Subtype.coe_injective.injOn (f.rootSet_finite A).countable rintro x (rfl : g x = f) exact mem_rootSet.2 ⟨hg₁ x, hg₂ x⟩ theorem cardinal_mk_lift_le_max : Cardinal.lift.{u} #{ x : A // IsAlgebraic R x } ≤ max (Cardinal.lift.{v} #R) ℵ₀ := (cardinal_mk_lift_le_mul R A).trans <| (mul_le_mul_right' (lift_le.2 cardinal_mk_le_max) _).trans <| by simp @[simp] theorem cardinal_mk_lift_of_infinite [Infinite R] : Cardinal.lift.{u} #{ x : A // IsAlgebraic R x } = Cardinal.lift.{v} #R := ((cardinal_mk_lift_le_max R A).trans_eq (max_eq_left <| aleph0_le_mk _)).antisymm <| lift_mk_le'.2 ⟨⟨fun x => ⟨algebraMap R A x, isAlgebraic_algebraMap _⟩, fun _ _ h => NoZeroSMulDivisors.algebraMap_injective R A (Subtype.ext_iff.1 h)⟩⟩ variable [Countable R] @[simp] protected theorem countable : Set.Countable { x : A | IsAlgebraic R x } := by rw [← le_aleph0_iff_set_countable, ← lift_le_aleph0] apply (cardinal_mk_lift_le_max R A).trans simp @[simp] theorem cardinal_mk_of_countable_of_charZero [CharZero A] [IsDomain R] : #{ x : A // IsAlgebraic R x } = ℵ₀ := (Algebraic.countable R A).le_aleph0.antisymm (aleph0_le_cardinal_mk_of_charZero R A) end lift section NonLift variable (R A : Type u) [CommRing R] [CommRing A] [IsDomain A] [Algebra R A] [NoZeroSMulDivisors R A] theorem cardinal_mk_le_mul : #{ x : A // IsAlgebraic R x } ≤ #R[X] * ℵ₀ := by rw [← lift_id #_, ← lift_id #R[X]] exact cardinal_mk_lift_le_mul R A theorem cardinal_mk_le_max : #{ x : A // IsAlgebraic R x } ≤ max #R ℵ₀ := by rw [← lift_id #_, ← lift_id #R] exact cardinal_mk_lift_le_max R A @[simp] theorem cardinal_mk_of_infinite [Infinite R] : #{ x : A // IsAlgebraic R x } = #R := lift_inj.1 <| cardinal_mk_lift_of_infinite R A end NonLift end Algebraic
Algebra\Bounds.lean
/- Copyright (c) 2021 Yury G. Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury G. Kudryashov -/ import Mathlib.Algebra.Order.Group.OrderIso import Mathlib.Data.Set.Pointwise.Basic import Mathlib.Order.Bounds.OrderIso import Mathlib.Order.ConditionallyCompleteLattice.Basic import Mathlib.Algebra.Order.Monoid.Unbundled.OrderDual /-! # Upper/lower bounds in ordered monoids and groups In this file we prove a few facts like “`-s` is bounded above iff `s` is bounded below” (`bddAbove_neg`). -/ open Function Set open Pointwise section InvNeg variable {G : Type*} [Group G] [Preorder G] [CovariantClass G G (· * ·) (· ≤ ·)] [CovariantClass G G (swap (· * ·)) (· ≤ ·)] {s : Set G} {a : G} @[to_additive (attr := simp)] theorem bddAbove_inv : BddAbove s⁻¹ ↔ BddBelow s := (OrderIso.inv G).bddAbove_preimage @[to_additive (attr := simp)] theorem bddBelow_inv : BddBelow s⁻¹ ↔ BddAbove s := (OrderIso.inv G).bddBelow_preimage @[to_additive] theorem BddAbove.inv (h : BddAbove s) : BddBelow s⁻¹ := bddBelow_inv.2 h @[to_additive] theorem BddBelow.inv (h : BddBelow s) : BddAbove s⁻¹ := bddAbove_inv.2 h @[to_additive (attr := simp)] theorem isLUB_inv : IsLUB s⁻¹ a ↔ IsGLB s a⁻¹ := (OrderIso.inv G).isLUB_preimage @[to_additive] theorem isLUB_inv' : IsLUB s⁻¹ a⁻¹ ↔ IsGLB s a := (OrderIso.inv G).isLUB_preimage' @[to_additive] theorem IsGLB.inv (h : IsGLB s a) : IsLUB s⁻¹ a⁻¹ := isLUB_inv'.2 h @[to_additive (attr := simp)] theorem isGLB_inv : IsGLB s⁻¹ a ↔ IsLUB s a⁻¹ := (OrderIso.inv G).isGLB_preimage @[to_additive] theorem isGLB_inv' : IsGLB s⁻¹ a⁻¹ ↔ IsLUB s a := (OrderIso.inv G).isGLB_preimage' @[to_additive] theorem IsLUB.inv (h : IsLUB s a) : IsGLB s⁻¹ a⁻¹ := isGLB_inv'.2 h @[to_additive] lemma BddBelow.range_inv {α : Type*} {f : α → G} (hf : BddBelow (range f)) : BddAbove (range (fun x => (f x)⁻¹)) := hf.range_comp (OrderIso.inv G).monotone @[to_additive] lemma BddAbove.range_inv {α : Type*} {f : α → G} (hf : BddAbove (range f)) : BddBelow (range (fun x => (f x)⁻¹)) := BddBelow.range_inv (G := Gᵒᵈ) hf end InvNeg section mul_add variable {M : Type*} [Mul M] [Preorder M] [CovariantClass M M (· * ·) (· ≤ ·)] [CovariantClass M M (swap (· * ·)) (· ≤ ·)] @[to_additive] theorem mul_mem_upperBounds_mul {s t : Set M} {a b : M} (ha : a ∈ upperBounds s) (hb : b ∈ upperBounds t) : a * b ∈ upperBounds (s * t) := forall_image2_iff.2 fun _ hx _ hy => mul_le_mul' (ha hx) (hb hy) @[to_additive] theorem subset_upperBounds_mul (s t : Set M) : upperBounds s * upperBounds t ⊆ upperBounds (s * t) := image2_subset_iff.2 fun _ hx _ hy => mul_mem_upperBounds_mul hx hy @[to_additive] theorem mul_mem_lowerBounds_mul {s t : Set M} {a b : M} (ha : a ∈ lowerBounds s) (hb : b ∈ lowerBounds t) : a * b ∈ lowerBounds (s * t) := mul_mem_upperBounds_mul (M := Mᵒᵈ) ha hb @[to_additive] theorem subset_lowerBounds_mul (s t : Set M) : lowerBounds s * lowerBounds t ⊆ lowerBounds (s * t) := subset_upperBounds_mul (M := Mᵒᵈ) _ _ @[to_additive] theorem BddAbove.mul {s t : Set M} (hs : BddAbove s) (ht : BddAbove t) : BddAbove (s * t) := (Nonempty.mul hs ht).mono (subset_upperBounds_mul s t) @[to_additive] theorem BddBelow.mul {s t : Set M} (hs : BddBelow s) (ht : BddBelow t) : BddBelow (s * t) := (Nonempty.mul hs ht).mono (subset_lowerBounds_mul s t) @[to_additive] lemma BddAbove.range_mul {α : Type*} {f g : α → M} (hf : BddAbove (range f)) (hg : BddAbove (range g)) : BddAbove (range (fun x => f x * g x)) := BddAbove.range_comp (f := fun x => (⟨f x, g x⟩ : M × M)) (bddAbove_range_prod.mpr ⟨hf, hg⟩) (Monotone.mul' monotone_fst monotone_snd) @[to_additive] lemma BddBelow.range_mul {α : Type*} {f g : α → M} (hf : BddBelow (range f)) (hg : BddBelow (range g)) : BddBelow (range (fun x => f x * g x)) := BddAbove.range_mul (M := Mᵒᵈ) hf hg end mul_add section ConditionallyCompleteLattice section Right variable {ι G : Type*} [Group G] [ConditionallyCompleteLattice G] [CovariantClass G G (Function.swap (· * ·)) (· ≤ ·)] [Nonempty ι] {f : ι → G} @[to_additive] theorem ciSup_mul (hf : BddAbove (range f)) (a : G) : (⨆ i, f i) * a = ⨆ i, f i * a := (OrderIso.mulRight a).map_ciSup hf @[to_additive] theorem ciSup_div (hf : BddAbove (range f)) (a : G) : (⨆ i, f i) / a = ⨆ i, f i / a := by simp only [div_eq_mul_inv, ciSup_mul hf] @[to_additive] theorem ciInf_mul (hf : BddBelow (range f)) (a : G) : (⨅ i, f i) * a = ⨅ i, f i * a := (OrderIso.mulRight a).map_ciInf hf @[to_additive] theorem ciInf_div (hf : BddBelow (range f)) (a : G) : (⨅ i, f i) / a = ⨅ i, f i / a := by simp only [div_eq_mul_inv, ciInf_mul hf] end Right section Left variable {ι : Sort*} {G : Type*} [Group G] [ConditionallyCompleteLattice G] [CovariantClass G G (· * ·) (· ≤ ·)] [Nonempty ι] {f : ι → G} @[to_additive] theorem mul_ciSup (hf : BddAbove (range f)) (a : G) : (a * ⨆ i, f i) = ⨆ i, a * f i := (OrderIso.mulLeft a).map_ciSup hf @[to_additive] theorem mul_ciInf (hf : BddBelow (range f)) (a : G) : (a * ⨅ i, f i) = ⨅ i, a * f i := (OrderIso.mulLeft a).map_ciInf hf end Left end ConditionallyCompleteLattice
Algebra\CubicDiscriminant.lean
/- Copyright (c) 2022 David Kurniadi Angdinata. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Kurniadi Angdinata -/ import Mathlib.Algebra.Polynomial.Splits /-! # Cubics and discriminants This file defines cubic polynomials over a semiring and their discriminants over a splitting field. ## Main definitions * `Cubic`: the structure representing a cubic polynomial. * `Cubic.disc`: the discriminant of a cubic polynomial. ## Main statements * `Cubic.disc_ne_zero_iff_roots_nodup`: the cubic discriminant is not equal to zero if and only if the cubic has no duplicate roots. ## References * https://en.wikipedia.org/wiki/Cubic_equation * https://en.wikipedia.org/wiki/Discriminant ## Tags cubic, discriminant, polynomial, root -/ noncomputable section /-- The structure representing a cubic polynomial. -/ @[ext] structure Cubic (R : Type*) where (a b c d : R) namespace Cubic open Cubic Polynomial open Polynomial variable {R S F K : Type*} instance [Inhabited R] : Inhabited (Cubic R) := ⟨⟨default, default, default, default⟩⟩ instance [Zero R] : Zero (Cubic R) := ⟨⟨0, 0, 0, 0⟩⟩ section Basic variable {P Q : Cubic R} {a b c d a' b' c' d' : R} [Semiring R] /-- Convert a cubic polynomial to a polynomial. -/ def toPoly (P : Cubic R) : R[X] := C P.a * X ^ 3 + C P.b * X ^ 2 + C P.c * X + C P.d theorem C_mul_prod_X_sub_C_eq [CommRing S] {w x y z : S} : C w * (X - C x) * (X - C y) * (X - C z) = toPoly ⟨w, w * -(x + y + z), w * (x * y + x * z + y * z), w * -(x * y * z)⟩ := by simp only [toPoly, C_neg, C_add, C_mul] ring1 theorem prod_X_sub_C_eq [CommRing S] {x y z : S} : (X - C x) * (X - C y) * (X - C z) = toPoly ⟨1, -(x + y + z), x * y + x * z + y * z, -(x * y * z)⟩ := by rw [← one_mul <| X - C x, ← C_1, C_mul_prod_X_sub_C_eq, one_mul, one_mul, one_mul] /-! ### Coefficients -/ section Coeff private theorem coeffs : (∀ n > 3, P.toPoly.coeff n = 0) ∧ P.toPoly.coeff 3 = P.a ∧ P.toPoly.coeff 2 = P.b ∧ P.toPoly.coeff 1 = P.c ∧ P.toPoly.coeff 0 = P.d := by simp only [toPoly, coeff_add, coeff_C, coeff_C_mul_X, coeff_C_mul_X_pow] norm_num intro n hn repeat' rw [if_neg] any_goals linarith only [hn] repeat' rw [zero_add] @[simp] theorem coeff_eq_zero {n : ℕ} (hn : 3 < n) : P.toPoly.coeff n = 0 := coeffs.1 n hn @[simp] theorem coeff_eq_a : P.toPoly.coeff 3 = P.a := coeffs.2.1 @[simp] theorem coeff_eq_b : P.toPoly.coeff 2 = P.b := coeffs.2.2.1 @[simp] theorem coeff_eq_c : P.toPoly.coeff 1 = P.c := coeffs.2.2.2.1 @[simp] theorem coeff_eq_d : P.toPoly.coeff 0 = P.d := coeffs.2.2.2.2 theorem a_of_eq (h : P.toPoly = Q.toPoly) : P.a = Q.a := by rw [← coeff_eq_a, h, coeff_eq_a] theorem b_of_eq (h : P.toPoly = Q.toPoly) : P.b = Q.b := by rw [← coeff_eq_b, h, coeff_eq_b] theorem c_of_eq (h : P.toPoly = Q.toPoly) : P.c = Q.c := by rw [← coeff_eq_c, h, coeff_eq_c] theorem d_of_eq (h : P.toPoly = Q.toPoly) : P.d = Q.d := by rw [← coeff_eq_d, h, coeff_eq_d] theorem toPoly_injective (P Q : Cubic R) : P.toPoly = Q.toPoly ↔ P = Q := ⟨fun h ↦ Cubic.ext (a_of_eq h) (b_of_eq h) (c_of_eq h) (d_of_eq h), congr_arg toPoly⟩ theorem of_a_eq_zero (ha : P.a = 0) : P.toPoly = C P.b * X ^ 2 + C P.c * X + C P.d := by rw [toPoly, ha, C_0, zero_mul, zero_add] theorem of_a_eq_zero' : toPoly ⟨0, b, c, d⟩ = C b * X ^ 2 + C c * X + C d := of_a_eq_zero rfl theorem of_b_eq_zero (ha : P.a = 0) (hb : P.b = 0) : P.toPoly = C P.c * X + C P.d := by rw [of_a_eq_zero ha, hb, C_0, zero_mul, zero_add] theorem of_b_eq_zero' : toPoly ⟨0, 0, c, d⟩ = C c * X + C d := of_b_eq_zero rfl rfl theorem of_c_eq_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 0) : P.toPoly = C P.d := by rw [of_b_eq_zero ha hb, hc, C_0, zero_mul, zero_add] theorem of_c_eq_zero' : toPoly ⟨0, 0, 0, d⟩ = C d := of_c_eq_zero rfl rfl rfl theorem of_d_eq_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 0) (hd : P.d = 0) : P.toPoly = 0 := by rw [of_c_eq_zero ha hb hc, hd, C_0] theorem of_d_eq_zero' : (⟨0, 0, 0, 0⟩ : Cubic R).toPoly = 0 := of_d_eq_zero rfl rfl rfl rfl theorem zero : (0 : Cubic R).toPoly = 0 := of_d_eq_zero' theorem toPoly_eq_zero_iff (P : Cubic R) : P.toPoly = 0 ↔ P = 0 := by rw [← zero, toPoly_injective] private theorem ne_zero (h0 : P.a ≠ 0 ∨ P.b ≠ 0 ∨ P.c ≠ 0 ∨ P.d ≠ 0) : P.toPoly ≠ 0 := by contrapose! h0 rw [(toPoly_eq_zero_iff P).mp h0] exact ⟨rfl, rfl, rfl, rfl⟩ theorem ne_zero_of_a_ne_zero (ha : P.a ≠ 0) : P.toPoly ≠ 0 := (or_imp.mp ne_zero).1 ha theorem ne_zero_of_b_ne_zero (hb : P.b ≠ 0) : P.toPoly ≠ 0 := (or_imp.mp (or_imp.mp ne_zero).2).1 hb theorem ne_zero_of_c_ne_zero (hc : P.c ≠ 0) : P.toPoly ≠ 0 := (or_imp.mp (or_imp.mp (or_imp.mp ne_zero).2).2).1 hc theorem ne_zero_of_d_ne_zero (hd : P.d ≠ 0) : P.toPoly ≠ 0 := (or_imp.mp (or_imp.mp (or_imp.mp ne_zero).2).2).2 hd @[simp] theorem leadingCoeff_of_a_ne_zero (ha : P.a ≠ 0) : P.toPoly.leadingCoeff = P.a := leadingCoeff_cubic ha @[simp] theorem leadingCoeff_of_a_ne_zero' (ha : a ≠ 0) : (toPoly ⟨a, b, c, d⟩).leadingCoeff = a := leadingCoeff_of_a_ne_zero ha @[simp] theorem leadingCoeff_of_b_ne_zero (ha : P.a = 0) (hb : P.b ≠ 0) : P.toPoly.leadingCoeff = P.b := by rw [of_a_eq_zero ha, leadingCoeff_quadratic hb] @[simp] theorem leadingCoeff_of_b_ne_zero' (hb : b ≠ 0) : (toPoly ⟨0, b, c, d⟩).leadingCoeff = b := leadingCoeff_of_b_ne_zero rfl hb @[simp] theorem leadingCoeff_of_c_ne_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c ≠ 0) : P.toPoly.leadingCoeff = P.c := by rw [of_b_eq_zero ha hb, leadingCoeff_linear hc] @[simp] theorem leadingCoeff_of_c_ne_zero' (hc : c ≠ 0) : (toPoly ⟨0, 0, c, d⟩).leadingCoeff = c := leadingCoeff_of_c_ne_zero rfl rfl hc @[simp] theorem leadingCoeff_of_c_eq_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 0) : P.toPoly.leadingCoeff = P.d := by rw [of_c_eq_zero ha hb hc, leadingCoeff_C] -- @[simp] -- porting note (#10618): simp can prove this theorem leadingCoeff_of_c_eq_zero' : (toPoly ⟨0, 0, 0, d⟩).leadingCoeff = d := leadingCoeff_of_c_eq_zero rfl rfl rfl theorem monic_of_a_eq_one (ha : P.a = 1) : P.toPoly.Monic := by nontriviality R rw [Monic, leadingCoeff_of_a_ne_zero (ha ▸ one_ne_zero), ha] theorem monic_of_a_eq_one' : (toPoly ⟨1, b, c, d⟩).Monic := monic_of_a_eq_one rfl theorem monic_of_b_eq_one (ha : P.a = 0) (hb : P.b = 1) : P.toPoly.Monic := by nontriviality R rw [Monic, leadingCoeff_of_b_ne_zero ha (hb ▸ one_ne_zero), hb] theorem monic_of_b_eq_one' : (toPoly ⟨0, 1, c, d⟩).Monic := monic_of_b_eq_one rfl rfl theorem monic_of_c_eq_one (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 1) : P.toPoly.Monic := by nontriviality R rw [Monic, leadingCoeff_of_c_ne_zero ha hb (hc ▸ one_ne_zero), hc] theorem monic_of_c_eq_one' : (toPoly ⟨0, 0, 1, d⟩).Monic := monic_of_c_eq_one rfl rfl rfl theorem monic_of_d_eq_one (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 0) (hd : P.d = 1) : P.toPoly.Monic := by rw [Monic, leadingCoeff_of_c_eq_zero ha hb hc, hd] theorem monic_of_d_eq_one' : (toPoly ⟨0, 0, 0, 1⟩).Monic := monic_of_d_eq_one rfl rfl rfl rfl end Coeff /-! ### Degrees -/ section Degree /-- The equivalence between cubic polynomials and polynomials of degree at most three. -/ @[simps] def equiv : Cubic R ≃ { p : R[X] // p.degree ≤ 3 } where toFun P := ⟨P.toPoly, degree_cubic_le⟩ invFun f := ⟨coeff f 3, coeff f 2, coeff f 1, coeff f 0⟩ left_inv P := by ext <;> simp only [Subtype.coe_mk, coeffs] right_inv f := by -- Porting note: Added `simp only [Nat.zero_eq, Nat.succ_eq_add_one] <;> ring_nf` -- There's probably a better way to do this. ext (_ | _ | _ | _ | n) <;> simp only [Nat.zero_eq, Nat.succ_eq_add_one] <;> ring_nf <;> try simp only [coeffs] have h3 : 3 < 4 + n := by linarith only rw [coeff_eq_zero h3, (degree_le_iff_coeff_zero (f : R[X]) 3).mp f.2 _ <| WithBot.coe_lt_coe.mpr (by exact h3)] @[simp] theorem degree_of_a_ne_zero (ha : P.a ≠ 0) : P.toPoly.degree = 3 := degree_cubic ha @[simp] theorem degree_of_a_ne_zero' (ha : a ≠ 0) : (toPoly ⟨a, b, c, d⟩).degree = 3 := degree_of_a_ne_zero ha theorem degree_of_a_eq_zero (ha : P.a = 0) : P.toPoly.degree ≤ 2 := by simpa only [of_a_eq_zero ha] using degree_quadratic_le theorem degree_of_a_eq_zero' : (toPoly ⟨0, b, c, d⟩).degree ≤ 2 := degree_of_a_eq_zero rfl @[simp] theorem degree_of_b_ne_zero (ha : P.a = 0) (hb : P.b ≠ 0) : P.toPoly.degree = 2 := by rw [of_a_eq_zero ha, degree_quadratic hb] @[simp] theorem degree_of_b_ne_zero' (hb : b ≠ 0) : (toPoly ⟨0, b, c, d⟩).degree = 2 := degree_of_b_ne_zero rfl hb theorem degree_of_b_eq_zero (ha : P.a = 0) (hb : P.b = 0) : P.toPoly.degree ≤ 1 := by simpa only [of_b_eq_zero ha hb] using degree_linear_le theorem degree_of_b_eq_zero' : (toPoly ⟨0, 0, c, d⟩).degree ≤ 1 := degree_of_b_eq_zero rfl rfl @[simp] theorem degree_of_c_ne_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c ≠ 0) : P.toPoly.degree = 1 := by rw [of_b_eq_zero ha hb, degree_linear hc] @[simp] theorem degree_of_c_ne_zero' (hc : c ≠ 0) : (toPoly ⟨0, 0, c, d⟩).degree = 1 := degree_of_c_ne_zero rfl rfl hc theorem degree_of_c_eq_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 0) : P.toPoly.degree ≤ 0 := by simpa only [of_c_eq_zero ha hb hc] using degree_C_le theorem degree_of_c_eq_zero' : (toPoly ⟨0, 0, 0, d⟩).degree ≤ 0 := degree_of_c_eq_zero rfl rfl rfl @[simp] theorem degree_of_d_ne_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 0) (hd : P.d ≠ 0) : P.toPoly.degree = 0 := by rw [of_c_eq_zero ha hb hc, degree_C hd] @[simp] theorem degree_of_d_ne_zero' (hd : d ≠ 0) : (toPoly ⟨0, 0, 0, d⟩).degree = 0 := degree_of_d_ne_zero rfl rfl rfl hd @[simp] theorem degree_of_d_eq_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 0) (hd : P.d = 0) : P.toPoly.degree = ⊥ := by rw [of_d_eq_zero ha hb hc hd, degree_zero] -- @[simp] -- porting note (#10618): simp can prove this theorem degree_of_d_eq_zero' : (⟨0, 0, 0, 0⟩ : Cubic R).toPoly.degree = ⊥ := degree_of_d_eq_zero rfl rfl rfl rfl @[simp] theorem degree_of_zero : (0 : Cubic R).toPoly.degree = ⊥ := degree_of_d_eq_zero' @[simp] theorem natDegree_of_a_ne_zero (ha : P.a ≠ 0) : P.toPoly.natDegree = 3 := natDegree_cubic ha @[simp] theorem natDegree_of_a_ne_zero' (ha : a ≠ 0) : (toPoly ⟨a, b, c, d⟩).natDegree = 3 := natDegree_of_a_ne_zero ha theorem natDegree_of_a_eq_zero (ha : P.a = 0) : P.toPoly.natDegree ≤ 2 := by simpa only [of_a_eq_zero ha] using natDegree_quadratic_le theorem natDegree_of_a_eq_zero' : (toPoly ⟨0, b, c, d⟩).natDegree ≤ 2 := natDegree_of_a_eq_zero rfl @[simp] theorem natDegree_of_b_ne_zero (ha : P.a = 0) (hb : P.b ≠ 0) : P.toPoly.natDegree = 2 := by rw [of_a_eq_zero ha, natDegree_quadratic hb] @[simp] theorem natDegree_of_b_ne_zero' (hb : b ≠ 0) : (toPoly ⟨0, b, c, d⟩).natDegree = 2 := natDegree_of_b_ne_zero rfl hb theorem natDegree_of_b_eq_zero (ha : P.a = 0) (hb : P.b = 0) : P.toPoly.natDegree ≤ 1 := by simpa only [of_b_eq_zero ha hb] using natDegree_linear_le theorem natDegree_of_b_eq_zero' : (toPoly ⟨0, 0, c, d⟩).natDegree ≤ 1 := natDegree_of_b_eq_zero rfl rfl @[simp] theorem natDegree_of_c_ne_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c ≠ 0) : P.toPoly.natDegree = 1 := by rw [of_b_eq_zero ha hb, natDegree_linear hc] @[simp] theorem natDegree_of_c_ne_zero' (hc : c ≠ 0) : (toPoly ⟨0, 0, c, d⟩).natDegree = 1 := natDegree_of_c_ne_zero rfl rfl hc @[simp] theorem natDegree_of_c_eq_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 0) : P.toPoly.natDegree = 0 := by rw [of_c_eq_zero ha hb hc, natDegree_C] -- @[simp] -- porting note (#10618): simp can prove this theorem natDegree_of_c_eq_zero' : (toPoly ⟨0, 0, 0, d⟩).natDegree = 0 := natDegree_of_c_eq_zero rfl rfl rfl @[simp] theorem natDegree_of_zero : (0 : Cubic R).toPoly.natDegree = 0 := natDegree_of_c_eq_zero' end Degree /-! ### Map across a homomorphism -/ section Map variable [Semiring S] {φ : R →+* S} /-- Map a cubic polynomial across a semiring homomorphism. -/ def map (φ : R →+* S) (P : Cubic R) : Cubic S := ⟨φ P.a, φ P.b, φ P.c, φ P.d⟩ theorem map_toPoly : (map φ P).toPoly = Polynomial.map φ P.toPoly := by simp only [map, toPoly, map_C, map_X, Polynomial.map_add, Polynomial.map_mul, Polynomial.map_pow] end Map end Basic section Roots open Multiset /-! ### Roots over an extension -/ section Extension variable {P : Cubic R} [CommRing R] [CommRing S] {φ : R →+* S} /-- The roots of a cubic polynomial. -/ def roots [IsDomain R] (P : Cubic R) : Multiset R := P.toPoly.roots theorem map_roots [IsDomain S] : (map φ P).roots = (Polynomial.map φ P.toPoly).roots := by rw [roots, map_toPoly] theorem mem_roots_iff [IsDomain R] (h0 : P.toPoly ≠ 0) (x : R) : x ∈ P.roots ↔ P.a * x ^ 3 + P.b * x ^ 2 + P.c * x + P.d = 0 := by rw [roots, mem_roots h0, IsRoot, toPoly] simp only [eval_C, eval_X, eval_add, eval_mul, eval_pow] theorem card_roots_le [IsDomain R] [DecidableEq R] : P.roots.toFinset.card ≤ 3 := by apply (toFinset_card_le P.toPoly.roots).trans by_cases hP : P.toPoly = 0 · exact (card_roots' P.toPoly).trans (by rw [hP, natDegree_zero]; exact zero_le 3) · exact WithBot.coe_le_coe.1 ((card_roots hP).trans degree_cubic_le) end Extension variable {P : Cubic F} [Field F] [Field K] {φ : F →+* K} {x y z : K} /-! ### Roots over a splitting field -/ section Split theorem splits_iff_card_roots (ha : P.a ≠ 0) : Splits φ P.toPoly ↔ Multiset.card (map φ P).roots = 3 := by replace ha : (map φ P).a ≠ 0 := (_root_.map_ne_zero φ).mpr ha nth_rw 1 [← RingHom.id_comp φ] rw [roots, ← splits_map_iff, ← map_toPoly, Polynomial.splits_iff_card_roots, ← ((degree_eq_iff_natDegree_eq <| ne_zero_of_a_ne_zero ha).1 <| degree_of_a_ne_zero ha : _ = 3)] theorem splits_iff_roots_eq_three (ha : P.a ≠ 0) : Splits φ P.toPoly ↔ ∃ x y z : K, (map φ P).roots = {x, y, z} := by rw [splits_iff_card_roots ha, card_eq_three] theorem eq_prod_three_roots (ha : P.a ≠ 0) (h3 : (map φ P).roots = {x, y, z}) : (map φ P).toPoly = C (φ P.a) * (X - C x) * (X - C y) * (X - C z) := by rw [map_toPoly, eq_prod_roots_of_splits <| (splits_iff_roots_eq_three ha).mpr <| Exists.intro x <| Exists.intro y <| Exists.intro z h3, leadingCoeff_of_a_ne_zero ha, ← map_roots, h3] change C (φ P.a) * ((X - C x) ::ₘ (X - C y) ::ₘ {X - C z}).prod = _ rw [prod_cons, prod_cons, prod_singleton, mul_assoc, mul_assoc] theorem eq_sum_three_roots (ha : P.a ≠ 0) (h3 : (map φ P).roots = {x, y, z}) : map φ P = ⟨φ P.a, φ P.a * -(x + y + z), φ P.a * (x * y + x * z + y * z), φ P.a * -(x * y * z)⟩ := by apply_fun @toPoly _ _ · rw [eq_prod_three_roots ha h3, C_mul_prod_X_sub_C_eq] · exact fun P Q ↦ (toPoly_injective P Q).mp theorem b_eq_three_roots (ha : P.a ≠ 0) (h3 : (map φ P).roots = {x, y, z}) : φ P.b = φ P.a * -(x + y + z) := by injection eq_sum_three_roots ha h3 theorem c_eq_three_roots (ha : P.a ≠ 0) (h3 : (map φ P).roots = {x, y, z}) : φ P.c = φ P.a * (x * y + x * z + y * z) := by injection eq_sum_three_roots ha h3 theorem d_eq_three_roots (ha : P.a ≠ 0) (h3 : (map φ P).roots = {x, y, z}) : φ P.d = φ P.a * -(x * y * z) := by injection eq_sum_three_roots ha h3 end Split /-! ### Discriminant over a splitting field -/ section Discriminant /-- The discriminant of a cubic polynomial. -/ def disc {R : Type*} [Ring R] (P : Cubic R) : R := P.b ^ 2 * P.c ^ 2 - 4 * P.a * P.c ^ 3 - 4 * P.b ^ 3 * P.d - 27 * P.a ^ 2 * P.d ^ 2 + 18 * P.a * P.b * P.c * P.d theorem disc_eq_prod_three_roots (ha : P.a ≠ 0) (h3 : (map φ P).roots = {x, y, z}) : φ P.disc = (φ P.a * φ P.a * (x - y) * (x - z) * (y - z)) ^ 2 := by simp only [disc, RingHom.map_add, RingHom.map_sub, RingHom.map_mul, map_pow] -- Porting note: Replaced `simp only [RingHom.map_one, map_bit0, map_bit1]` with f4, f18, f27 have f4 : φ 4 = 4 := map_natCast φ 4 have f18 : φ 18 = 18 := map_natCast φ 18 have f27 : φ 27 = 27 := map_natCast φ 27 rw [f4, f18, f27, b_eq_three_roots ha h3, c_eq_three_roots ha h3, d_eq_three_roots ha h3] ring1 theorem disc_ne_zero_iff_roots_ne (ha : P.a ≠ 0) (h3 : (map φ P).roots = {x, y, z}) : P.disc ≠ 0 ↔ x ≠ y ∧ x ≠ z ∧ y ≠ z := by rw [← _root_.map_ne_zero φ, disc_eq_prod_three_roots ha h3, pow_two] simp_rw [mul_ne_zero_iff, sub_ne_zero, _root_.map_ne_zero, and_self_iff, and_iff_right ha, and_assoc] theorem disc_ne_zero_iff_roots_nodup (ha : P.a ≠ 0) (h3 : (map φ P).roots = {x, y, z}) : P.disc ≠ 0 ↔ (map φ P).roots.Nodup := by rw [disc_ne_zero_iff_roots_ne ha h3, h3] change _ ↔ (x ::ₘ y ::ₘ {z}).Nodup rw [nodup_cons, nodup_cons, mem_cons, mem_singleton, mem_singleton] simp only [nodup_singleton] tauto theorem card_roots_of_disc_ne_zero [DecidableEq K] (ha : P.a ≠ 0) (h3 : (map φ P).roots = {x, y, z}) (hd : P.disc ≠ 0) : (map φ P).roots.toFinset.card = 3 := by rw [toFinset_card_of_nodup <| (disc_ne_zero_iff_roots_nodup ha h3).mp hd, ← splits_iff_card_roots ha, splits_iff_roots_eq_three ha] exact ⟨x, ⟨y, ⟨z, h3⟩⟩⟩ end Discriminant end Roots end Cubic
Algebra\DirectLimit.lean
/- Copyright (c) 2019 Kenny Lau, Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Jujian Zhang -/ import Mathlib.Data.Finset.Order import Mathlib.Algebra.DirectSum.Module import Mathlib.RingTheory.FreeCommRing import Mathlib.RingTheory.Ideal.Maps import Mathlib.RingTheory.Ideal.Quotient import Mathlib.Tactic.SuppressCompilation /-! # Direct limit of modules, abelian groups, rings, and fields. See Atiyah-Macdonald PP.32-33, Matsumura PP.269-270 Generalizes the notion of "union", or "gluing", of incomparable modules over the same ring, or incomparable abelian groups, or rings, or fields. It is constructed as a quotient of the free module (for the module case) or quotient of the free commutative ring (for the ring case) instead of a quotient of the disjoint union so as to make the operations (addition etc.) "computable". ## Main definitions * `DirectedSystem f` * `Module.DirectLimit G f` * `AddCommGroup.DirectLimit G f` * `Ring.DirectLimit G f` -/ suppress_compilation universe u v v' v'' w u₁ open Submodule variable {R : Type u} [Ring R] variable {ι : Type v} variable [Preorder ι] variable (G : ι → Type w) /-- A directed system is a functor from a category (directed poset) to another category. -/ class DirectedSystem (f : ∀ i j, i ≤ j → G i → G j) : Prop where map_self' : ∀ i x h, f i i h x = x map_map' : ∀ {i j k} (hij hjk x), f j k hjk (f i j hij x) = f i k (le_trans hij hjk) x section variable {G} variable (f : ∀ i j, i ≤ j → G i → G j) [DirectedSystem G fun i j h => f i j h] theorem DirectedSystem.map_self i x h : f i i h x = x := DirectedSystem.map_self' i x h theorem DirectedSystem.map_map {i j k} (hij hjk x) : f j k hjk (f i j hij x) = f i k (le_trans hij hjk) x := DirectedSystem.map_map' hij hjk x end namespace Module variable [∀ i, AddCommGroup (G i)] [∀ i, Module R (G i)] variable {G} variable (f : ∀ i j, i ≤ j → G i →ₗ[R] G j) /-- A copy of `DirectedSystem.map_self` specialized to linear maps, as otherwise the `fun i j h ↦ f i j h` can confuse the simplifier. -/ nonrec theorem DirectedSystem.map_self [DirectedSystem G fun i j h => f i j h] (i x h) : f i i h x = x := DirectedSystem.map_self (fun i j h => f i j h) i x h /-- A copy of `DirectedSystem.map_map` specialized to linear maps, as otherwise the `fun i j h ↦ f i j h` can confuse the simplifier. -/ nonrec theorem DirectedSystem.map_map [DirectedSystem G fun i j h => f i j h] {i j k} (hij hjk x) : f j k hjk (f i j hij x) = f i k (le_trans hij hjk) x := DirectedSystem.map_map (fun i j h => f i j h) hij hjk x variable (G) /-- The direct limit of a directed system is the modules glued together along the maps. -/ def DirectLimit [DecidableEq ι] : Type max v w := DirectSum ι G ⧸ (span R <| { a | ∃ (i j : _) (H : i ≤ j) (x : _), DirectSum.lof R ι G i x - DirectSum.lof R ι G j (f i j H x) = a }) namespace DirectLimit section Basic variable [DecidableEq ι] instance addCommGroup : AddCommGroup (DirectLimit G f) := Quotient.addCommGroup _ instance module : Module R (DirectLimit G f) := Quotient.module _ instance inhabited : Inhabited (DirectLimit G f) := ⟨0⟩ instance unique [IsEmpty ι] : Unique (DirectLimit G f) := inferInstanceAs <| Unique (Quotient _) variable (R ι) /-- The canonical map from a component to the direct limit. -/ def of (i) : G i →ₗ[R] DirectLimit G f := (mkQ _).comp <| DirectSum.lof R ι G i variable {R ι G f} @[simp] theorem of_f {i j hij x} : of R ι G f j (f i j hij x) = of R ι G f i x := Eq.symm <| (Submodule.Quotient.eq _).2 <| subset_span ⟨i, j, hij, x, rfl⟩ /-- Every element of the direct limit corresponds to some element in some component of the directed system. -/ theorem exists_of [Nonempty ι] [IsDirected ι (· ≤ ·)] (z : DirectLimit G f) : ∃ i x, of R ι G f i x = z := Nonempty.elim (by infer_instance) fun ind : ι => Quotient.inductionOn' z fun z => DirectSum.induction_on z ⟨ind, 0, LinearMap.map_zero _⟩ (fun i x => ⟨i, x, rfl⟩) fun p q ⟨i, x, ihx⟩ ⟨j, y, ihy⟩ => let ⟨k, hik, hjk⟩ := exists_ge_ge i j ⟨k, f i k hik x + f j k hjk y, by rw [LinearMap.map_add, of_f, of_f, ihx, ihy] rfl ⟩ @[elab_as_elim] protected theorem induction_on [Nonempty ι] [IsDirected ι (· ≤ ·)] {C : DirectLimit G f → Prop} (z : DirectLimit G f) (ih : ∀ i x, C (of R ι G f i x)) : C z := let ⟨i, x, h⟩ := exists_of z h ▸ ih i x variable {P : Type u₁} [AddCommGroup P] [Module R P] (g : ∀ i, G i →ₗ[R] P) variable (Hg : ∀ i j hij x, g j (f i j hij x) = g i x) variable (R ι G f) /-- The universal property of the direct limit: maps from the components to another module that respect the directed system structure (i.e. make some diagram commute) give rise to a unique map out of the direct limit. -/ def lift : DirectLimit G f →ₗ[R] P := liftQ _ (DirectSum.toModule R ι P g) (span_le.2 fun a ⟨i, j, hij, x, hx⟩ => by rw [← hx, SetLike.mem_coe, LinearMap.sub_mem_ker_iff, DirectSum.toModule_lof, DirectSum.toModule_lof, Hg]) variable {R ι G f} theorem lift_of {i} (x) : lift R ι G f g Hg (of R ι G f i x) = g i x := DirectSum.toModule_lof R _ _ theorem lift_unique [IsDirected ι (· ≤ ·)] (F : DirectLimit G f →ₗ[R] P) (x) : F x = lift R ι G f (fun i => F.comp <| of R ι G f i) (fun i j hij x => by rw [LinearMap.comp_apply, of_f]; rfl) x := by cases isEmpty_or_nonempty ι · simp_rw [Subsingleton.elim x 0, _root_.map_zero] · exact DirectLimit.induction_on x fun i x => by rw [lift_of]; rfl lemma lift_injective [IsDirected ι (· ≤ ·)] (injective : ∀ i, Function.Injective <| g i) : Function.Injective (lift R ι G f g Hg) := by cases isEmpty_or_nonempty ι · apply Function.injective_of_subsingleton simp_rw [injective_iff_map_eq_zero] at injective ⊢ intros z hz induction' z using DirectLimit.induction_on with _ g rw [lift_of] at hz rw [injective _ g hz, _root_.map_zero] section functorial variable {G' : ι → Type v'} [∀ i, AddCommGroup (G' i)] [∀ i, Module R (G' i)] variable {f' : ∀ i j, i ≤ j → G' i →ₗ[R] G' j} variable {G'' : ι → Type v''} [∀ i, AddCommGroup (G'' i)] [∀ i, Module R (G'' i)] variable {f'' : ∀ i j, i ≤ j → G'' i →ₗ[R] G'' j} /-- Consider direct limits `lim G` and `lim G'` with direct system `f` and `f'` respectively, any family of linear maps `gᵢ : Gᵢ ⟶ G'ᵢ` such that `g ∘ f = f' ∘ g` induces a linear map `lim G ⟶ lim G'`. -/ def map (g : (i : ι) → G i →ₗ[R] G' i) (hg : ∀ i j h, g j ∘ₗ f i j h = f' i j h ∘ₗ g i) : DirectLimit G f →ₗ[R] DirectLimit G' f' := lift _ _ _ _ (fun i ↦ of _ _ _ _ _ ∘ₗ g i) fun i j h g ↦ by cases isEmpty_or_nonempty ι · subsingleton · have eq1 := LinearMap.congr_fun (hg i j h) g simp only [LinearMap.coe_comp, Function.comp_apply] at eq1 ⊢ rw [eq1, of_f] @[simp] lemma map_apply_of (g : (i : ι) → G i →ₗ[R] G' i) (hg : ∀ i j h, g j ∘ₗ f i j h = f' i j h ∘ₗ g i) {i : ι} (x : G i) : map g hg (of _ _ G f _ x) = of R ι G' f' i (g i x) := lift_of _ _ _ @[simp] lemma map_id [IsDirected ι (· ≤ ·)] : map (fun i ↦ LinearMap.id) (fun _ _ _ ↦ rfl) = LinearMap.id (R := R) (M := DirectLimit G f) := DFunLike.ext _ _ fun x ↦ (isEmpty_or_nonempty ι).elim (by subsingleton) fun _ ↦ x.induction_on fun i g ↦ by simp lemma map_comp [IsDirected ι (· ≤ ·)] (g₁ : (i : ι) → G i →ₗ[R] G' i) (g₂ : (i : ι) → G' i →ₗ[R] G'' i) (hg₁ : ∀ i j h, g₁ j ∘ₗ f i j h = f' i j h ∘ₗ g₁ i) (hg₂ : ∀ i j h, g₂ j ∘ₗ f' i j h = f'' i j h ∘ₗ g₂ i) : (map g₂ hg₂ ∘ₗ map g₁ hg₁ : DirectLimit G f →ₗ[R] DirectLimit G'' f'') = (map (fun i ↦ g₂ i ∘ₗ g₁ i) fun i j h ↦ by rw [LinearMap.comp_assoc, hg₁ i, ← LinearMap.comp_assoc, hg₂ i, LinearMap.comp_assoc] : DirectLimit G f →ₗ[R] DirectLimit G'' f'') := DFunLike.ext _ _ fun x ↦ (isEmpty_or_nonempty ι).elim (by subsingleton) fun _ ↦ x.induction_on fun i g ↦ by simp open LinearEquiv LinearMap in /-- Consider direct limits `lim G` and `lim G'` with direct system `f` and `f'` respectively, any family of equivalences `eᵢ : Gᵢ ≅ G'ᵢ` such that `e ∘ f = f' ∘ e` induces an equivalence `lim G ≅ lim G'`. -/ def congr [IsDirected ι (· ≤ ·)] (e : (i : ι) → G i ≃ₗ[R] G' i) (he : ∀ i j h, e j ∘ₗ f i j h = f' i j h ∘ₗ e i) : DirectLimit G f ≃ₗ[R] DirectLimit G' f' := LinearEquiv.ofLinear (map (e ·) he) (map (fun i ↦ (e i).symm) fun i j h ↦ by rw [toLinearMap_symm_comp_eq, ← comp_assoc, he i, comp_assoc, comp_coe, symm_trans_self, refl_toLinearMap, comp_id]) (by simp [map_comp]) (by simp [map_comp]) lemma congr_apply_of [IsDirected ι (· ≤ ·)] (e : (i : ι) → G i ≃ₗ[R] G' i) (he : ∀ i j h, e j ∘ₗ f i j h = f' i j h ∘ₗ e i) {i : ι} (g : G i) : congr e he (of _ _ G f i g) = of _ _ G' f' i (e i g) := map_apply_of _ he _ open LinearEquiv LinearMap in lemma congr_symm_apply_of [IsDirected ι (· ≤ ·)] (e : (i : ι) → G i ≃ₗ[R] G' i) (he : ∀ i j h, e j ∘ₗ f i j h = f' i j h ∘ₗ e i) {i : ι} (g : G' i) : (congr e he).symm (of _ _ G' f' i g) = of _ _ G f i ((e i).symm g) := map_apply_of _ (fun i j h ↦ by rw [toLinearMap_symm_comp_eq, ← comp_assoc, he i, comp_assoc, comp_coe, symm_trans_self, refl_toLinearMap, comp_id]) _ end functorial end Basic section Totalize open Classical in /-- `totalize G f i j` is a linear map from `G i` to `G j`, for *every* `i` and `j`. If `i ≤ j`, then it is the map `f i j` that comes with the directed system `G`, and otherwise it is the zero map. -/ noncomputable def totalize (i j) : G i →ₗ[R] G j := if h : i ≤ j then f i j h else 0 variable {G f} theorem totalize_of_le {i j} (h : i ≤ j) : totalize G f i j = f i j h := dif_pos h theorem totalize_of_not_le {i j} (h : ¬i ≤ j) : totalize G f i j = 0 := dif_neg h end Totalize variable [DecidableEq ι] [DirectedSystem G fun i j h => f i j h] variable {G f} theorem toModule_totalize_of_le [∀ i (k : G i), Decidable (k ≠ 0)] {x : DirectSum ι G} {i j : ι} (hij : i ≤ j) (hx : ∀ k ∈ x.support, k ≤ i) : DirectSum.toModule R ι (G j) (fun k => totalize G f k j) x = f i j hij (DirectSum.toModule R ι (G i) (fun k => totalize G f k i) x) := by rw [← @DFinsupp.sum_single ι G _ _ _ x] unfold DFinsupp.sum simp only [map_sum] refine Finset.sum_congr rfl fun k hk => ?_ rw [DirectSum.single_eq_lof R k (x k), DirectSum.toModule_lof, DirectSum.toModule_lof, totalize_of_le (hx k hk), totalize_of_le (le_trans (hx k hk) hij), DirectedSystem.map_map] theorem of.zero_exact_aux [∀ i (k : G i), Decidable (k ≠ 0)] [Nonempty ι] [IsDirected ι (· ≤ ·)] {x : DirectSum ι G} (H : (Submodule.Quotient.mk x : DirectLimit G f) = (0 : DirectLimit G f)) : ∃ j, (∀ k ∈ x.support, k ≤ j) ∧ DirectSum.toModule R ι (G j) (fun i => totalize G f i j) x = (0 : G j) := Nonempty.elim (by infer_instance) fun ind : ι => span_induction ((Quotient.mk_eq_zero _).1 H) (fun x ⟨i, j, hij, y, hxy⟩ => let ⟨k, hik, hjk⟩ := exists_ge_ge i j ⟨k, by subst hxy constructor · intro i0 hi0 rw [DFinsupp.mem_support_iff, DirectSum.sub_apply, ← DirectSum.single_eq_lof, ← DirectSum.single_eq_lof, DFinsupp.single_apply, DFinsupp.single_apply] at hi0 split_ifs at hi0 with hi hj hj · rwa [hi] at hik · rwa [hi] at hik · rwa [hj] at hjk exfalso apply hi0 rw [sub_zero] simp [LinearMap.map_sub, totalize_of_le, hik, hjk, DirectedSystem.map_map, DirectSum.apply_eq_component, DirectSum.component.of]⟩) ⟨ind, fun _ h => (Finset.not_mem_empty _ h).elim, LinearMap.map_zero _⟩ (fun x y ⟨i, hi, hxi⟩ ⟨j, hj, hyj⟩ => let ⟨k, hik, hjk⟩ := exists_ge_ge i j ⟨k, fun l hl => (Finset.mem_union.1 (DFinsupp.support_add hl)).elim (fun hl => le_trans (hi _ hl) hik) fun hl => le_trans (hj _ hl) hjk, by -- Porting note: this had been -- simp [LinearMap.map_add, hxi, hyj, toModule_totalize_of_le hik hi, -- toModule_totalize_of_le hjk hj] simp only [map_add] rw [toModule_totalize_of_le hik hi, toModule_totalize_of_le hjk hj] simp [hxi, hyj]⟩) fun a x ⟨i, hi, hxi⟩ => ⟨i, fun k hk => hi k (DirectSum.support_smul _ _ hk), by simp [LinearMap.map_smul, hxi]⟩ open Classical in /-- A component that corresponds to zero in the direct limit is already zero in some bigger module in the directed system. -/ theorem of.zero_exact [IsDirected ι (· ≤ ·)] {i x} (H : of R ι G f i x = 0) : ∃ j hij, f i j hij x = (0 : G j) := haveI : Nonempty ι := ⟨i⟩ let ⟨j, hj, hxj⟩ := of.zero_exact_aux H if hx0 : x = 0 then ⟨i, le_rfl, by simp [hx0]⟩ else have hij : i ≤ j := hj _ <| by simp [DirectSum.apply_eq_component, hx0] ⟨j, hij, by -- Porting note: this had been -- simpa [totalize_of_le hij] using hxj simp only [DirectSum.toModule_lof] at hxj rwa [totalize_of_le hij] at hxj⟩ end DirectLimit end Module namespace AddCommGroup variable [∀ i, AddCommGroup (G i)] /-- The direct limit of a directed system is the abelian groups glued together along the maps. -/ def DirectLimit [DecidableEq ι] (f : ∀ i j, i ≤ j → G i →+ G j) : Type _ := @Module.DirectLimit ℤ _ ι _ G _ _ (fun i j hij => (f i j hij).toIntLinearMap) _ namespace DirectLimit variable (f : ∀ i j, i ≤ j → G i →+ G j) protected theorem directedSystem [h : DirectedSystem G fun i j h => f i j h] : DirectedSystem G fun i j hij => (f i j hij).toIntLinearMap := h attribute [local instance] DirectLimit.directedSystem variable [DecidableEq ι] instance : AddCommGroup (DirectLimit G f) := Module.DirectLimit.addCommGroup G fun i j hij => (f i j hij).toIntLinearMap instance : Inhabited (DirectLimit G f) := ⟨0⟩ instance [IsEmpty ι] : Unique (DirectLimit G f) := Module.DirectLimit.unique _ _ /-- The canonical map from a component to the direct limit. -/ def of (i) : G i →+ DirectLimit G f := (Module.DirectLimit.of ℤ ι G (fun i j hij => (f i j hij).toIntLinearMap) i).toAddMonoidHom variable {G f} @[simp] theorem of_f {i j} (hij) (x) : of G f j (f i j hij x) = of G f i x := Module.DirectLimit.of_f @[elab_as_elim] protected theorem induction_on [Nonempty ι] [IsDirected ι (· ≤ ·)] {C : DirectLimit G f → Prop} (z : DirectLimit G f) (ih : ∀ i x, C (of G f i x)) : C z := Module.DirectLimit.induction_on z ih /-- A component that corresponds to zero in the direct limit is already zero in some bigger module in the directed system. -/ theorem of.zero_exact [IsDirected ι (· ≤ ·)] [DirectedSystem G fun i j h => f i j h] (i x) (h : of G f i x = 0) : ∃ j hij, f i j hij x = 0 := Module.DirectLimit.of.zero_exact h variable (P : Type u₁) [AddCommGroup P] variable (g : ∀ i, G i →+ P) variable (Hg : ∀ i j hij x, g j (f i j hij x) = g i x) variable (G f) /-- The universal property of the direct limit: maps from the components to another abelian group that respect the directed system structure (i.e. make some diagram commute) give rise to a unique map out of the direct limit. -/ def lift : DirectLimit G f →+ P := (Module.DirectLimit.lift ℤ ι G (fun i j hij => (f i j hij).toIntLinearMap) (fun i => (g i).toIntLinearMap) Hg).toAddMonoidHom variable {G f} @[simp] theorem lift_of (i x) : lift G f P g Hg (of G f i x) = g i x := Module.DirectLimit.lift_of -- Note: had to make these arguments explicit #8386 (f := (fun i j hij => (f i j hij).toIntLinearMap)) (fun i => (g i).toIntLinearMap) Hg x theorem lift_unique [IsDirected ι (· ≤ ·)] (F : DirectLimit G f →+ P) (x) : F x = lift G f P (fun i => F.comp (of G f i)) (fun i j hij x => by simp) x := by cases isEmpty_or_nonempty ι · simp_rw [Subsingleton.elim x 0, _root_.map_zero] · exact DirectLimit.induction_on x fun i x => by simp lemma lift_injective [IsDirected ι (· ≤ ·)] (injective : ∀ i, Function.Injective <| g i) : Function.Injective (lift G f P g Hg) := by cases isEmpty_or_nonempty ι · apply Function.injective_of_subsingleton simp_rw [injective_iff_map_eq_zero] at injective ⊢ intros z hz induction' z using DirectLimit.induction_on with _ g rw [lift_of] at hz rw [injective _ g hz, _root_.map_zero] section functorial variable {G' : ι → Type v'} [∀ i, AddCommGroup (G' i)] variable {f' : ∀ i j, i ≤ j → G' i →+ G' j} variable {G'' : ι → Type v''} [∀ i, AddCommGroup (G'' i)] variable {f'' : ∀ i j, i ≤ j → G'' i →+ G'' j} /-- Consider direct limits `lim G` and `lim G'` with direct system `f` and `f'` respectively, any family of group homomorphisms `gᵢ : Gᵢ ⟶ G'ᵢ` such that `g ∘ f = f' ∘ g` induces a group homomorphism `lim G ⟶ lim G'`. -/ def map (g : (i : ι) → G i →+ G' i) (hg : ∀ i j h, (g j).comp (f i j h) = (f' i j h).comp (g i)) : DirectLimit G f →+ DirectLimit G' f' := lift _ _ _ (fun i ↦ (of _ _ _).comp (g i)) fun i j h g ↦ by cases isEmpty_or_nonempty ι · subsingleton · have eq1 := DFunLike.congr_fun (hg i j h) g simp only [AddMonoidHom.coe_comp, Function.comp_apply] at eq1 ⊢ rw [eq1, of_f] @[simp] lemma map_apply_of (g : (i : ι) → G i →+ G' i) (hg : ∀ i j h, (g j).comp (f i j h) = (f' i j h).comp (g i)) {i : ι} (x : G i) : map g hg (of G f _ x) = of G' f' i (g i x) := lift_of _ _ _ _ _ @[simp] lemma map_id [IsDirected ι (· ≤ ·)] : map (fun i ↦ AddMonoidHom.id _) (fun _ _ _ ↦ rfl) = AddMonoidHom.id (DirectLimit G f) := DFunLike.ext _ _ fun x ↦ (isEmpty_or_nonempty ι).elim (by subsingleton) fun _ ↦ x.induction_on fun i g ↦ by simp lemma map_comp [IsDirected ι (· ≤ ·)] (g₁ : (i : ι) → G i →+ G' i) (g₂ : (i : ι) → G' i →+ G'' i) (hg₁ : ∀ i j h, (g₁ j).comp (f i j h) = (f' i j h).comp (g₁ i)) (hg₂ : ∀ i j h, (g₂ j).comp (f' i j h) = (f'' i j h).comp (g₂ i)) : ((map g₂ hg₂).comp (map g₁ hg₁) : DirectLimit G f →+ DirectLimit G'' f'') = (map (fun i ↦ (g₂ i).comp (g₁ i)) fun i j h ↦ by rw [AddMonoidHom.comp_assoc, hg₁ i, ← AddMonoidHom.comp_assoc, hg₂ i, AddMonoidHom.comp_assoc] : DirectLimit G f →+ DirectLimit G'' f'') := DFunLike.ext _ _ fun x ↦ (isEmpty_or_nonempty ι).elim (by subsingleton) fun _ ↦ x.induction_on fun i g ↦ by simp /-- Consider direct limits `lim G` and `lim G'` with direct system `f` and `f'` respectively, any family of equivalences `eᵢ : Gᵢ ≅ G'ᵢ` such that `e ∘ f = f' ∘ e` induces an equivalence `lim G ⟶ lim G'`. -/ def congr [IsDirected ι (· ≤ ·)] (e : (i : ι) → G i ≃+ G' i) (he : ∀ i j h, (e j).toAddMonoidHom.comp (f i j h) = (f' i j h).comp (e i)) : DirectLimit G f ≃+ DirectLimit G' f' := AddMonoidHom.toAddEquiv (map (e ·) he) (map (fun i ↦ (e i).symm) fun i j h ↦ DFunLike.ext _ _ fun x ↦ by have eq1 := DFunLike.congr_fun (he i j h) ((e i).symm x) simp only [AddMonoidHom.coe_comp, AddEquiv.coe_toAddMonoidHom, Function.comp_apply, AddMonoidHom.coe_coe, AddEquiv.apply_symm_apply] at eq1 ⊢ simp [← eq1, of_f]) (by rw [map_comp]; convert map_id <;> aesop) (by rw [map_comp]; convert map_id <;> aesop) lemma congr_apply_of [IsDirected ι (· ≤ ·)] (e : (i : ι) → G i ≃+ G' i) (he : ∀ i j h, (e j).toAddMonoidHom.comp (f i j h) = (f' i j h).comp (e i)) {i : ι} (g : G i) : congr e he (of G f i g) = of G' f' i (e i g) := map_apply_of _ he _ lemma congr_symm_apply_of [IsDirected ι (· ≤ ·)] (e : (i : ι) → G i ≃+ G' i) (he : ∀ i j h, (e j).toAddMonoidHom.comp (f i j h) = (f' i j h).comp (e i)) {i : ι} (g : G' i) : (congr e he).symm (of G' f' i g) = of G f i ((e i).symm g) := by simp only [congr, AddMonoidHom.toAddEquiv_symm_apply, map_apply_of, AddMonoidHom.coe_coe] end functorial end DirectLimit end AddCommGroup namespace Ring variable [∀ i, CommRing (G i)] section variable (f : ∀ i j, i ≤ j → G i → G j) open FreeCommRing /-- The direct limit of a directed system is the rings glued together along the maps. -/ def DirectLimit : Type max v w := FreeCommRing (Σi, G i) ⧸ Ideal.span { a | (∃ i j H x, of (⟨j, f i j H x⟩ : Σi, G i) - of ⟨i, x⟩ = a) ∨ (∃ i, of (⟨i, 1⟩ : Σi, G i) - 1 = a) ∨ (∃ i x y, of (⟨i, x + y⟩ : Σi, G i) - (of ⟨i, x⟩ + of ⟨i, y⟩) = a) ∨ ∃ i x y, of (⟨i, x * y⟩ : Σi, G i) - of ⟨i, x⟩ * of ⟨i, y⟩ = a } namespace DirectLimit instance commRing : CommRing (DirectLimit G f) := Ideal.Quotient.commRing _ instance ring : Ring (DirectLimit G f) := CommRing.toRing -- Porting note: Added a `Zero` instance to get rid of `0` errors. instance zero : Zero (DirectLimit G f) := by unfold DirectLimit exact ⟨0⟩ instance : Inhabited (DirectLimit G f) := ⟨0⟩ /-- The canonical map from a component to the direct limit. -/ nonrec def of (i) : G i →+* DirectLimit G f := RingHom.mk' { toFun := fun x => Ideal.Quotient.mk _ (of (⟨i, x⟩ : Σi, G i)) map_one' := Ideal.Quotient.eq.2 <| subset_span <| Or.inr <| Or.inl ⟨i, rfl⟩ map_mul' := fun x y => Ideal.Quotient.eq.2 <| subset_span <| Or.inr <| Or.inr <| Or.inr ⟨i, x, y, rfl⟩ } fun x y => Ideal.Quotient.eq.2 <| subset_span <| Or.inr <| Or.inr <| Or.inl ⟨i, x, y, rfl⟩ variable {G f} -- Porting note: the @[simp] attribute would trigger a `simpNF` linter error: -- failed to synthesize CommMonoidWithZero (Ring.DirectLimit G f) theorem of_f {i j} (hij) (x) : of G f j (f i j hij x) = of G f i x := Ideal.Quotient.eq.2 <| subset_span <| Or.inl ⟨i, j, hij, x, rfl⟩ /-- Every element of the direct limit corresponds to some element in some component of the directed system. -/ theorem exists_of [Nonempty ι] [IsDirected ι (· ≤ ·)] (z : DirectLimit G f) : ∃ i x, of G f i x = z := Nonempty.elim (by infer_instance) fun ind : ι => Quotient.inductionOn' z fun x => FreeAbelianGroup.induction_on x ⟨ind, 0, (of _ _ ind).map_zero⟩ (fun s => Multiset.induction_on s ⟨ind, 1, (of _ _ ind).map_one⟩ fun a s ih => let ⟨i, x⟩ := a let ⟨j, y, hs⟩ := ih let ⟨k, hik, hjk⟩ := exists_ge_ge i j ⟨k, f i k hik x * f j k hjk y, by rw [(of G f k).map_mul, of_f, of_f, hs] /- porting note: In Lean3, from here, this was `by refl`. I have added the lemma `FreeCommRing.of_cons` to fix this proof. -/ apply congr_arg Quotient.mk'' symm apply FreeCommRing.of_cons⟩) (fun s ⟨i, x, ih⟩ => ⟨i, -x, by rw [(of G _ _).map_neg, ih] rfl⟩) fun p q ⟨i, x, ihx⟩ ⟨j, y, ihy⟩ => let ⟨k, hik, hjk⟩ := exists_ge_ge i j ⟨k, f i k hik x + f j k hjk y, by rw [(of _ _ _).map_add, of_f, of_f, ihx, ihy]; rfl⟩ section open Polynomial variable {f' : ∀ i j, i ≤ j → G i →+* G j} nonrec theorem Polynomial.exists_of [Nonempty ι] [IsDirected ι (· ≤ ·)] (q : Polynomial (DirectLimit G fun i j h => f' i j h)) : ∃ i p, Polynomial.map (of G (fun i j h => f' i j h) i) p = q := Polynomial.induction_on q (fun z => let ⟨i, x, h⟩ := exists_of z ⟨i, C x, by rw [map_C, h]⟩) (fun q₁ q₂ ⟨i₁, p₁, ih₁⟩ ⟨i₂, p₂, ih₂⟩ => let ⟨i, h1, h2⟩ := exists_ge_ge i₁ i₂ ⟨i, p₁.map (f' i₁ i h1) + p₂.map (f' i₂ i h2), by rw [Polynomial.map_add, map_map, map_map, ← ih₁, ← ih₂] congr 2 <;> ext x <;> simp_rw [RingHom.comp_apply, of_f]⟩) fun n z _ => let ⟨i, x, h⟩ := exists_of z ⟨i, C x * X ^ (n + 1), by rw [Polynomial.map_mul, map_C, h, Polynomial.map_pow, map_X]⟩ end @[elab_as_elim] theorem induction_on [Nonempty ι] [IsDirected ι (· ≤ ·)] {C : DirectLimit G f → Prop} (z : DirectLimit G f) (ih : ∀ i x, C (of G f i x)) : C z := let ⟨i, x, hx⟩ := exists_of z hx ▸ ih i x section OfZeroExact variable (f' : ∀ i j, i ≤ j → G i →+* G j) variable [DirectedSystem G fun i j h => f' i j h] variable (G f) theorem of.zero_exact_aux2 {x : FreeCommRing (Σi, G i)} {s t} [DecidablePred (· ∈ s)] [DecidablePred (· ∈ t)] (hxs : IsSupported x s) {j k} (hj : ∀ z : Σi, G i, z ∈ s → z.1 ≤ j) (hk : ∀ z : Σi, G i, z ∈ t → z.1 ≤ k) (hjk : j ≤ k) (hst : s ⊆ t) : f' j k hjk (lift (fun ix : s => f' ix.1.1 j (hj ix ix.2) ix.1.2) (restriction s x)) = lift (fun ix : t => f' ix.1.1 k (hk ix ix.2) ix.1.2) (restriction t x) := by refine Subring.InClosure.recOn hxs ?_ ?_ ?_ ?_ · rw [(restriction _).map_one, (FreeCommRing.lift _).map_one, (f' j k hjk).map_one, (restriction _).map_one, (FreeCommRing.lift _).map_one] · -- Porting note: Lean 3 had `(FreeCommRing.lift _).map_neg` but I needed to replace it with -- `RingHom.map_neg` to get the rewrite to compile rw [(restriction _).map_neg, (restriction _).map_one, RingHom.map_neg, (FreeCommRing.lift _).map_one, (f' j k hjk).map_neg, (f' j k hjk).map_one, -- Porting note: similarly here I give strictly less information (restriction _).map_neg, (restriction _).map_one, RingHom.map_neg, (FreeCommRing.lift _).map_one] · rintro _ ⟨p, hps, rfl⟩ n ih rw [(restriction _).map_mul, (FreeCommRing.lift _).map_mul, (f' j k hjk).map_mul, ih, (restriction _).map_mul, (FreeCommRing.lift _).map_mul, restriction_of, dif_pos hps, lift_of, restriction_of, dif_pos (hst hps), lift_of] dsimp only -- Porting note: Lean 3 could get away with far fewer hints for inputs in the line below have := DirectedSystem.map_map (fun i j h => f' i j h) (hj p hps) hjk rw [this] · rintro x y ihx ihy rw [(restriction _).map_add, (FreeCommRing.lift _).map_add, (f' j k hjk).map_add, ihx, ihy, (restriction _).map_add, (FreeCommRing.lift _).map_add] variable {G f f'} theorem of.zero_exact_aux [Nonempty ι] [IsDirected ι (· ≤ ·)] {x : FreeCommRing (Σi, G i)} (H : (Ideal.Quotient.mk _ x : DirectLimit G fun i j h => f' i j h) = (0 : DirectLimit G fun i j h => f' i j h)) : ∃ j s, ∃ H : ∀ k : Σ i, G i, k ∈ s → k.1 ≤ j, IsSupported x s ∧ ∀ [DecidablePred (· ∈ s)], lift (fun ix : s => f' ix.1.1 j (H ix ix.2) ix.1.2) (restriction s x) = (0 : G j) := by have := Classical.decEq refine span_induction (Ideal.Quotient.eq_zero_iff_mem.1 H) ?_ ?_ ?_ ?_ · rintro x (⟨i, j, hij, x, rfl⟩ | ⟨i, rfl⟩ | ⟨i, x, y, rfl⟩ | ⟨i, x, y, rfl⟩) · refine ⟨j, {⟨i, x⟩, ⟨j, f' i j hij x⟩}, ?_, isSupported_sub (isSupported_of.2 <| Or.inr (Set.mem_singleton _)) (isSupported_of.2 <| Or.inl rfl), fun [_] => ?_⟩ · rintro k (rfl | ⟨rfl | _⟩) · exact hij · rfl · rw [(restriction _).map_sub, RingHom.map_sub, restriction_of, dif_pos, restriction_of, dif_pos, lift_of, lift_of] on_goal 1 => dsimp only have := DirectedSystem.map_map (fun i j h => f' i j h) hij (le_refl j : j ≤ j) rw [this] · exact sub_self _ exacts [Or.inl rfl, Or.inr rfl] · refine ⟨i, {⟨i, 1⟩}, ?_, isSupported_sub (isSupported_of.2 (Set.mem_singleton _)) isSupported_one, fun [_] => ?_⟩ · rintro k (rfl | h) rfl -- Porting note: the Lean3 proof contained `rw [restriction_of]`, but this -- lemma does not seem to work here · rw [RingHom.map_sub, RingHom.map_sub] erw [lift_of, dif_pos rfl, RingHom.map_one, lift_of, RingHom.map_one, sub_self] · refine ⟨i, {⟨i, x + y⟩, ⟨i, x⟩, ⟨i, y⟩}, ?_, isSupported_sub (isSupported_of.2 <| Or.inl rfl) (isSupported_add (isSupported_of.2 <| Or.inr <| Or.inl rfl) (isSupported_of.2 <| Or.inr <| Or.inr (Set.mem_singleton _))), fun [_] => ?_⟩ · rintro k (rfl | ⟨rfl | ⟨rfl | hk⟩⟩) <;> rfl · rw [(restriction _).map_sub, (restriction _).map_add, restriction_of, restriction_of, restriction_of, dif_pos, dif_pos, dif_pos, RingHom.map_sub, (FreeCommRing.lift _).map_add, lift_of, lift_of, lift_of] on_goal 1 => dsimp only rw [(f' i i _).map_add] · exact sub_self _ all_goals tauto · refine ⟨i, {⟨i, x * y⟩, ⟨i, x⟩, ⟨i, y⟩}, ?_, isSupported_sub (isSupported_of.2 <| Or.inl rfl) (isSupported_mul (isSupported_of.2 <| Or.inr <| Or.inl rfl) (isSupported_of.2 <| Or.inr <| Or.inr (Set.mem_singleton _))), fun [_] => ?_⟩ · rintro k (rfl | ⟨rfl | ⟨rfl | hk⟩⟩) <;> rfl · rw [(restriction _).map_sub, (restriction _).map_mul, restriction_of, restriction_of, restriction_of, dif_pos, dif_pos, dif_pos, RingHom.map_sub, (FreeCommRing.lift _).map_mul, lift_of, lift_of, lift_of] on_goal 1 => dsimp only rw [(f' i i _).map_mul] · exact sub_self _ all_goals tauto -- Porting note: was --exacts [sub_self _, Or.inl rfl, Or.inr (Or.inr rfl), Or.inr (Or.inl rfl)] · refine Nonempty.elim (by infer_instance) fun ind : ι => ?_ refine ⟨ind, ∅, fun _ => False.elim, isSupported_zero, fun [_] => ?_⟩ -- Porting note: `RingHom.map_zero` was `(restriction _).map_zero` rw [RingHom.map_zero, (FreeCommRing.lift _).map_zero] · intro x y ⟨i, s, hi, hxs, ihs⟩ ⟨j, t, hj, hyt, iht⟩ obtain ⟨k, hik, hjk⟩ := exists_ge_ge i j have : ∀ z : Σi, G i, z ∈ s ∪ t → z.1 ≤ k := by rintro z (hz | hz) · exact le_trans (hi z hz) hik · exact le_trans (hj z hz) hjk refine ⟨k, s ∪ t, this, isSupported_add (isSupported_upwards hxs Set.subset_union_left) (isSupported_upwards hyt Set.subset_union_right), fun [_] => ?_⟩ -- Porting note: was `(restriction _).map_add` classical rw [RingHom.map_add, (FreeCommRing.lift _).map_add, ← of.zero_exact_aux2 G f' hxs hi this hik Set.subset_union_left, ← of.zero_exact_aux2 G f' hyt hj this hjk Set.subset_union_right, ihs, (f' i k hik).map_zero, iht, (f' j k hjk).map_zero, zero_add] · rintro x y ⟨j, t, hj, hyt, iht⟩ rw [smul_eq_mul] rcases exists_finset_support x with ⟨s, hxs⟩ rcases (s.image Sigma.fst).exists_le with ⟨i, hi⟩ obtain ⟨k, hik, hjk⟩ := exists_ge_ge i j have : ∀ z : Σi, G i, z ∈ ↑s ∪ t → z.1 ≤ k := by rintro z (hz | hz) exacts [(hi z.1 <| Finset.mem_image.2 ⟨z, hz, rfl⟩).trans hik, (hj z hz).trans hjk] refine ⟨k, ↑s ∪ t, this, isSupported_mul (isSupported_upwards hxs Set.subset_union_left) (isSupported_upwards hyt Set.subset_union_right), fun [_] => ?_⟩ -- Porting note: RingHom.map_mul was `(restriction _).map_mul` classical rw [RingHom.map_mul, (FreeCommRing.lift _).map_mul, ← of.zero_exact_aux2 G f' hyt hj this hjk Set.subset_union_right, iht, (f' j k hjk).map_zero, mul_zero] /-- A component that corresponds to zero in the direct limit is already zero in some bigger module in the directed system. -/ theorem of.zero_exact [IsDirected ι (· ≤ ·)] {i x} (hix : of G (fun i j h => f' i j h) i x = 0) : ∃ (j : _) (hij : i ≤ j), f' i j hij x = 0 := by haveI : Nonempty ι := ⟨i⟩ let ⟨j, s, H, hxs, hx⟩ := of.zero_exact_aux hix have hixs : (⟨i, x⟩ : Σi, G i) ∈ s := isSupported_of.1 hxs classical specialize @hx _ exact ⟨j, H ⟨i, x⟩ hixs, by classical rw [restriction_of, dif_pos hixs, lift_of] at hx; exact hx⟩ end OfZeroExact variable (f' : ∀ i j, i ≤ j → G i →+* G j) /-- If the maps in the directed system are injective, then the canonical maps from the components to the direct limits are injective. -/ theorem of_injective [IsDirected ι (· ≤ ·)] [DirectedSystem G fun i j h => f' i j h] (hf : ∀ i j hij, Function.Injective (f' i j hij)) (i) : Function.Injective (of G (fun i j h => f' i j h) i) := by suffices ∀ x, of G (fun i j h => f' i j h) i x = 0 → x = 0 by intro x y hxy rw [← sub_eq_zero] apply this rw [(of G _ i).map_sub, hxy, sub_self] intro x hx rcases of.zero_exact hx with ⟨j, hij, hfx⟩ apply hf i j hij rw [hfx, (f' i j hij).map_zero] variable (P : Type u₁) [CommRing P] variable (g : ∀ i, G i →+* P) variable (Hg : ∀ i j hij x, g j (f i j hij x) = g i x) open FreeCommRing variable (G f) /-- The universal property of the direct limit: maps from the components to another ring that respect the directed system structure (i.e. make some diagram commute) give rise to a unique map out of the direct limit. -/ def lift : DirectLimit G f →+* P := Ideal.Quotient.lift _ (FreeCommRing.lift fun x : Σi, G i => g x.1 x.2) (by suffices Ideal.span _ ≤ Ideal.comap (FreeCommRing.lift fun x : Σi : ι, G i => g x.fst x.snd) ⊥ by intro x hx exact (mem_bot P).1 (this hx) rw [Ideal.span_le] intro x hx rw [SetLike.mem_coe, Ideal.mem_comap, mem_bot] rcases hx with (⟨i, j, hij, x, rfl⟩ | ⟨i, rfl⟩ | ⟨i, x, y, rfl⟩ | ⟨i, x, y, rfl⟩) <;> simp only [RingHom.map_sub, lift_of, Hg, RingHom.map_one, RingHom.map_add, RingHom.map_mul, (g i).map_one, (g i).map_add, (g i).map_mul, sub_self]) variable {G f} -- Porting note: the @[simp] attribute would trigger a `simpNF` linter error: -- failed to synthesize CommMonoidWithZero (Ring.DirectLimit G f) theorem lift_of (i x) : lift G f P g Hg (of G f i x) = g i x := FreeCommRing.lift_of _ _ theorem lift_unique [IsDirected ι (· ≤ ·)] (F : DirectLimit G f →+* P) (x) : F x = lift G f P (fun i => F.comp <| of G f i) (fun i j hij x => by simp [of_f]) x := by cases isEmpty_or_nonempty ι · apply DFunLike.congr_fun apply Ideal.Quotient.ringHom_ext refine FreeCommRing.hom_ext fun ⟨i, _⟩ ↦ ?_ exact IsEmpty.elim' inferInstance i · exact DirectLimit.induction_on x fun i x => by simp [lift_of] lemma lift_injective [Nonempty ι] [IsDirected ι (· ≤ ·)] (injective : ∀ i, Function.Injective <| g i) : Function.Injective (lift G f P g Hg) := by simp_rw [injective_iff_map_eq_zero] at injective ⊢ intros z hz induction' z using DirectLimit.induction_on with _ g rw [lift_of] at hz rw [injective _ g hz, _root_.map_zero] section functorial variable {f : ∀ i j, i ≤ j → G i →+* G j} variable {G' : ι → Type v'} [∀ i, CommRing (G' i)] variable {f' : ∀ i j, i ≤ j → G' i →+* G' j} variable {G'' : ι → Type v''} [∀ i, CommRing (G'' i)] variable {f'' : ∀ i j, i ≤ j → G'' i →+* G'' j} /-- Consider direct limits `lim G` and `lim G'` with direct system `f` and `f'` respectively, any family of ring homomorphisms `gᵢ : Gᵢ ⟶ G'ᵢ` such that `g ∘ f = f' ∘ g` induces a ring homomorphism `lim G ⟶ lim G'`. -/ def map (g : (i : ι) → G i →+* G' i) (hg : ∀ i j h, (g j).comp (f i j h) = (f' i j h).comp (g i)) : DirectLimit G (fun _ _ h ↦ f _ _ h) →+* DirectLimit G' fun _ _ h ↦ f' _ _ h := lift _ _ _ (fun i ↦ (of _ _ _).comp (g i)) fun i j h g ↦ by have eq1 := DFunLike.congr_fun (hg i j h) g simp only [RingHom.coe_comp, Function.comp_apply] at eq1 ⊢ rw [eq1, of_f] @[simp] lemma map_apply_of (g : (i : ι) → G i →+* G' i) (hg : ∀ i j h, (g j).comp (f i j h) = (f' i j h).comp (g i)) {i : ι} (x : G i) : map g hg (of G _ _ x) = of G' (fun _ _ h ↦ f' _ _ h) i (g i x) := lift_of _ _ _ _ _ variable [Nonempty ι] @[simp] lemma map_id [IsDirected ι (· ≤ ·)] : map (fun i ↦ RingHom.id _) (fun _ _ _ ↦ rfl) = RingHom.id (DirectLimit G fun _ _ h ↦ f _ _ h) := DFunLike.ext _ _ fun x ↦ x.induction_on fun i g ↦ by simp lemma map_comp [IsDirected ι (· ≤ ·)] (g₁ : (i : ι) → G i →+* G' i) (g₂ : (i : ι) → G' i →+* G'' i) (hg₁ : ∀ i j h, (g₁ j).comp (f i j h) = (f' i j h).comp (g₁ i)) (hg₂ : ∀ i j h, (g₂ j).comp (f' i j h) = (f'' i j h).comp (g₂ i)) : ((map g₂ hg₂).comp (map g₁ hg₁) : DirectLimit G (fun _ _ h ↦ f _ _ h) →+* DirectLimit G'' fun _ _ h ↦ f'' _ _ h) = (map (fun i ↦ (g₂ i).comp (g₁ i)) fun i j h ↦ by rw [RingHom.comp_assoc, hg₁ i, ← RingHom.comp_assoc, hg₂ i, RingHom.comp_assoc] : DirectLimit G (fun _ _ h ↦ f _ _ h) →+* DirectLimit G'' fun _ _ h ↦ f'' _ _ h) := DFunLike.ext _ _ fun x ↦ x.induction_on fun i g ↦ by simp /-- Consider direct limits `lim G` and `lim G'` with direct system `f` and `f'` respectively, any family of equivalences `eᵢ : Gᵢ ≅ G'ᵢ` such that `e ∘ f = f' ∘ e` induces an equivalence `lim G ⟶ lim G'`. -/ def congr [IsDirected ι (· ≤ ·)] (e : (i : ι) → G i ≃+* G' i) (he : ∀ i j h, (e j).toRingHom.comp (f i j h) = (f' i j h).comp (e i)) : DirectLimit G (fun _ _ h ↦ f _ _ h) ≃+* DirectLimit G' fun _ _ h ↦ f' _ _ h := RingEquiv.ofHomInv (map (e ·) he) (map (fun i ↦ (e i).symm) fun i j h ↦ DFunLike.ext _ _ fun x ↦ by have eq1 := DFunLike.congr_fun (he i j h) ((e i).symm x) simp only [RingEquiv.toRingHom_eq_coe, RingHom.coe_comp, RingHom.coe_coe, Function.comp_apply, RingEquiv.apply_symm_apply] at eq1 ⊢ simp [← eq1, of_f]) (DFunLike.ext _ _ fun x ↦ x.induction_on <| by simp) (DFunLike.ext _ _ fun x ↦ x.induction_on <| by simp) lemma congr_apply_of [IsDirected ι (· ≤ ·)] (e : (i : ι) → G i ≃+* G' i) (he : ∀ i j h, (e j).toRingHom.comp (f i j h) = (f' i j h).comp (e i)) {i : ι} (g : G i) : congr e he (of G _ i g) = of G' (fun _ _ h ↦ f' _ _ h) i (e i g) := map_apply_of _ he _ lemma congr_symm_apply_of [IsDirected ι (· ≤ ·)] (e : (i : ι) → G i ≃+* G' i) (he : ∀ i j h, (e j).toRingHom.comp (f i j h) = (f' i j h).comp (e i)) {i : ι} (g : G' i) : (congr e he).symm (of G' _ i g) = of G (fun _ _ h ↦ f _ _ h) i ((e i).symm g) := by simp only [congr, RingEquiv.ofHomInv_symm_apply, map_apply_of, RingHom.coe_coe] end functorial end DirectLimit end end Ring namespace Field variable [Nonempty ι] [IsDirected ι (· ≤ ·)] [∀ i, Field (G i)] variable (f : ∀ i j, i ≤ j → G i → G j) variable (f' : ∀ i j, i ≤ j → G i →+* G j) namespace DirectLimit instance nontrivial [DirectedSystem G fun i j h => f' i j h] : Nontrivial (Ring.DirectLimit G fun i j h => f' i j h) := ⟨⟨0, 1, Nonempty.elim (by infer_instance) fun i : ι => by change (0 : Ring.DirectLimit G fun i j h => f' i j h) ≠ 1 rw [← (Ring.DirectLimit.of _ _ _).map_one] · intro H; rcases Ring.DirectLimit.of.zero_exact H.symm with ⟨j, hij, hf⟩ rw [(f' i j hij).map_one] at hf exact one_ne_zero hf⟩⟩ theorem exists_inv {p : Ring.DirectLimit G f} : p ≠ 0 → ∃ y, p * y = 1 := Ring.DirectLimit.induction_on p fun i x H => ⟨Ring.DirectLimit.of G f i x⁻¹, by erw [← (Ring.DirectLimit.of _ _ _).map_mul, mul_inv_cancel fun h : x = 0 => H <| by rw [h, (Ring.DirectLimit.of _ _ _).map_zero], (Ring.DirectLimit.of _ _ _).map_one]⟩ section open Classical in /-- Noncomputable multiplicative inverse in a direct limit of fields. -/ noncomputable def inv (p : Ring.DirectLimit G f) : Ring.DirectLimit G f := if H : p = 0 then 0 else Classical.choose (DirectLimit.exists_inv G f H) protected theorem mul_inv_cancel {p : Ring.DirectLimit G f} (hp : p ≠ 0) : p * inv G f p = 1 := by rw [inv, dif_neg hp, Classical.choose_spec (DirectLimit.exists_inv G f hp)] protected theorem inv_mul_cancel {p : Ring.DirectLimit G f} (hp : p ≠ 0) : inv G f p * p = 1 := by rw [_root_.mul_comm, DirectLimit.mul_inv_cancel G f hp] /-- Noncomputable field structure on the direct limit of fields. See note [reducible non-instances]. -/ protected noncomputable abbrev field [DirectedSystem G fun i j h => f' i j h] : Field (Ring.DirectLimit G fun i j h => f' i j h) where -- This used to include the parent CommRing and Nontrivial instances, -- but leaving them implicit avoids a very expensive (2-3 minutes!) eta expansion. inv := inv G fun i j h => f' i j h mul_inv_cancel := fun p => DirectLimit.mul_inv_cancel G fun i j h => f' i j h inv_zero := dif_pos rfl nnqsmul := _ qsmul := _ end end DirectLimit end Field
Algebra\DualNumber.lean
/- Copyright (c) 2021 Eric Wieser. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Eric Wieser -/ import Mathlib.Algebra.TrivSqZeroExt /-! # Dual numbers The dual numbers over `R` are of the form `a + bε`, where `a` and `b` are typically elements of a commutative ring `R`, and `ε` is a symbol satisfying `ε^2 = 0` that commutes with every other element. They are a special case of `TrivSqZeroExt R M` with `M = R`. ## Notation In the `DualNumber` locale: * `R[ε]` is a shorthand for `DualNumber R` * `ε` is a shorthand for `DualNumber.eps` ## Main definitions * `DualNumber` * `DualNumber.eps` * `DualNumber.lift` ## Implementation notes Rather than duplicating the API of `TrivSqZeroExt`, this file reuses the functions there. ## References * https://en.wikipedia.org/wiki/Dual_number -/ variable {R A B : Type*} /-- The type of dual numbers, numbers of the form $a + bε$ where $ε^2 = 0$. `R[ε]` is notation for `DualNumber R`. -/ abbrev DualNumber (R : Type*) : Type _ := TrivSqZeroExt R R /-- The unit element $ε$ that squares to zero, with notation `ε`. -/ def DualNumber.eps [Zero R] [One R] : DualNumber R := TrivSqZeroExt.inr 1 @[inherit_doc] scoped[DualNumber] notation "ε" => DualNumber.eps @[inherit_doc] scoped[DualNumber] postfix:1024 "[ε]" => DualNumber open DualNumber namespace DualNumber open TrivSqZeroExt @[simp] theorem fst_eps [Zero R] [One R] : fst ε = (0 : R) := fst_inr _ _ @[simp] theorem snd_eps [Zero R] [One R] : snd ε = (1 : R) := snd_inr _ _ /-- A version of `TrivSqZeroExt.snd_mul` with `*` instead of `•`. -/ @[simp] theorem snd_mul [Semiring R] (x y : R[ε]) : snd (x * y) = fst x * snd y + snd x * fst y := TrivSqZeroExt.snd_mul _ _ @[simp] theorem eps_mul_eps [Semiring R] : (ε * ε : R[ε]) = 0 := inr_mul_inr _ _ _ @[simp] theorem inv_eps [DivisionRing R] : (ε : R[ε])⁻¹ = 0 := TrivSqZeroExt.inv_inr 1 @[simp] theorem inr_eq_smul_eps [MulZeroOneClass R] (r : R) : inr r = (r • ε : R[ε]) := ext (mul_zero r).symm (mul_one r).symm /-- `ε` commutes with every element of the algebra. -/ theorem commute_eps_left [Semiring R] (x : DualNumber R) : Commute ε x := by ext <;> simp /-- `ε` commutes with every element of the algebra. -/ theorem commute_eps_right [Semiring R] (x : DualNumber R) : Commute x ε := (commute_eps_left x).symm variable {A : Type*} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] /-- For two `R`-algebra morphisms out of `A[ε]` to agree, it suffices for them to agree on the elements of `A` and the `A`-multiples of `ε`. -/ @[ext 1100] nonrec theorem algHom_ext' ⦃f g : A[ε] →ₐ[R] B⦄ (hinl : f.comp (inlAlgHom _ _ _) = g.comp (inlAlgHom _ _ _)) (hinr : f.toLinearMap ∘ₗ (LinearMap.toSpanSingleton A A[ε] ε).restrictScalars R = g.toLinearMap ∘ₗ (LinearMap.toSpanSingleton A A[ε] ε).restrictScalars R) : f = g := algHom_ext' hinl (by ext a show f (inr a) = g (inr a) simpa only [inr_eq_smul_eps] using DFunLike.congr_fun hinr a) /-- For two `R`-algebra morphisms out of `R[ε]` to agree, it suffices for them to agree on `ε`. -/ @[ext 1200] nonrec theorem algHom_ext ⦃f g : R[ε] →ₐ[R] A⦄ (hε : f ε = g ε) : f = g := by ext dsimp simp only [one_smul, hε] /-- A universal property of the dual numbers, providing a unique `A[ε] →ₐ[R] B` for every map `f : A →ₐ[R] B` and a choice of element `e : B` which squares to `0` and commutes with the range of `f`. This isomorphism is named to match the similar `Complex.lift`. Note that when `f : R →ₐ[R] B := Algebra.ofId R B`, the commutativity assumption is automatic, and we are free to choose any element `e : B`. -/ def lift : {fe : (A →ₐ[R] B) × B // fe.2 * fe.2 = 0 ∧ ∀ a, Commute fe.2 (fe.1 a)} ≃ (A[ε] →ₐ[R] B) := by refine Equiv.trans ?_ TrivSqZeroExt.liftEquiv exact { toFun := fun fe => ⟨ (fe.val.1, MulOpposite.op fe.val.2 • fe.val.1.toLinearMap), fun x y => show (fe.val.1 x * fe.val.2) * (fe.val.1 y * fe.val.2) = 0 by rw [(fe.prop.2 _).mul_mul_mul_comm, fe.prop.1, mul_zero], fun r x => show fe.val.1 (r * x) * fe.val.2 = fe.val.1 r * (fe.val.1 x * fe.val.2) by rw [map_mul, mul_assoc], fun r x => show fe.val.1 (x * r) * fe.val.2 = (fe.val.1 x * fe.val.2) * fe.val.1 r by rw [map_mul, (fe.prop.2 _).right_comm]⟩ invFun := fun fg => ⟨ (fg.val.1, fg.val.2 1), fg.prop.1 _ _, fun a => show fg.val.2 1 * fg.val.1 a = fg.val.1 a * fg.val.2 1 by rw [← fg.prop.2.1, ← fg.prop.2.2, smul_eq_mul, op_smul_eq_mul, mul_one, one_mul]⟩ left_inv := fun fe => Subtype.ext <| Prod.ext rfl <| show fe.val.1 1 * fe.val.2 = fe.val.2 by rw [map_one, one_mul] right_inv := fun fg => Subtype.ext <| Prod.ext rfl <| LinearMap.ext fun x => show fg.val.1 x * fg.val.2 1 = fg.val.2 x by rw [← fg.prop.2.1, smul_eq_mul, mul_one] } theorem lift_apply_apply (fe : {_fe : (A →ₐ[R] B) × B // _}) (a : A[ε]) : lift fe a = fe.val.1 a.fst + fe.val.1 a.snd * fe.val.2 := rfl @[simp] theorem coe_lift_symm_apply (F : A[ε] →ₐ[R] B) : (lift.symm F).val = (F.comp (inlAlgHom _ _ _), F ε) := rfl /-- When applied to `inl`, `DualNumber.lift` applies the map `f : A →ₐ[R] B`. -/ @[simp] theorem lift_apply_inl (fe : {fe : (A →ₐ[R] B) × B // _}) (a : A) : lift fe (inl a : A[ε]) = fe.val.1 a := by rw [lift_apply_apply, fst_inl, snd_inl, map_zero, zero_mul, add_zero] /-- Scaling on the left is sent by `DualNumber.lift` to multiplication on the left -/ @[simp] theorem lift_smul (fe : {fe : (A →ₐ[R] B) × B // _}) (a : A) (ad : A[ε]) : lift fe (a • ad) = fe.val.1 a * lift fe ad := by rw [← inl_mul_eq_smul, map_mul, lift_apply_inl] /-- Scaling on the right is sent by `DualNumber.lift` to multiplication on the right -/ @[simp] theorem lift_op_smul (fe : {fe : (A →ₐ[R] B) × B // _}) (a : A) (ad : A[ε]) : lift fe (MulOpposite.op a • ad) = lift fe ad * fe.val.1 a := by rw [← mul_inl_eq_op_smul, map_mul, lift_apply_inl] /-- When applied to `ε`, `DualNumber.lift` produces the element of `B` that squares to 0. -/ @[simp] theorem lift_apply_eps (fe : {fe : (A →ₐ[R] B) × B // fe.2 * fe.2 = 0 ∧ ∀ a, Commute fe.2 (fe.1 a)}) : lift fe (ε : A[ε]) = fe.val.2 := by simp only [lift_apply_apply, fst_eps, map_zero, snd_eps, map_one, one_mul, zero_add] /-- Lifting `DualNumber.eps` itself gives the identity. -/ @[simp] theorem lift_inlAlgHom_eps : lift ⟨(inlAlgHom _ _ _, ε), eps_mul_eps, fun _ => commute_eps_left _⟩ = AlgHom.id R A[ε] := lift.apply_symm_apply <| AlgHom.id R A[ε] /-- Show DualNumber with values x and y as an "x + y*ε" string -/ instance instRepr [Repr R] : Repr (DualNumber R) where reprPrec f p := (if p > 65 then (Std.Format.bracket "(" · ")") else (·)) <| reprPrec f.fst 65 ++ " + " ++ reprPrec f.snd 70 ++ "*ε" end DualNumber
Algebra\DualQuaternion.lean
/- Copyright (c) 2023 Eric Wieser. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Eric Wieser -/ import Mathlib.Algebra.DualNumber import Mathlib.Algebra.Quaternion /-! # Dual quaternions Similar to the way that rotations in 3D space can be represented by quaternions of unit length, rigid motions in 3D space can be represented by dual quaternions of unit length. ## Main results * `Quaternion.dualNumberEquiv`: quaternions over dual numbers or dual numbers over quaternions are equivalent constructions. ## References * <https://en.wikipedia.org/wiki/Dual_quaternion> -/ variable {R : Type*} [CommRing R] namespace Quaternion /-- The dual quaternions can be equivalently represented as a quaternion with dual coefficients, or as a dual number with quaternion coefficients. See also `Matrix.dualNumberEquiv` for a similar result. -/ def dualNumberEquiv : Quaternion (DualNumber R) ≃ₐ[R] DualNumber (Quaternion R) where toFun q := (⟨q.re.fst, q.imI.fst, q.imJ.fst, q.imK.fst⟩, ⟨q.re.snd, q.imI.snd, q.imJ.snd, q.imK.snd⟩) invFun d := ⟨(d.fst.re, d.snd.re), (d.fst.imI, d.snd.imI), (d.fst.imJ, d.snd.imJ), (d.fst.imK, d.snd.imK)⟩ left_inv := fun ⟨⟨r, rε⟩, ⟨i, iε⟩, ⟨j, jε⟩, ⟨k, kε⟩⟩ => rfl right_inv := fun ⟨⟨r, i, j, k⟩, ⟨rε, iε, jε, kε⟩⟩ => rfl map_mul' := by rintro ⟨⟨xr, xrε⟩, ⟨xi, xiε⟩, ⟨xj, xjε⟩, ⟨xk, xkε⟩⟩ rintro ⟨⟨yr, yrε⟩, ⟨yi, yiε⟩, ⟨yj, yjε⟩, ⟨yk, ykε⟩⟩ ext : 1 · rfl · dsimp congr 1 <;> simp <;> ring map_add' := by rintro ⟨⟨xr, xrε⟩, ⟨xi, xiε⟩, ⟨xj, xjε⟩, ⟨xk, xkε⟩⟩ rintro ⟨⟨yr, yrε⟩, ⟨yi, yiε⟩, ⟨yj, yjε⟩, ⟨yk, ykε⟩⟩ rfl commutes' r := rfl /-! Lemmas characterizing `Quaternion.dualNumberEquiv`. -/ -- `simps` can't work on `DualNumber` because it's not a structure @[simp] theorem re_fst_dualNumberEquiv (q : Quaternion (DualNumber R)) : (dualNumberEquiv q).fst.re = q.re.fst := rfl @[simp] theorem imI_fst_dualNumberEquiv (q : Quaternion (DualNumber R)) : (dualNumberEquiv q).fst.imI = q.imI.fst := rfl @[simp] theorem imJ_fst_dualNumberEquiv (q : Quaternion (DualNumber R)) : (dualNumberEquiv q).fst.imJ = q.imJ.fst := rfl @[simp] theorem imK_fst_dualNumberEquiv (q : Quaternion (DualNumber R)) : (dualNumberEquiv q).fst.imK = q.imK.fst := rfl @[simp] theorem re_snd_dualNumberEquiv (q : Quaternion (DualNumber R)) : (dualNumberEquiv q).snd.re = q.re.snd := rfl @[simp] theorem imI_snd_dualNumberEquiv (q : Quaternion (DualNumber R)) : (dualNumberEquiv q).snd.imI = q.imI.snd := rfl @[simp] theorem imJ_snd_dualNumberEquiv (q : Quaternion (DualNumber R)) : (dualNumberEquiv q).snd.imJ = q.imJ.snd := rfl @[simp] theorem imK_snd_dualNumberEquiv (q : Quaternion (DualNumber R)) : (dualNumberEquiv q).snd.imK = q.imK.snd := rfl @[simp] theorem fst_re_dualNumberEquiv_symm (d : DualNumber (Quaternion R)) : (dualNumberEquiv.symm d).re.fst = d.fst.re := rfl @[simp] theorem fst_imI_dualNumberEquiv_symm (d : DualNumber (Quaternion R)) : (dualNumberEquiv.symm d).imI.fst = d.fst.imI := rfl @[simp] theorem fst_imJ_dualNumberEquiv_symm (d : DualNumber (Quaternion R)) : (dualNumberEquiv.symm d).imJ.fst = d.fst.imJ := rfl @[simp] theorem fst_imK_dualNumberEquiv_symm (d : DualNumber (Quaternion R)) : (dualNumberEquiv.symm d).imK.fst = d.fst.imK := rfl @[simp] theorem snd_re_dualNumberEquiv_symm (d : DualNumber (Quaternion R)) : (dualNumberEquiv.symm d).re.snd = d.snd.re := rfl @[simp] theorem snd_imI_dualNumberEquiv_symm (d : DualNumber (Quaternion R)) : (dualNumberEquiv.symm d).imI.snd = d.snd.imI := rfl @[simp] theorem snd_imJ_dualNumberEquiv_symm (d : DualNumber (Quaternion R)) : (dualNumberEquiv.symm d).imJ.snd = d.snd.imJ := rfl @[simp] theorem snd_imK_dualNumberEquiv_symm (d : DualNumber (Quaternion R)) : (dualNumberEquiv.symm d).imK.snd = d.snd.imK := rfl end Quaternion
Algebra\Exact.lean
/- Copyright (c) 2023 Antoine Chambert-Loir. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Antoine Chambert-Loir -/ import Mathlib.Algebra.Module.Submodule.Range import Mathlib.LinearAlgebra.Prod import Mathlib.LinearAlgebra.Quotient /-! # Exactness of a pair * For two maps `f : M → N` and `g : N → P`, with `Zero P`, `Function.Exact f g` says that `Set.range f = Set.preimage g {0}` * For additive maps `f : M →+ N` and `g : N →+ P`, `Exact f g` says that `range f = ker g` * For linear maps `f : M →ₗ[R] N` and `g : N →ₗ[R] P`, `Exact f g` says that `range f = ker g` ## TODO : * generalize to `SemilinearMap`, even `SemilinearMapClass` * add the multiplicative case (`Function.Exact` will become `Function.AddExact`?) -/ variable {R M M' N N' P P' : Type*} namespace Function variable (f : M → N) (g : N → P) (g' : P → P') /-- The maps `f` and `g` form an exact pair : `g y = 0` iff `y` belongs to the image of `f` -/ def Exact [Zero P] : Prop := ∀ y, g y = 0 ↔ y ∈ Set.range f variable {f g} namespace Exact lemma apply_apply_eq_zero [Zero P] (h : Exact f g) (x : M) : g (f x) = 0 := (h _).mpr <| Set.mem_range_self _ lemma comp_eq_zero [Zero P] (h : Exact f g) : g.comp f = 0 := funext h.apply_apply_eq_zero lemma of_comp_of_mem_range [Zero P] (h1 : g ∘ f = 0) (h2 : ∀ x, g x = 0 → x ∈ Set.range f) : Exact f g := fun y => Iff.intro (h2 y) <| Exists.rec ((forall_apply_eq_imp_iff (p := (g · = 0))).mpr (congrFun h1) y) lemma comp_injective [Zero P] [Zero P'] (exact : Exact f g) (inj : Function.Injective g') (h0 : g' 0 = 0) : Exact f (g' ∘ g) := by intro x refine ⟨fun H => exact x |>.mp <| inj <| h0 ▸ H, ?_⟩ intro H rw [Function.comp_apply, exact x |>.mpr H, h0] lemma of_comp_eq_zero_of_ker_in_range [Zero P] (hc : g.comp f = 0) (hr : ∀ y, g y = 0 → y ∈ Set.range f) : Exact f g := fun y ↦ ⟨hr y, fun ⟨x, hx⟩ ↦ hx ▸ congrFun hc x⟩ end Exact end Function section AddMonoidHom variable [AddGroup M] [AddGroup N] [AddGroup P] {f : M →+ N} {g : N →+ P} namespace AddMonoidHom open Function lemma exact_iff : Exact f g ↔ ker g = range f := Iff.symm SetLike.ext_iff lemma exact_of_comp_eq_zero_of_ker_le_range (h1 : g.comp f = 0) (h2 : ker g ≤ range f) : Exact f g := Exact.of_comp_of_mem_range (congrArg DFunLike.coe h1) h2 lemma exact_of_comp_of_mem_range (h1 : g.comp f = 0) (h2 : ∀ x, g x = 0 → x ∈ range f) : Exact f g := exact_of_comp_eq_zero_of_ker_le_range h1 h2 end AddMonoidHom namespace Function.Exact open AddMonoidHom lemma addMonoidHom_ker_eq (hfg : Exact f g) : ker g = range f := SetLike.ext hfg lemma addMonoidHom_comp_eq_zero (h : Exact f g) : g.comp f = 0 := DFunLike.coe_injective h.comp_eq_zero section variable {X₁ X₂ X₃ Y₁ Y₂ Y₃ : Type*} [AddCommMonoid X₁] [AddCommMonoid X₂] [AddCommMonoid X₃] [AddCommMonoid Y₁] [AddCommMonoid Y₂] [AddCommMonoid Y₃] (e₁ : X₁ ≃+ Y₁) (e₂ : X₂ ≃+ Y₂) (e₃ : X₃ ≃+ Y₃) {f₁₂ : X₁ →+ X₂} {f₂₃ : X₂ →+ X₃} {g₁₂ : Y₁ →+ Y₂} {g₂₃ : Y₂ →+ Y₃} lemma of_ladder_addEquiv_of_exact (comm₁₂ : g₁₂.comp e₁ = AddMonoidHom.comp e₂ f₁₂) (comm₂₃ : g₂₃.comp e₂ = AddMonoidHom.comp e₃ f₂₃) (H : Exact f₁₂ f₂₃) : Exact g₁₂ g₂₃ := by have h₁₂ := DFunLike.congr_fun comm₁₂ have h₂₃ := DFunLike.congr_fun comm₂₃ dsimp at h₁₂ h₂₃ apply of_comp_eq_zero_of_ker_in_range · ext y₁ obtain ⟨x₁, rfl⟩ := e₁.surjective y₁ dsimp rw [h₁₂, h₂₃, H.apply_apply_eq_zero, map_zero] · intro y₂ hx₂ obtain ⟨x₂, rfl⟩ := e₂.surjective y₂ obtain ⟨x₁, rfl⟩ := (H x₂).1 (e₃.injective (by rw [← h₂₃, hx₂, map_zero])) exact ⟨e₁ x₁, by rw [h₁₂]⟩ lemma of_ladder_addEquiv_of_exact' (comm₁₂ : g₁₂.comp e₁ = AddMonoidHom.comp e₂ f₁₂) (comm₂₃ : g₂₃.comp e₂ = AddMonoidHom.comp e₃ f₂₃) (H : Exact g₁₂ g₂₃) : Exact f₁₂ f₂₃ := by refine of_ladder_addEquiv_of_exact e₁.symm e₂.symm e₃.symm ?_ ?_ H · ext y₁ obtain ⟨x₁, rfl⟩ := e₁.surjective y₁ apply e₂.injective simpa using DFunLike.congr_fun comm₁₂.symm x₁ · ext y₂ obtain ⟨x₂, rfl⟩ := e₂.surjective y₂ apply e₃.injective simpa using DFunLike.congr_fun comm₂₃.symm x₂ lemma iff_of_ladder_addEquiv (comm₁₂ : g₁₂.comp e₁ = AddMonoidHom.comp e₂ f₁₂) (comm₂₃ : g₂₃.comp e₂ = AddMonoidHom.comp e₃ f₂₃) : Exact g₁₂ g₂₃ ↔ Exact f₁₂ f₂₃ := by constructor · exact of_ladder_addEquiv_of_exact' e₁ e₂ e₃ comm₁₂ comm₂₃ · exact of_ladder_addEquiv_of_exact e₁ e₂ e₃ comm₁₂ comm₂₃ end end Function.Exact end AddMonoidHom section LinearMap open Function variable [Semiring R] [AddCommMonoid M] [AddCommMonoid M'] [AddCommMonoid N] [AddCommMonoid N'] [AddCommMonoid P] [AddCommMonoid P'] [Module R M] [Module R M'] [Module R N] [Module R N'] [Module R P] [Module R P'] variable {f : M →ₗ[R] N} {g : N →ₗ[R] P} namespace LinearMap lemma exact_iff : Exact f g ↔ LinearMap.ker g = LinearMap.range f := Iff.symm SetLike.ext_iff lemma exact_of_comp_eq_zero_of_ker_le_range (h1 : g ∘ₗ f = 0) (h2 : ker g ≤ range f) : Exact f g := Exact.of_comp_of_mem_range (congrArg DFunLike.coe h1) h2 lemma exact_of_comp_of_mem_range (h1 : g ∘ₗ f = 0) (h2 : ∀ x, g x = 0 → x ∈ range f) : Exact f g := exact_of_comp_eq_zero_of_ker_le_range h1 h2 variable {R M N P : Type*} [CommRing R] [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] lemma exact_subtype_mkQ (Q : Submodule R N) : Exact (Submodule.subtype Q) (Submodule.mkQ Q) := by rw [exact_iff, Submodule.ker_mkQ, Submodule.range_subtype Q] lemma exact_map_mkQ_range (f : M →ₗ[R] N) : Exact f (Submodule.mkQ (range f)) := exact_iff.mpr <| Submodule.ker_mkQ _ lemma exact_subtype_ker_map (g : N →ₗ[R] P) : Exact (Submodule.subtype (ker g)) g := exact_iff.mpr <| (Submodule.range_subtype _).symm end LinearMap variable (f g) in lemma LinearEquiv.conj_exact_iff_exact (e : N ≃ₗ[R] N') : Function.Exact (e ∘ₗ f) (g ∘ₗ (e.symm : N' →ₗ[R] N)) ↔ Exact f g := by simp_rw [LinearMap.exact_iff, LinearMap.ker_comp, ← e.map_eq_comap, LinearMap.range_comp] exact (Submodule.map_injective_of_injective e.injective).eq_iff namespace Function open LinearMap lemma Exact.linearMap_ker_eq (hfg : Exact f g) : ker g = range f := SetLike.ext hfg lemma Exact.linearMap_comp_eq_zero (h : Exact f g) : g.comp f = 0 := DFunLike.coe_injective h.comp_eq_zero lemma Surjective.comp_exact_iff_exact {p : M' →ₗ[R] M} (h : Surjective p) : Exact (f ∘ₗ p) g ↔ Exact f g := iff_of_eq <| forall_congr fun x => congrArg (g x = 0 ↔ x ∈ ·) (h.range_comp f) lemma Injective.comp_exact_iff_exact {i : P →ₗ[R] P'} (h : Injective i) : Exact f (i ∘ₗ g) ↔ Exact f g := forall_congr' fun _ => iff_congr (LinearMap.map_eq_zero_iff _ h) Iff.rfl variable {f₁₂ : M →ₗ[R] N} {f₂₃ : N →ₗ[R] P} {g₁₂ : M' →ₗ[R] N'} {g₂₃ : N' →ₗ[R] P'} {e₁ : M ≃ₗ[R] M'} {e₂ : N ≃ₗ[R] N'} {e₃ : P ≃ₗ[R] P'} lemma Exact.iff_of_ladder_linearEquiv (h₁₂ : g₁₂ ∘ₗ e₁ = e₂ ∘ₗ f₁₂) (h₂₃ : g₂₃ ∘ₗ e₂ = e₃ ∘ₗ f₂₃) : Exact g₁₂ g₂₃ ↔ Exact f₁₂ f₂₃ := iff_of_ladder_addEquiv e₁.toAddEquiv e₂.toAddEquiv e₃.toAddEquiv (f₁₂ := f₁₂) (f₂₃ := f₂₃) (g₁₂ := g₁₂) (g₂₃ := g₂₃) (congr_arg LinearMap.toAddMonoidHom h₁₂) (congr_arg LinearMap.toAddMonoidHom h₂₃) lemma Exact.of_ladder_linearEquiv_of_exact (h₁₂ : g₁₂ ∘ₗ e₁ = e₂ ∘ₗ f₁₂) (h₂₃ : g₂₃ ∘ₗ e₂ = e₃ ∘ₗ f₂₃) (H : Exact f₁₂ f₂₃) : Exact g₁₂ g₂₃ := by rwa [iff_of_ladder_linearEquiv h₁₂ h₂₃] end Function end LinearMap namespace Function section split variable [Semiring R] variable [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] variable {f : M →ₗ[R] N} {g : N →ₗ[R] P} open LinearMap /-- Given an exact sequence `0 → M → N → P`, giving a section `P → N` is equivalent to giving a splitting `N ≃ M × P`. -/ noncomputable def Exact.splitSurjectiveEquiv (h : Function.Exact f g) (hf : Function.Injective f) : { l // g ∘ₗ l = .id } ≃ { e : N ≃ₗ[R] M × P // f = e.symm ∘ₗ inl R M P ∧ g = snd R M P ∘ₗ e } := by refine { toFun := fun l ↦ ⟨(LinearEquiv.ofBijective (f ∘ₗ fst R M P + l.1 ∘ₗ snd R M P) ?_).symm, ?_⟩ invFun := fun e ↦ ⟨e.1.symm ∘ₗ inr R M P, ?_⟩ left_inv := ?_ right_inv := ?_ } · have h₁ : ∀ x, g (l.1 x) = x := LinearMap.congr_fun l.2 have h₂ : ∀ x, g (f x) = 0 := congr_fun h.comp_eq_zero constructor · intros x y e simp only [add_apply, coe_comp, comp_apply, fst_apply, snd_apply] at e suffices x.2 = y.2 from Prod.ext (hf (by rwa [this, add_left_inj] at e)) this simpa [h₁, h₂] using DFunLike.congr_arg g e · intro x obtain ⟨y, hy⟩ := (h (x - l.1 (g x))).mp (by simp [h₁, g.map_sub]) exact ⟨⟨y, g x⟩, by simp [hy]⟩ · have h₁ : ∀ x, g (l.1 x) = x := LinearMap.congr_fun l.2 have h₂ : ∀ x, g (f x) = 0 := congr_fun h.comp_eq_zero constructor · ext; simp · rw [LinearEquiv.eq_comp_toLinearMap_symm] ext <;> simp [h₁, h₂] · rw [← LinearMap.comp_assoc, (LinearEquiv.eq_comp_toLinearMap_symm _ _).mp e.2.2]; rfl · intro; ext; simp · rintro ⟨e, rfl, rfl⟩ ext1 apply LinearEquiv.symm_bijective.injective ext apply e.injective ext <;> simp /-- Given an exact sequence `M → N → P → 0`, giving a retraction `N → M` is equivalent to giving a splitting `N ≃ M × P`. -/ noncomputable def Exact.splitInjectiveEquiv {R M N P} [Semiring R] [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] {f : M →ₗ[R] N} {g : N →ₗ[R] P} (h : Function.Exact f g) (hg : Function.Surjective g) : { l // l ∘ₗ f = .id } ≃ { e : N ≃ₗ[R] M × P // f = e.symm ∘ₗ inl R M P ∧ g = snd R M P ∘ₗ e } := by refine { toFun := fun l ↦ ⟨(LinearEquiv.ofBijective (l.1.prod g) ?_), ?_⟩ invFun := fun e ↦ ⟨fst R M P ∘ₗ e.1, ?_⟩ left_inv := ?_ right_inv := ?_ } · have h₁ : ∀ x, l.1 (f x) = x := LinearMap.congr_fun l.2 have h₂ : ∀ x, g (f x) = 0 := congr_fun h.comp_eq_zero constructor · intros x y e simp only [prod_apply, Pi.prod, Prod.mk.injEq] at e obtain ⟨z, hz⟩ := (h (x - y)).mp (by simpa [sub_eq_zero] using e.2) suffices z = 0 by rw [← sub_eq_zero, ← hz, this, map_zero] rw [← h₁ z, hz, map_sub, e.1, sub_self] · rintro ⟨x, y⟩ obtain ⟨y, rfl⟩ := hg y refine ⟨f x + y - f (l.1 y), by ext <;> simp [h₁, h₂]⟩ · have h₁ : ∀ x, l.1 (f x) = x := LinearMap.congr_fun l.2 have h₂ : ∀ x, g (f x) = 0 := congr_fun h.comp_eq_zero constructor · rw [LinearEquiv.eq_toLinearMap_symm_comp] ext <;> simp [h₁, h₂] · ext; simp · rw [LinearMap.comp_assoc, (LinearEquiv.eq_toLinearMap_symm_comp _ _).mp e.2.1]; rfl · intro; ext; simp · rintro ⟨e, rfl, rfl⟩ ext x <;> simp theorem Exact.split_tfae' (h : Function.Exact f g) : List.TFAE [ Function.Injective f ∧ ∃ l, g ∘ₗ l = LinearMap.id, Function.Surjective g ∧ ∃ l, l ∘ₗ f = LinearMap.id, ∃ e : N ≃ₗ[R] M × P, f = e.symm ∘ₗ LinearMap.inl R M P ∧ g = LinearMap.snd R M P ∘ₗ e] := by tfae_have 1 → 3 · rintro ⟨hf, l, hl⟩ exact ⟨_, (h.splitSurjectiveEquiv hf ⟨l, hl⟩).2⟩ tfae_have 2 → 3 · rintro ⟨hg, l, hl⟩ exact ⟨_, (h.splitInjectiveEquiv hg ⟨l, hl⟩).2⟩ tfae_have 3 → 1 · rintro ⟨e, e₁, e₂⟩ have : Function.Injective f := e₁ ▸ e.symm.injective.comp LinearMap.inl_injective refine ⟨this, ⟨_, ((h.splitSurjectiveEquiv this).symm ⟨e, e₁, e₂⟩).2⟩⟩ tfae_have 3 → 2 · rintro ⟨e, e₁, e₂⟩ have : Function.Surjective g := e₂ ▸ Prod.snd_surjective.comp e.surjective refine ⟨this, ⟨_, ((h.splitInjectiveEquiv this).symm ⟨e, e₁, e₂⟩).2⟩⟩ tfae_finish /-- Equivalent characterizations of split exact sequences. Also known as the **Splitting lemma**. -/ theorem Exact.split_tfae {R M N P} [Semiring R] [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] {f : M →ₗ[R] N} {g : N →ₗ[R] P} (h : Function.Exact f g) (hf : Function.Injective f) (hg : Function.Surjective g) : List.TFAE [ ∃ l, g ∘ₗ l = LinearMap.id, ∃ l, l ∘ₗ f = LinearMap.id, ∃ e : N ≃ₗ[R] M × P, f = e.symm ∘ₗ LinearMap.inl R M P ∧ g = LinearMap.snd R M P ∘ₗ e] := by tfae_have 1 ↔ 3 · simpa using (h.splitSurjectiveEquiv hf).nonempty_congr tfae_have 2 ↔ 3 · simpa using (h.splitInjectiveEquiv hg).nonempty_congr tfae_finish end split section Prod variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] lemma Exact.inr_fst : Function.Exact (LinearMap.inr R M N) (LinearMap.fst R M N) := by rintro ⟨x, y⟩ simp only [LinearMap.fst_apply, @eq_comm _ x, LinearMap.coe_inr, Set.mem_range, Prod.mk.injEq, exists_eq_right] lemma Exact.inl_snd : Function.Exact (LinearMap.inl R M N) (LinearMap.snd R M N) := by rintro ⟨x, y⟩ simp only [LinearMap.snd_apply, @eq_comm _ y, LinearMap.coe_inl, Set.mem_range, Prod.mk.injEq, exists_eq_left] end Prod section Ring open LinearMap Submodule variable [Ring R] [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] /-- A necessary and sufficient condition for an exact sequence to descend to a quotient. -/ lemma Exact.exact_mapQ_iff {f : M →ₗ[R] N} {g : N →ₗ[R] P} (hfg : Exact f g) {p q r} (hpq : p ≤ comap f q) (hqr : q ≤ comap g r) : Exact (mapQ p q f hpq) (mapQ q r g hqr) ↔ range g ⊓ r ≤ map g q := by rw [exact_iff, ← (comap_injective_of_surjective (mkQ_surjective _)).eq_iff] dsimp only [mapQ] rw [← ker_comp, range_liftQ, liftQ_mkQ, ker_comp, range_comp, comap_map_eq, ker_mkQ, ker_mkQ, ← hfg.linearMap_ker_eq, sup_comm, ← LE.le.le_iff_eq (sup_le hqr (ker_le_comap g)), ← comap_map_eq, ← map_le_iff_le_comap, map_comap_eq] end Ring end Function
Algebra\Expr.lean
/- Copyright (c) 2022 Eric Wieser. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Eric Wieser -/ import Mathlib.Algebra.Group.ZeroOne import Qq /-! # Helpers to invoke functions involving algebra at tactic time This file provides instances on `x y : Q($α)` such that `x + y = q($x + $y)`. Porting note: This has been rewritten to use `Qq` instead of `Expr`. -/ open Qq /-- Produce a `One` instance for `Q($α)` such that `1 : Q($α)` is `q(1 : $α)`. -/ def Expr.instOne {u : Lean.Level} (α : Q(Type u)) (_ : Q(One $α)) : One Q($α) where one := q(1 : $α) /-- Produce a `Zero` instance for `Q($α)` such that `0 : Q($α)` is `q(0 : $α)`. -/ def Expr.instZero {u : Lean.Level} (α : Q(Type u)) (_ : Q(Zero $α)) : Zero Q($α) where zero := q(0 : $α) /-- Produce a `Mul` instance for `Q($α)` such that `x * y : Q($α)` is `q($x * $y)`. -/ def Expr.instMul {u : Lean.Level} (α : Q(Type u)) (_ : Q(Mul $α)) : Mul Q($α) where mul x y := q($x * $y) /-- Produce an `Add` instance for `Q($α)` such that `x + y : Q($α)` is `q($x + $y)`. -/ def Expr.instAdd {u : Lean.Level} (α : Q(Type u)) (_ : Q(Add $α)) : Add Q($α) where add x y := q($x + $y)
Algebra\Free.lean
/- Copyright (c) 2019 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau -/ import Mathlib.Algebra.Group.Equiv.Basic import Mathlib.Control.Applicative import Mathlib.Control.Traversable.Basic import Mathlib.Data.List.Basic import Mathlib.Logic.Equiv.Defs import Mathlib.Tactic.AdaptationNote /-! # Free constructions ## Main definitions * `FreeMagma α`: free magma (structure with binary operation without any axioms) over alphabet `α`, defined inductively, with traversable instance and decidable equality. * `MagmaAssocQuotient α`: quotient of a magma `α` by the associativity equivalence relation. * `FreeSemigroup α`: free semigroup over alphabet `α`, defined as a structure with two fields `head : α` and `tail : List α` (i.e. nonempty lists), with traversable instance and decidable equality. * `FreeMagmaAssocQuotientEquiv α`: isomorphism between `MagmaAssocQuotient (FreeMagma α)` and `FreeSemigroup α`. * `FreeMagma.lift`: the universal property of the free magma, expressing its adjointness. -/ universe u v l /-- Free nonabelian additive magma over a given alphabet. -/ inductive FreeAddMagma (α : Type u) : Type u | of : α → FreeAddMagma α | add : FreeAddMagma α → FreeAddMagma α → FreeAddMagma α deriving DecidableEq compile_inductive% FreeAddMagma /-- Free magma over a given alphabet. -/ @[to_additive] inductive FreeMagma (α : Type u) : Type u | of : α → FreeMagma α | mul : FreeMagma α → FreeMagma α → FreeMagma α deriving DecidableEq compile_inductive% FreeMagma namespace FreeMagma variable {α : Type u} @[to_additive] instance [Inhabited α] : Inhabited (FreeMagma α) := ⟨of default⟩ @[to_additive] instance : Mul (FreeMagma α) := ⟨FreeMagma.mul⟩ -- Porting note: invalid attribute 'match_pattern', declaration is in an imported module -- attribute [match_pattern] Mul.mul @[to_additive (attr := simp)] theorem mul_eq (x y : FreeMagma α) : mul x y = x * y := rfl /- Porting note: these lemmas are autogenerated by the inductive definition and due to the existence of mul_eq not in simp normal form -/ attribute [nolint simpNF] FreeAddMagma.add.sizeOf_spec attribute [nolint simpNF] FreeMagma.mul.sizeOf_spec attribute [nolint simpNF] FreeAddMagma.add.injEq attribute [nolint simpNF] FreeMagma.mul.injEq /-- Recursor for `FreeMagma` using `x * y` instead of `FreeMagma.mul x y`. -/ @[to_additive (attr := elab_as_elim, induction_eliminator) "Recursor for `FreeAddMagma` using `x + y` instead of `FreeAddMagma.add x y`."] def recOnMul {C : FreeMagma α → Sort l} (x) (ih1 : ∀ x, C (of x)) (ih2 : ∀ x y, C x → C y → C (x * y)) : C x := FreeMagma.recOn x ih1 ih2 @[to_additive (attr := ext 1100)] theorem hom_ext {β : Type v} [Mul β] {f g : FreeMagma α →ₙ* β} (h : f ∘ of = g ∘ of) : f = g := (DFunLike.ext _ _) fun x ↦ recOnMul x (congr_fun h) <| by intros; simp only [map_mul, *] end FreeMagma #adaptation_note /-- around nightly-2024-02-25, we need to write `mul x y` in the second pattern, instead of `x * y`. --/ /-- Lifts a function `α → β` to a magma homomorphism `FreeMagma α → β` given a magma `β`. -/ def FreeMagma.liftAux {α : Type u} {β : Type v} [Mul β] (f : α → β) : FreeMagma α → β | FreeMagma.of x => f x | mul x y => liftAux f x * liftAux f y /-- Lifts a function `α → β` to an additive magma homomorphism `FreeAddMagma α → β` given an additive magma `β`. -/ def FreeAddMagma.liftAux {α : Type u} {β : Type v} [Add β] (f : α → β) : FreeAddMagma α → β | FreeAddMagma.of x => f x | x + y => liftAux f x + liftAux f y attribute [to_additive existing] FreeMagma.liftAux namespace FreeMagma section lift variable {α : Type u} {β : Type v} [Mul β] (f : α → β) /-- The universal property of the free magma expressing its adjointness. -/ @[to_additive (attr := simps symm_apply) "The universal property of the free additive magma expressing its adjointness."] def lift : (α → β) ≃ (FreeMagma α →ₙ* β) where toFun f := { toFun := liftAux f map_mul' := fun x y ↦ rfl } invFun F := F ∘ of left_inv f := rfl right_inv F := by ext; rfl @[to_additive (attr := simp)] theorem lift_of (x) : lift f (of x) = f x := rfl @[to_additive (attr := simp)] theorem lift_comp_of : lift f ∘ of = f := rfl @[to_additive (attr := simp)] theorem lift_comp_of' (f : FreeMagma α →ₙ* β) : lift (f ∘ of) = f := lift.apply_symm_apply f end lift section Map variable {α : Type u} {β : Type v} (f : α → β) /-- The unique magma homomorphism `FreeMagma α →ₙ* FreeMagma β` that sends each `of x` to `of (f x)`. -/ @[to_additive "The unique additive magma homomorphism `FreeAddMagma α → FreeAddMagma β` that sends each `of x` to `of (f x)`."] def map (f : α → β) : FreeMagma α →ₙ* FreeMagma β := lift (of ∘ f) @[to_additive (attr := simp)] theorem map_of (x) : map f (of x) = of (f x) := rfl end Map section Category variable {α β : Type u} @[to_additive] instance : Monad FreeMagma where pure := of bind x f := lift f x /-- Recursor on `FreeMagma` using `pure` instead of `of`. -/ @[to_additive (attr := elab_as_elim) "Recursor on `FreeAddMagma` using `pure` instead of `of`."] protected def recOnPure {C : FreeMagma α → Sort l} (x) (ih1 : ∀ x, C (pure x)) (ih2 : ∀ x y, C x → C y → C (x * y)) : C x := FreeMagma.recOnMul x ih1 ih2 @[to_additive (attr := simp)] theorem map_pure (f : α → β) (x) : (f <$> pure x : FreeMagma β) = pure (f x) := rfl @[to_additive (attr := simp)] theorem map_mul' (f : α → β) (x y : FreeMagma α) : f <$> (x * y) = f <$> x * f <$> y := rfl @[to_additive (attr := simp)] theorem pure_bind (f : α → FreeMagma β) (x) : pure x >>= f = f x := rfl @[to_additive (attr := simp)] theorem mul_bind (f : α → FreeMagma β) (x y : FreeMagma α) : x * y >>= f = (x >>= f) * (y >>= f) := rfl @[to_additive (attr := simp)] theorem pure_seq {α β : Type u} {f : α → β} {x : FreeMagma α} : pure f <*> x = f <$> x := rfl @[to_additive (attr := simp)] theorem mul_seq {α β : Type u} {f g : FreeMagma (α → β)} {x : FreeMagma α} : f * g <*> x = (f <*> x) * (g <*> x) := rfl @[to_additive] instance instLawfulMonad : LawfulMonad FreeMagma.{u} := LawfulMonad.mk' (pure_bind := fun f x ↦ rfl) (bind_assoc := fun x f g ↦ FreeMagma.recOnPure x (fun x ↦ rfl) fun x y ih1 ih2 ↦ by rw [mul_bind, mul_bind, mul_bind, ih1, ih2]) (id_map := fun x ↦ FreeMagma.recOnPure x (fun _ ↦ rfl) fun x y ih1 ih2 ↦ by rw [map_mul', ih1, ih2]) end Category end FreeMagma #adaptation_note /-- around nightly-2024-02-25, we need to write `mul x y` in the second pattern, instead of `x * y`. -/ /-- `FreeMagma` is traversable. -/ protected def FreeMagma.traverse {m : Type u → Type u} [Applicative m] {α β : Type u} (F : α → m β) : FreeMagma α → m (FreeMagma β) | FreeMagma.of x => FreeMagma.of <$> F x | mul x y => (· * ·) <$> x.traverse F <*> y.traverse F /-- `FreeAddMagma` is traversable. -/ protected def FreeAddMagma.traverse {m : Type u → Type u} [Applicative m] {α β : Type u} (F : α → m β) : FreeAddMagma α → m (FreeAddMagma β) | FreeAddMagma.of x => FreeAddMagma.of <$> F x | x + y => (· + ·) <$> x.traverse F <*> y.traverse F attribute [to_additive existing] FreeMagma.traverse namespace FreeMagma variable {α : Type u} section Category variable {β : Type u} @[to_additive] instance : Traversable FreeMagma := ⟨@FreeMagma.traverse⟩ variable {m : Type u → Type u} [Applicative m] (F : α → m β) @[to_additive (attr := simp)] theorem traverse_pure (x) : traverse F (pure x : FreeMagma α) = pure <$> F x := rfl @[to_additive (attr := simp)] theorem traverse_pure' : traverse F ∘ pure = fun x ↦ (pure <$> F x : m (FreeMagma β)) := rfl @[to_additive (attr := simp)] theorem traverse_mul (x y : FreeMagma α) : traverse F (x * y) = (· * ·) <$> traverse F x <*> traverse F y := rfl @[to_additive (attr := simp)] theorem traverse_mul' : Function.comp (traverse F) ∘ (HMul.hMul : FreeMagma α → FreeMagma α → FreeMagma α) = fun x y ↦ (· * ·) <$> traverse F x <*> traverse F y := rfl @[to_additive (attr := simp)] theorem traverse_eq (x) : FreeMagma.traverse F x = traverse F x := rfl -- Porting note (#10675): dsimp can not prove this @[to_additive (attr := simp, nolint simpNF)] theorem mul_map_seq (x y : FreeMagma α) : ((· * ·) <$> x <*> y : Id (FreeMagma α)) = (x * y : FreeMagma α) := rfl @[to_additive] instance : LawfulTraversable FreeMagma.{u} := { instLawfulMonad with id_traverse := fun x ↦ FreeMagma.recOnPure x (fun x ↦ rfl) fun x y ih1 ih2 ↦ by rw [traverse_mul, ih1, ih2, mul_map_seq] comp_traverse := fun f g x ↦ FreeMagma.recOnPure x (fun x ↦ by simp only [(· ∘ ·), traverse_pure, traverse_pure', functor_norm]) (fun x y ih1 ih2 ↦ by rw [traverse_mul, ih1, ih2, traverse_mul] simp [Functor.Comp.map_mk, Functor.map_map, (· ∘ ·), Comp.seq_mk, seq_map_assoc, map_seq, traverse_mul]) naturality := fun η α β f x ↦ FreeMagma.recOnPure x (fun x ↦ by simp only [traverse_pure, functor_norm, Function.comp_apply]) (fun x y ih1 ih2 ↦ by simp only [traverse_mul, functor_norm, ih1, ih2]) traverse_eq_map_id := fun f x ↦ FreeMagma.recOnPure x (fun _ ↦ rfl) fun x y ih1 ih2 ↦ by rw [traverse_mul, ih1, ih2, map_mul', mul_map_seq]; rfl } end Category end FreeMagma -- Porting note: changed String to Lean.Format #adaptation_note /-- around nightly-2024-02-25, we need to write `mul x y` in the second pattern, instead of `x * y`. -/ /-- Representation of an element of a free magma. -/ protected def FreeMagma.repr {α : Type u} [Repr α] : FreeMagma α → Lean.Format | FreeMagma.of x => repr x | mul x y => "( " ++ x.repr ++ " * " ++ y.repr ++ " )" /-- Representation of an element of a free additive magma. -/ protected def FreeAddMagma.repr {α : Type u} [Repr α] : FreeAddMagma α → Lean.Format | FreeAddMagma.of x => repr x | x + y => "( " ++ x.repr ++ " + " ++ y.repr ++ " )" attribute [to_additive existing] FreeMagma.repr @[to_additive] instance {α : Type u} [Repr α] : Repr (FreeMagma α) := ⟨fun o _ => FreeMagma.repr o⟩ #adaptation_note /-- around nightly-2024-02-25, we need to write `mul x y` in the second pattern, instead of `x * y`. -/ /-- Length of an element of a free magma. -/ def FreeMagma.length {α : Type u} : FreeMagma α → ℕ | FreeMagma.of _x => 1 | mul x y => x.length + y.length /-- Length of an element of a free additive magma. -/ def FreeAddMagma.length {α : Type u} : FreeAddMagma α → ℕ | FreeAddMagma.of _x => 1 | x + y => x.length + y.length attribute [to_additive existing (attr := simp)] FreeMagma.length /-- The length of an element of a free magma is positive. -/ @[to_additive "The length of an element of a free additive magma is positive."] lemma FreeMagma.length_pos {α : Type u} (x : FreeMagma α) : 0 < x.length := match x with | FreeMagma.of _ => Nat.succ_pos 0 | mul y z => Nat.add_pos_left (length_pos y) z.length /-- Associativity relations for an additive magma. -/ inductive AddMagma.AssocRel (α : Type u) [Add α] : α → α → Prop | intro : ∀ x y z, AddMagma.AssocRel α (x + y + z) (x + (y + z)) | left : ∀ w x y z, AddMagma.AssocRel α (w + (x + y + z)) (w + (x + (y + z))) /-- Associativity relations for a magma. -/ @[to_additive AddMagma.AssocRel "Associativity relations for an additive magma."] inductive Magma.AssocRel (α : Type u) [Mul α] : α → α → Prop | intro : ∀ x y z, Magma.AssocRel α (x * y * z) (x * (y * z)) | left : ∀ w x y z, Magma.AssocRel α (w * (x * y * z)) (w * (x * (y * z))) namespace Magma /-- Semigroup quotient of a magma. -/ @[to_additive AddMagma.FreeAddSemigroup "Additive semigroup quotient of an additive magma."] def AssocQuotient (α : Type u) [Mul α] : Type u := Quot <| AssocRel α namespace AssocQuotient variable {α : Type u} [Mul α] @[to_additive] theorem quot_mk_assoc (x y z : α) : Quot.mk (AssocRel α) (x * y * z) = Quot.mk _ (x * (y * z)) := Quot.sound (AssocRel.intro _ _ _) @[to_additive] theorem quot_mk_assoc_left (x y z w : α) : Quot.mk (AssocRel α) (x * (y * z * w)) = Quot.mk _ (x * (y * (z * w))) := Quot.sound (AssocRel.left _ _ _ _) @[to_additive] instance : Semigroup (AssocQuotient α) where mul x y := by refine Quot.liftOn₂ x y (fun x y ↦ Quot.mk _ (x * y)) ?_ ?_ · rintro a b₁ b₂ (⟨c, d, e⟩ | ⟨c, d, e, f⟩) <;> simp only · exact quot_mk_assoc_left _ _ _ _ · rw [← quot_mk_assoc, quot_mk_assoc_left, quot_mk_assoc] · rintro a₁ a₂ b (⟨c, d, e⟩ | ⟨c, d, e, f⟩) <;> simp only · simp only [quot_mk_assoc, quot_mk_assoc_left] · rw [quot_mk_assoc, quot_mk_assoc, quot_mk_assoc_left, quot_mk_assoc_left, quot_mk_assoc_left, ← quot_mk_assoc c d, ← quot_mk_assoc c d, quot_mk_assoc_left] mul_assoc x y z := Quot.induction_on₃ x y z fun a b c ↦ quot_mk_assoc a b c /-- Embedding from magma to its free semigroup. -/ @[to_additive "Embedding from additive magma to its free additive semigroup."] def of : α →ₙ* AssocQuotient α where toFun := Quot.mk _; map_mul' _x _y := rfl @[to_additive] instance [Inhabited α] : Inhabited (AssocQuotient α) := ⟨of default⟩ @[to_additive (attr := elab_as_elim, induction_eliminator)] protected theorem induction_on {C : AssocQuotient α → Prop} (x : AssocQuotient α) (ih : ∀ x, C (of x)) : C x := Quot.induction_on x ih section lift variable {β : Type v} [Semigroup β] (f : α →ₙ* β) @[to_additive (attr := ext 1100)] theorem hom_ext {f g : AssocQuotient α →ₙ* β} (h : f.comp of = g.comp of) : f = g := (DFunLike.ext _ _) fun x => AssocQuotient.induction_on x <| DFunLike.congr_fun h /-- Lifts a magma homomorphism `α → β` to a semigroup homomorphism `Magma.AssocQuotient α → β` given a semigroup `β`. -/ @[to_additive (attr := simps symm_apply) "Lifts an additive magma homomorphism `α → β` to an additive semigroup homomorphism `AddMagma.AssocQuotient α → β` given an additive semigroup `β`."] def lift : (α →ₙ* β) ≃ (AssocQuotient α →ₙ* β) where toFun f := { toFun := fun x ↦ Quot.liftOn x f <| by rintro a b (⟨c, d, e⟩ | ⟨c, d, e, f⟩) <;> simp only [map_mul, mul_assoc] map_mul' := fun x y ↦ Quot.induction_on₂ x y (map_mul f) } invFun f := f.comp of left_inv f := (DFunLike.ext _ _) fun x ↦ rfl right_inv f := hom_ext <| (DFunLike.ext _ _) fun x ↦ rfl @[to_additive (attr := simp)] theorem lift_of (x : α) : lift f (of x) = f x := rfl @[to_additive (attr := simp)] theorem lift_comp_of : (lift f).comp of = f := lift.symm_apply_apply f @[to_additive (attr := simp)] theorem lift_comp_of' (f : AssocQuotient α →ₙ* β) : lift (f.comp of) = f := lift.apply_symm_apply f end lift variable {β : Type v} [Mul β] (f : α →ₙ* β) /-- From a magma homomorphism `α →ₙ* β` to a semigroup homomorphism `Magma.AssocQuotient α →ₙ* Magma.AssocQuotient β`. -/ @[to_additive "From an additive magma homomorphism `α → β` to an additive semigroup homomorphism `AddMagma.AssocQuotient α → AddMagma.AssocQuotient β`."] def map : AssocQuotient α →ₙ* AssocQuotient β := lift (of.comp f) @[to_additive (attr := simp)] theorem map_of (x) : map f (of x) = of (f x) := rfl end AssocQuotient end Magma /-- Free additive semigroup over a given alphabet. -/ structure FreeAddSemigroup (α : Type u) where /-- The head of the element -/ head : α /-- The tail of the element -/ tail : List α compile_inductive% FreeAddSemigroup /-- Free semigroup over a given alphabet. -/ @[to_additive (attr := ext)] structure FreeSemigroup (α : Type u) where /-- The head of the element -/ head : α /-- The tail of the element -/ tail : List α compile_inductive% FreeSemigroup namespace FreeSemigroup variable {α : Type u} @[to_additive] instance : Semigroup (FreeSemigroup α) where mul L1 L2 := ⟨L1.1, L1.2 ++ L2.1 :: L2.2⟩ mul_assoc _L1 _L2 _L3 := FreeSemigroup.ext rfl <| List.append_assoc _ _ _ @[to_additive (attr := simp)] theorem head_mul (x y : FreeSemigroup α) : (x * y).1 = x.1 := rfl @[to_additive (attr := simp)] theorem tail_mul (x y : FreeSemigroup α) : (x * y).2 = x.2 ++ y.1 :: y.2 := rfl @[to_additive (attr := simp)] theorem mk_mul_mk (x y : α) (L1 L2 : List α) : mk x L1 * mk y L2 = mk x (L1 ++ y :: L2) := rfl /-- The embedding `α → FreeSemigroup α`. -/ @[to_additive (attr := simps) "The embedding `α → FreeAddSemigroup α`."] def of (x : α) : FreeSemigroup α := ⟨x, []⟩ /-- Length of an element of free semigroup. -/ @[to_additive "Length of an element of free additive semigroup"] def length (x : FreeSemigroup α) : ℕ := x.tail.length + 1 @[to_additive (attr := simp)] theorem length_mul (x y : FreeSemigroup α) : (x * y).length = x.length + y.length := by simp [length, Nat.add_right_comm, List.length, List.length_append] @[to_additive (attr := simp)] theorem length_of (x : α) : (of x).length = 1 := rfl @[to_additive] instance [Inhabited α] : Inhabited (FreeSemigroup α) := ⟨of default⟩ /-- Recursor for free semigroup using `of` and `*`. -/ @[to_additive (attr := elab_as_elim, induction_eliminator) "Recursor for free additive semigroup using `of` and `+`."] protected def recOnMul {C : FreeSemigroup α → Sort l} (x) (ih1 : ∀ x, C (of x)) (ih2 : ∀ x y, C (of x) → C y → C (of x * y)) : C x := FreeSemigroup.recOn x fun f s ↦ List.recOn s ih1 (fun hd tl ih f ↦ ih2 f ⟨hd, tl⟩ (ih1 f) (ih hd)) f @[to_additive (attr := ext 1100)] theorem hom_ext {β : Type v} [Mul β] {f g : FreeSemigroup α →ₙ* β} (h : f ∘ of = g ∘ of) : f = g := (DFunLike.ext _ _) fun x ↦ FreeSemigroup.recOnMul x (congr_fun h) fun x y hx hy ↦ by simp only [map_mul, *] section lift variable {β : Type v} [Semigroup β] (f : α → β) /-- Lifts a function `α → β` to a semigroup homomorphism `FreeSemigroup α → β` given a semigroup `β`. -/ @[to_additive (attr := simps symm_apply) "Lifts a function `α → β` to an additive semigroup homomorphism `FreeAddSemigroup α → β` given an additive semigroup `β`."] def lift : (α → β) ≃ (FreeSemigroup α →ₙ* β) where toFun f := { toFun := fun x ↦ x.2.foldl (fun a b ↦ a * f b) (f x.1) map_mul' := fun x y ↦ by simp [head_mul, tail_mul, ← List.foldl_map, List.foldl_append, List.foldl_cons, List.foldl_assoc] } invFun f := f ∘ of left_inv f := rfl right_inv f := hom_ext rfl @[to_additive (attr := simp)] theorem lift_of (x : α) : lift f (of x) = f x := rfl @[to_additive (attr := simp)] theorem lift_comp_of : lift f ∘ of = f := rfl @[to_additive (attr := simp)] theorem lift_comp_of' (f : FreeSemigroup α →ₙ* β) : lift (f ∘ of) = f := hom_ext rfl @[to_additive] theorem lift_of_mul (x y) : lift f (of x * y) = f x * lift f y := by rw [map_mul, lift_of] end lift section Map variable {β : Type v} (f : α → β) /-- The unique semigroup homomorphism that sends `of x` to `of (f x)`. -/ @[to_additive "The unique additive semigroup homomorphism that sends `of x` to `of (f x)`."] def map : FreeSemigroup α →ₙ* FreeSemigroup β := lift <| of ∘ f @[to_additive (attr := simp)] theorem map_of (x) : map f (of x) = of (f x) := rfl @[to_additive (attr := simp)] theorem length_map (x) : (map f x).length = x.length := FreeSemigroup.recOnMul x (fun x ↦ rfl) (fun x y hx hy ↦ by simp only [map_mul, length_mul, *]) end Map section Category variable {β : Type u} @[to_additive] instance : Monad FreeSemigroup where pure := of bind x f := lift f x /-- Recursor that uses `pure` instead of `of`. -/ @[to_additive (attr := elab_as_elim) "Recursor that uses `pure` instead of `of`."] def recOnPure {C : FreeSemigroup α → Sort l} (x) (ih1 : ∀ x, C (pure x)) (ih2 : ∀ x y, C (pure x) → C y → C (pure x * y)) : C x := FreeSemigroup.recOnMul x ih1 ih2 @[to_additive (attr := simp)] theorem map_pure (f : α → β) (x) : (f <$> pure x : FreeSemigroup β) = pure (f x) := rfl @[to_additive (attr := simp)] theorem map_mul' (f : α → β) (x y : FreeSemigroup α) : f <$> (x * y) = f <$> x * f <$> y := map_mul (map f) _ _ @[to_additive (attr := simp)] theorem pure_bind (f : α → FreeSemigroup β) (x) : pure x >>= f = f x := rfl @[to_additive (attr := simp)] theorem mul_bind (f : α → FreeSemigroup β) (x y : FreeSemigroup α) : x * y >>= f = (x >>= f) * (y >>= f) := map_mul (lift f) _ _ @[to_additive (attr := simp)] theorem pure_seq {f : α → β} {x : FreeSemigroup α} : pure f <*> x = f <$> x := rfl @[to_additive (attr := simp)] theorem mul_seq {f g : FreeSemigroup (α → β)} {x : FreeSemigroup α} : f * g <*> x = (f <*> x) * (g <*> x) := mul_bind _ _ _ @[to_additive] instance instLawfulMonad : LawfulMonad FreeSemigroup.{u} := LawfulMonad.mk' (pure_bind := fun _ _ ↦ rfl) (bind_assoc := fun x g f ↦ recOnPure x (fun x ↦ rfl) fun x y ih1 ih2 ↦ by rw [mul_bind, mul_bind, mul_bind, ih1, ih2]) (id_map := fun x ↦ recOnPure x (fun _ ↦ rfl) fun x y ih1 ih2 ↦ by rw [map_mul', ih1, ih2]) /-- `FreeSemigroup` is traversable. -/ @[to_additive "`FreeAddSemigroup` is traversable."] protected def traverse {m : Type u → Type u} [Applicative m] {α β : Type u} (F : α → m β) (x : FreeSemigroup α) : m (FreeSemigroup β) := recOnPure x (fun x ↦ pure <$> F x) fun _x _y ihx ihy ↦ (· * ·) <$> ihx <*> ihy @[to_additive] instance : Traversable FreeSemigroup := ⟨@FreeSemigroup.traverse⟩ variable {m : Type u → Type u} [Applicative m] (F : α → m β) @[to_additive (attr := simp)] theorem traverse_pure (x) : traverse F (pure x : FreeSemigroup α) = pure <$> F x := rfl @[to_additive (attr := simp)] theorem traverse_pure' : traverse F ∘ pure = fun x ↦ (pure <$> F x : m (FreeSemigroup β)) := rfl section variable [LawfulApplicative m] @[to_additive (attr := simp)] theorem traverse_mul (x y : FreeSemigroup α) : traverse F (x * y) = (· * ·) <$> traverse F x <*> traverse F y := let ⟨x, L1⟩ := x let ⟨y, L2⟩ := y List.recOn L1 (fun x ↦ rfl) (fun hd tl ih x ↦ show (· * ·) <$> pure <$> F x <*> traverse F (mk hd tl * mk y L2) = (· * ·) <$> ((· * ·) <$> pure <$> F x <*> traverse F (mk hd tl)) <*> traverse F (mk y L2) by rw [ih]; simp only [(· ∘ ·), (mul_assoc _ _ _).symm, functor_norm]) x @[to_additive (attr := simp)] theorem traverse_mul' : Function.comp (traverse F) ∘ (HMul.hMul : FreeSemigroup α → FreeSemigroup α → FreeSemigroup α) = fun x y ↦ (· * ·) <$> traverse F x <*> traverse F y := funext fun x ↦ funext fun y ↦ traverse_mul F x y end @[to_additive (attr := simp)] theorem traverse_eq (x) : FreeSemigroup.traverse F x = traverse F x := rfl -- Porting note (#10675): dsimp can not prove this @[to_additive (attr := simp, nolint simpNF)] theorem mul_map_seq (x y : FreeSemigroup α) : ((· * ·) <$> x <*> y : Id (FreeSemigroup α)) = (x * y : FreeSemigroup α) := rfl @[to_additive] instance : LawfulTraversable FreeSemigroup.{u} := { instLawfulMonad with id_traverse := fun x ↦ FreeSemigroup.recOnMul x (fun x ↦ rfl) fun x y ih1 ih2 ↦ by rw [traverse_mul, ih1, ih2, mul_map_seq] comp_traverse := fun f g x ↦ recOnPure x (fun x ↦ by simp only [traverse_pure, functor_norm, (· ∘ ·)]) fun x y ih1 ih2 ↦ by (rw [traverse_mul, ih1, ih2, traverse_mul, Functor.Comp.map_mk]; simp only [Function.comp, functor_norm, traverse_mul]) naturality := fun η α β f x ↦ recOnPure x (fun x ↦ by simp only [traverse_pure, functor_norm, Function.comp]) (fun x y ih1 ih2 ↦ by simp only [traverse_mul, functor_norm, ih1, ih2]) traverse_eq_map_id := fun f x ↦ FreeSemigroup.recOnMul x (fun _ ↦ rfl) fun x y ih1 ih2 ↦ by rw [traverse_mul, ih1, ih2, map_mul', mul_map_seq]; rfl } end Category @[to_additive] instance [DecidableEq α] : DecidableEq (FreeSemigroup α) := fun _ _ ↦ decidable_of_iff' _ FreeSemigroup.ext_iff end FreeSemigroup namespace FreeMagma variable {α : Type u} {β : Type v} /-- The canonical multiplicative morphism from `FreeMagma α` to `FreeSemigroup α`. -/ @[to_additive "The canonical additive morphism from `FreeAddMagma α` to `FreeAddSemigroup α`."] def toFreeSemigroup : FreeMagma α →ₙ* FreeSemigroup α := FreeMagma.lift FreeSemigroup.of @[to_additive (attr := simp)] theorem toFreeSemigroup_of (x : α) : toFreeSemigroup (of x) = FreeSemigroup.of x := rfl @[to_additive (attr := simp)] theorem toFreeSemigroup_comp_of : @toFreeSemigroup α ∘ of = FreeSemigroup.of := rfl @[to_additive] theorem toFreeSemigroup_comp_map (f : α → β) : toFreeSemigroup.comp (map f) = (FreeSemigroup.map f).comp toFreeSemigroup := by ext1; rfl @[to_additive] theorem toFreeSemigroup_map (f : α → β) (x : FreeMagma α) : toFreeSemigroup (map f x) = FreeSemigroup.map f (toFreeSemigroup x) := DFunLike.congr_fun (toFreeSemigroup_comp_map f) x @[to_additive (attr := simp)] theorem length_toFreeSemigroup (x : FreeMagma α) : (toFreeSemigroup x).length = x.length := FreeMagma.recOnMul x (fun x ↦ rfl) fun x y hx hy ↦ by rw [map_mul, FreeSemigroup.length_mul, hx, hy]; rfl end FreeMagma /-- Isomorphism between `Magma.AssocQuotient (FreeMagma α)` and `FreeSemigroup α`. -/ @[to_additive "Isomorphism between `AddMagma.AssocQuotient (FreeAddMagma α)` and `FreeAddSemigroup α`."] def FreeMagmaAssocQuotientEquiv (α : Type u) : Magma.AssocQuotient (FreeMagma α) ≃* FreeSemigroup α := (Magma.AssocQuotient.lift FreeMagma.toFreeSemigroup).toMulEquiv (FreeSemigroup.lift (Magma.AssocQuotient.of ∘ FreeMagma.of)) (by ext; rfl) (by ext1; rfl)
Algebra\FreeAlgebra.lean
/- Copyright (c) 2020 Adam Topaz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison, Adam Topaz, Eric Wieser -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors import Mathlib.RingTheory.Adjoin.Basic /-! # Free Algebras Given a commutative semiring `R`, and a type `X`, we construct the free unital, associative `R`-algebra on `X`. ## Notation 1. `FreeAlgebra R X` is the free algebra itself. It is endowed with an `R`-algebra structure. 2. `FreeAlgebra.ι R` is the function `X → FreeAlgebra R X`. 3. Given a function `f : X → A` to an R-algebra `A`, `lift R f` is the lift of `f` to an `R`-algebra morphism `FreeAlgebra R X → A`. ## Theorems 1. `ι_comp_lift` states that the composition `(lift R f) ∘ (ι R)` is identical to `f`. 2. `lift_unique` states that whenever an R-algebra morphism `g : FreeAlgebra R X → A` is given whose composition with `ι R` is `f`, then one has `g = lift R f`. 3. `hom_ext` is a variant of `lift_unique` in the form of an extensionality theorem. 4. `lift_comp_ι` is a combination of `ι_comp_lift` and `lift_unique`. It states that the lift of the composition of an algebra morphism with `ι` is the algebra morphism itself. 5. `equivMonoidAlgebraFreeMonoid : FreeAlgebra R X ≃ₐ[R] MonoidAlgebra R (FreeMonoid X)` 6. An inductive principle `induction`. ## Implementation details We construct the free algebra on `X` as a quotient of an inductive type `FreeAlgebra.Pre` by an inductively defined relation `FreeAlgebra.Rel`. Explicitly, the construction involves three steps: 1. We construct an inductive type `FreeAlgebra.Pre R X`, the terms of which should be thought of as representatives for the elements of `FreeAlgebra R X`. It is the free type with maps from `R` and `X`, and with two binary operations `add` and `mul`. 2. We construct an inductive relation `FreeAlgebra.Rel R X` on `FreeAlgebra.Pre R X`. This is the smallest relation for which the quotient is an `R`-algebra where addition resp. multiplication are induced by `add` resp. `mul` from 1., and for which the map from `R` is the structure map for the algebra. 3. The free algebra `FreeAlgebra R X` is the quotient of `FreeAlgebra.Pre R X` by the relation `FreeAlgebra.Rel R X`. -/ variable (R : Type*) [CommSemiring R] variable (X : Type*) namespace FreeAlgebra /-- This inductive type is used to express representatives of the free algebra. -/ inductive Pre | of : X → Pre | ofScalar : R → Pre | add : Pre → Pre → Pre | mul : Pre → Pre → Pre namespace Pre instance : Inhabited (Pre R X) := ⟨ofScalar 0⟩ -- Note: These instances are only used to simplify the notation. /-- Coercion from `X` to `Pre R X`. Note: Used for notation only. -/ def hasCoeGenerator : Coe X (Pre R X) := ⟨of⟩ /-- Coercion from `R` to `Pre R X`. Note: Used for notation only. -/ def hasCoeSemiring : Coe R (Pre R X) := ⟨ofScalar⟩ /-- Multiplication in `Pre R X` defined as `Pre.mul`. Note: Used for notation only. -/ def hasMul : Mul (Pre R X) := ⟨mul⟩ /-- Addition in `Pre R X` defined as `Pre.add`. Note: Used for notation only. -/ def hasAdd : Add (Pre R X) := ⟨add⟩ /-- Zero in `Pre R X` defined as the image of `0` from `R`. Note: Used for notation only. -/ def hasZero : Zero (Pre R X) := ⟨ofScalar 0⟩ /-- One in `Pre R X` defined as the image of `1` from `R`. Note: Used for notation only. -/ def hasOne : One (Pre R X) := ⟨ofScalar 1⟩ /-- Scalar multiplication defined as multiplication by the image of elements from `R`. Note: Used for notation only. -/ def hasSMul : SMul R (Pre R X) := ⟨fun r m ↦ mul (ofScalar r) m⟩ end Pre attribute [local instance] Pre.hasCoeGenerator Pre.hasCoeSemiring Pre.hasMul Pre.hasAdd Pre.hasZero Pre.hasOne Pre.hasSMul /-- Given a function from `X` to an `R`-algebra `A`, `lift_fun` provides a lift of `f` to a function from `Pre R X` to `A`. This is mainly used in the construction of `FreeAlgebra.lift`. -/ -- Porting note: recOn was replaced to preserve computability, see lean4#2049 def liftFun {A : Type*} [Semiring A] [Algebra R A] (f : X → A) : Pre R X → A | .of t => f t | .add a b => liftFun f a + liftFun f b | .mul a b => liftFun f a * liftFun f b | .ofScalar c => algebraMap _ _ c /-- An inductively defined relation on `Pre R X` used to force the initial algebra structure on the associated quotient. -/ inductive Rel : Pre R X → Pre R X → Prop -- force `ofScalar` to be a central semiring morphism | add_scalar {r s : R} : Rel (↑(r + s)) (↑r + ↑s) | mul_scalar {r s : R} : Rel (↑(r * s)) (↑r * ↑s) | central_scalar {r : R} {a : Pre R X} : Rel (r * a) (a * r) -- commutative additive semigroup | add_assoc {a b c : Pre R X} : Rel (a + b + c) (a + (b + c)) | add_comm {a b : Pre R X} : Rel (a + b) (b + a) | zero_add {a : Pre R X} : Rel (0 + a) a -- multiplicative monoid | mul_assoc {a b c : Pre R X} : Rel (a * b * c) (a * (b * c)) | one_mul {a : Pre R X} : Rel (1 * a) a | mul_one {a : Pre R X} : Rel (a * 1) a -- distributivity | left_distrib {a b c : Pre R X} : Rel (a * (b + c)) (a * b + a * c) | right_distrib {a b c : Pre R X} : Rel ((a + b) * c) (a * c + b * c) -- other relations needed for semiring | zero_mul {a : Pre R X} : Rel (0 * a) 0 | mul_zero {a : Pre R X} : Rel (a * 0) 0 -- compatibility | add_compat_left {a b c : Pre R X} : Rel a b → Rel (a + c) (b + c) | add_compat_right {a b c : Pre R X} : Rel a b → Rel (c + a) (c + b) | mul_compat_left {a b c : Pre R X} : Rel a b → Rel (a * c) (b * c) | mul_compat_right {a b c : Pre R X} : Rel a b → Rel (c * a) (c * b) end FreeAlgebra /-- The free algebra for the type `X` over the commutative semiring `R`. -/ def FreeAlgebra := Quot (FreeAlgebra.Rel R X) namespace FreeAlgebra attribute [local instance] Pre.hasCoeGenerator Pre.hasCoeSemiring Pre.hasMul Pre.hasAdd Pre.hasZero Pre.hasOne Pre.hasSMul /-! Define the basic operations-/ instance instSMul {A} [CommSemiring A] [Algebra R A] : SMul R (FreeAlgebra A X) where smul r := Quot.map (HMul.hMul (algebraMap R A r : Pre A X)) fun _ _ ↦ Rel.mul_compat_right instance instZero : Zero (FreeAlgebra R X) where zero := Quot.mk _ 0 instance instOne : One (FreeAlgebra R X) where one := Quot.mk _ 1 instance instAdd : Add (FreeAlgebra R X) where add := Quot.map₂ HAdd.hAdd (fun _ _ _ ↦ Rel.add_compat_right) fun _ _ _ ↦ Rel.add_compat_left instance instMul : Mul (FreeAlgebra R X) where mul := Quot.map₂ HMul.hMul (fun _ _ _ ↦ Rel.mul_compat_right) fun _ _ _ ↦ Rel.mul_compat_left -- `Quot.mk` is an implementation detail of `FreeAlgebra`, so this lemma is private private theorem mk_mul (x y : Pre R X) : Quot.mk (Rel R X) (x * y) = (HMul.hMul (self := instHMul (α := FreeAlgebra R X)) (Quot.mk (Rel R X) x) (Quot.mk (Rel R X) y)) := rfl /-! Build the semiring structure. We do this one piece at a time as this is convenient for proving the `nsmul` fields. -/ instance instMonoidWithZero : MonoidWithZero (FreeAlgebra R X) where mul_assoc := by rintro ⟨⟩ ⟨⟩ ⟨⟩ exact Quot.sound Rel.mul_assoc one := Quot.mk _ 1 one_mul := by rintro ⟨⟩ exact Quot.sound Rel.one_mul mul_one := by rintro ⟨⟩ exact Quot.sound Rel.mul_one zero_mul := by rintro ⟨⟩ exact Quot.sound Rel.zero_mul mul_zero := by rintro ⟨⟩ exact Quot.sound Rel.mul_zero instance instDistrib : Distrib (FreeAlgebra R X) where left_distrib := by rintro ⟨⟩ ⟨⟩ ⟨⟩ exact Quot.sound Rel.left_distrib right_distrib := by rintro ⟨⟩ ⟨⟩ ⟨⟩ exact Quot.sound Rel.right_distrib instance instAddCommMonoid : AddCommMonoid (FreeAlgebra R X) where add_assoc := by rintro ⟨⟩ ⟨⟩ ⟨⟩ exact Quot.sound Rel.add_assoc zero_add := by rintro ⟨⟩ exact Quot.sound Rel.zero_add add_zero := by rintro ⟨⟩ change Quot.mk _ _ = _ rw [Quot.sound Rel.add_comm, Quot.sound Rel.zero_add] add_comm := by rintro ⟨⟩ ⟨⟩ exact Quot.sound Rel.add_comm nsmul := (· • ·) nsmul_zero := by rintro ⟨⟩ change Quot.mk _ (_ * _) = _ rw [map_zero] exact Quot.sound Rel.zero_mul nsmul_succ n := by rintro ⟨a⟩ dsimp only [HSMul.hSMul, instSMul, Quot.map] rw [map_add, map_one, mk_mul, mk_mul, ← add_one_mul (_ : FreeAlgebra R X)] congr 1 exact Quot.sound Rel.add_scalar instance : Semiring (FreeAlgebra R X) where __ := instMonoidWithZero R X __ := instAddCommMonoid R X __ := instDistrib R X natCast n := Quot.mk _ (n : R) natCast_zero := by simp; rfl natCast_succ n := by simpa using Quot.sound Rel.add_scalar instance : Inhabited (FreeAlgebra R X) := ⟨0⟩ instance instAlgebra {A} [CommSemiring A] [Algebra R A] : Algebra R (FreeAlgebra A X) where toRingHom := ({ toFun := fun r => Quot.mk _ r map_one' := rfl map_mul' := fun _ _ => Quot.sound Rel.mul_scalar map_zero' := rfl map_add' := fun _ _ => Quot.sound Rel.add_scalar } : A →+* FreeAlgebra A X).comp (algebraMap R A) commutes' _ := by rintro ⟨⟩ exact Quot.sound Rel.central_scalar smul_def' _ _ := rfl -- verify there is no diamond at `default` transparency but we will need -- `reducible_and_instances` which currently fails #10906 variable (S : Type) [CommSemiring S] in example : (Semiring.toNatAlgebra : Algebra ℕ (FreeAlgebra S X)) = instAlgebra _ _ := rfl instance {R S A} [CommSemiring R] [CommSemiring S] [CommSemiring A] [SMul R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] : IsScalarTower R S (FreeAlgebra A X) where smul_assoc r s x := by change algebraMap S A (r • s) • x = algebraMap R A _ • (algebraMap S A _ • x) rw [← smul_assoc] congr simp only [Algebra.algebraMap_eq_smul_one, smul_eq_mul] rw [smul_assoc, ← smul_one_mul] instance {R S A} [CommSemiring R] [CommSemiring S] [CommSemiring A] [Algebra R A] [Algebra S A] : SMulCommClass R S (FreeAlgebra A X) where smul_comm r s x := smul_comm (algebraMap R A r) (algebraMap S A s) x instance {S : Type*} [CommRing S] : Ring (FreeAlgebra S X) := Algebra.semiringToRing S -- verify there is no diamond but we will need -- `reducible_and_instances` which currently fails #10906 variable (S : Type) [CommRing S] in example : (Ring.toIntAlgebra _ : Algebra ℤ (FreeAlgebra S X)) = instAlgebra _ _ := rfl variable {X} /-- The canonical function `X → FreeAlgebra R X`. -/ irreducible_def ι : X → FreeAlgebra R X := fun m ↦ Quot.mk _ m @[simp] theorem quot_mk_eq_ι (m : X) : Quot.mk (FreeAlgebra.Rel R X) m = ι R m := by rw [ι_def] variable {A : Type*} [Semiring A] [Algebra R A] /-- Internal definition used to define `lift` -/ private def liftAux (f : X → A) : FreeAlgebra R X →ₐ[R] A where toFun a := Quot.liftOn a (liftFun _ _ f) fun a b h ↦ by induction' h · exact (algebraMap R A).map_add _ _ · exact (algebraMap R A).map_mul _ _ · apply Algebra.commutes · change _ + _ + _ = _ + (_ + _) rw [add_assoc] · change _ + _ = _ + _ rw [add_comm] · change algebraMap _ _ _ + liftFun R X f _ = liftFun R X f _ simp · change _ * _ * _ = _ * (_ * _) rw [mul_assoc] · change algebraMap _ _ _ * liftFun R X f _ = liftFun R X f _ simp · change liftFun R X f _ * algebraMap _ _ _ = liftFun R X f _ simp · change _ * (_ + _) = _ * _ + _ * _ rw [left_distrib] · change (_ + _) * _ = _ * _ + _ * _ rw [right_distrib] · change algebraMap _ _ _ * _ = algebraMap _ _ _ simp · change _ * algebraMap _ _ _ = algebraMap _ _ _ simp repeat change liftFun R X f _ + liftFun R X f _ = _ simp only [*] rfl repeat change liftFun R X f _ * liftFun R X f _ = _ simp only [*] rfl map_one' := by change algebraMap _ _ _ = _ simp map_mul' := by rintro ⟨⟩ ⟨⟩ rfl map_zero' := by dsimp change algebraMap _ _ _ = _ simp map_add' := by rintro ⟨⟩ ⟨⟩ rfl commutes' := by tauto /-- Given a function `f : X → A` where `A` is an `R`-algebra, `lift R f` is the unique lift of `f` to a morphism of `R`-algebras `FreeAlgebra R X → A`. -/ @[irreducible] def lift : (X → A) ≃ (FreeAlgebra R X →ₐ[R] A) := { toFun := liftAux R invFun := fun F ↦ F ∘ ι R left_inv := fun f ↦ by ext simp only [Function.comp_apply, ι_def] rfl right_inv := fun F ↦ by ext t rcases t with ⟨x⟩ induction x with | of => change ((F : FreeAlgebra R X → A) ∘ ι R) _ = _ simp only [Function.comp_apply, ι_def] | ofScalar x => change algebraMap _ _ x = F (algebraMap _ _ x) rw [AlgHom.commutes F _] | add a b ha hb => -- Porting note: it is necessary to declare fa and fb explicitly otherwise Lean refuses -- to consider `Quot.mk (Rel R X) ·` as element of FreeAlgebra R X let fa : FreeAlgebra R X := Quot.mk (Rel R X) a let fb : FreeAlgebra R X := Quot.mk (Rel R X) b change liftAux R (F ∘ ι R) (fa + fb) = F (fa + fb) rw [map_add, map_add, ha, hb] | mul a b ha hb => let fa : FreeAlgebra R X := Quot.mk (Rel R X) a let fb : FreeAlgebra R X := Quot.mk (Rel R X) b change liftAux R (F ∘ ι R) (fa * fb) = F (fa * fb) rw [map_mul, map_mul, ha, hb] } @[simp] theorem liftAux_eq (f : X → A) : liftAux R f = lift R f := by rw [lift] rfl @[simp] theorem lift_symm_apply (F : FreeAlgebra R X →ₐ[R] A) : (lift R).symm F = F ∘ ι R := by rw [lift] rfl variable {R} @[simp] theorem ι_comp_lift (f : X → A) : (lift R f : FreeAlgebra R X → A) ∘ ι R = f := by ext rw [Function.comp_apply, ι_def, lift] rfl @[simp] theorem lift_ι_apply (f : X → A) (x) : lift R f (ι R x) = f x := by rw [ι_def, lift] rfl @[simp] theorem lift_unique (f : X → A) (g : FreeAlgebra R X →ₐ[R] A) : (g : FreeAlgebra R X → A) ∘ ι R = f ↔ g = lift R f := by rw [← (lift R).symm_apply_eq, lift] rfl /-! Since we have set the basic definitions as `@[Irreducible]`, from this point onwards one should only use the universal properties of the free algebra, and consider the actual implementation as a quotient of an inductive type as completely hidden. -/ -- Marking `FreeAlgebra` irreducible makes `Ring` instances inaccessible on quotients. -- https://leanprover.zulipchat.com/#narrow/stream/113488-general/topic/algebra.2Esemiring_to_ring.20breaks.20semimodule.20typeclass.20lookup/near/212580241 -- For now, we avoid this by not marking it irreducible. @[simp] theorem lift_comp_ι (g : FreeAlgebra R X →ₐ[R] A) : lift R ((g : FreeAlgebra R X → A) ∘ ι R) = g := by rw [← lift_symm_apply] exact (lift R).apply_symm_apply g /-- See note [partially-applied ext lemmas]. -/ @[ext high] theorem hom_ext {f g : FreeAlgebra R X →ₐ[R] A} (w : (f : FreeAlgebra R X → A) ∘ ι R = (g : FreeAlgebra R X → A) ∘ ι R) : f = g := by rw [← lift_symm_apply, ← lift_symm_apply] at w exact (lift R).symm.injective w /-- The free algebra on `X` is "just" the monoid algebra on the free monoid on `X`. This would be useful when constructing linear maps out of a free algebra, for example. -/ noncomputable def equivMonoidAlgebraFreeMonoid : FreeAlgebra R X ≃ₐ[R] MonoidAlgebra R (FreeMonoid X) := AlgEquiv.ofAlgHom (lift R fun x ↦ (MonoidAlgebra.of R (FreeMonoid X)) (FreeMonoid.of x)) ((MonoidAlgebra.lift R (FreeMonoid X) (FreeAlgebra R X)) (FreeMonoid.lift (ι R))) (by apply MonoidAlgebra.algHom_ext; intro x refine FreeMonoid.recOn x ?_ ?_ · simp rfl · intro x y ih simp at ih simp [ih]) (by ext simp) /-- `FreeAlgebra R X` is nontrivial when `R` is. -/ instance [Nontrivial R] : Nontrivial (FreeAlgebra R X) := equivMonoidAlgebraFreeMonoid.surjective.nontrivial /-- `FreeAlgebra R X` has no zero-divisors when `R` has no zero-divisors. -/ instance instNoZeroDivisors [NoZeroDivisors R] : NoZeroDivisors (FreeAlgebra R X) := equivMonoidAlgebraFreeMonoid.toMulEquiv.noZeroDivisors /-- `FreeAlgebra R X` is a domain when `R` is an integral domain. -/ instance instIsDomain {R X} [CommRing R] [IsDomain R] : IsDomain (FreeAlgebra R X) := NoZeroDivisors.to_isDomain _ section /-- The left-inverse of `algebraMap`. -/ def algebraMapInv : FreeAlgebra R X →ₐ[R] R := lift R (0 : X → R) theorem algebraMap_leftInverse : Function.LeftInverse algebraMapInv (algebraMap R <| FreeAlgebra R X) := fun x ↦ by simp [algebraMapInv] @[simp] theorem algebraMap_inj (x y : R) : algebraMap R (FreeAlgebra R X) x = algebraMap R (FreeAlgebra R X) y ↔ x = y := algebraMap_leftInverse.injective.eq_iff @[simp] theorem algebraMap_eq_zero_iff (x : R) : algebraMap R (FreeAlgebra R X) x = 0 ↔ x = 0 := map_eq_zero_iff (algebraMap _ _) algebraMap_leftInverse.injective @[simp] theorem algebraMap_eq_one_iff (x : R) : algebraMap R (FreeAlgebra R X) x = 1 ↔ x = 1 := map_eq_one_iff (algebraMap _ _) algebraMap_leftInverse.injective -- this proof is copied from the approach in `FreeAbelianGroup.of_injective` theorem ι_injective [Nontrivial R] : Function.Injective (ι R : X → FreeAlgebra R X) := fun x y hoxy ↦ by_contradiction <| by classical exact fun hxy : x ≠ y ↦ let f : FreeAlgebra R X →ₐ[R] R := lift R fun z ↦ if x = z then (1 : R) else 0 have hfx1 : f (ι R x) = 1 := (lift_ι_apply _ _).trans <| if_pos rfl have hfy1 : f (ι R y) = 1 := hoxy ▸ hfx1 have hfy0 : f (ι R y) = 0 := (lift_ι_apply _ _).trans <| if_neg hxy one_ne_zero <| hfy1.symm.trans hfy0 @[simp] theorem ι_inj [Nontrivial R] (x y : X) : ι R x = ι R y ↔ x = y := ι_injective.eq_iff @[simp] theorem ι_ne_algebraMap [Nontrivial R] (x : X) (r : R) : ι R x ≠ algebraMap R _ r := fun h ↦ by let f0 : FreeAlgebra R X →ₐ[R] R := lift R 0 let f1 : FreeAlgebra R X →ₐ[R] R := lift R 1 have hf0 : f0 (ι R x) = 0 := lift_ι_apply _ _ have hf1 : f1 (ι R x) = 1 := lift_ι_apply _ _ rw [h, f0.commutes, Algebra.id.map_eq_self] at hf0 rw [h, f1.commutes, Algebra.id.map_eq_self] at hf1 exact zero_ne_one (hf0.symm.trans hf1) @[simp] theorem ι_ne_zero [Nontrivial R] (x : X) : ι R x ≠ 0 := ι_ne_algebraMap x 0 @[simp] theorem ι_ne_one [Nontrivial R] (x : X) : ι R x ≠ 1 := ι_ne_algebraMap x 1 end end FreeAlgebra /- There is something weird in the above namespace that breaks the typeclass resolution of `CoeSort` below. Closing it and reopening it fixes it... -/ namespace FreeAlgebra /-- An induction principle for the free algebra. If `C` holds for the `algebraMap` of `r : R` into `FreeAlgebra R X`, the `ι` of `x : X`, and is preserved under addition and muliplication, then it holds for all of `FreeAlgebra R X`. -/ @[elab_as_elim, induction_eliminator] theorem induction {C : FreeAlgebra R X → Prop} (h_grade0 : ∀ r, C (algebraMap R (FreeAlgebra R X) r)) (h_grade1 : ∀ x, C (ι R x)) (h_mul : ∀ a b, C a → C b → C (a * b)) (h_add : ∀ a b, C a → C b → C (a + b)) (a : FreeAlgebra R X) : C a := by -- the arguments are enough to construct a subalgebra, and a mapping into it from X let s : Subalgebra R (FreeAlgebra R X) := { carrier := C mul_mem' := h_mul _ _ add_mem' := h_add _ _ algebraMap_mem' := h_grade0 } let of : X → s := Subtype.coind (ι R) h_grade1 -- the mapping through the subalgebra is the identity have of_id : AlgHom.id R (FreeAlgebra R X) = s.val.comp (lift R of) := by ext simp [of, Subtype.coind] -- finding a proof is finding an element of the subalgebra suffices a = lift R of a by rw [this] exact Subtype.prop (lift R of a) simp [AlgHom.ext_iff] at of_id exact of_id a @[simp] theorem adjoin_range_ι : Algebra.adjoin R (Set.range (ι R : X → FreeAlgebra R X)) = ⊤ := by set S := Algebra.adjoin R (Set.range (ι R : X → FreeAlgebra R X)) refine top_unique fun x hx => ?_; clear hx induction x with | h_grade0 => exact S.algebraMap_mem _ | h_add x y hx hy => exact S.add_mem hx hy | h_mul x y hx hy => exact S.mul_mem hx hy | h_grade1 x => exact Algebra.subset_adjoin (Set.mem_range_self _) variable {A : Type*} [Semiring A] [Algebra R A] /-- Noncommutative version of `Algebra.adjoin_range_eq_range_aeval`. -/ theorem _root_.Algebra.adjoin_range_eq_range_freeAlgebra_lift (f : X → A) : Algebra.adjoin R (Set.range f) = (FreeAlgebra.lift R f).range := by simp only [← Algebra.map_top, ← adjoin_range_ι, AlgHom.map_adjoin, ← Set.range_comp, (· ∘ ·), lift_ι_apply] /-- Noncommutative version of `Algebra.adjoin_range_eq_range`. -/ theorem _root_.Algebra.adjoin_eq_range_freeAlgebra_lift (s : Set A) : Algebra.adjoin R s = (FreeAlgebra.lift R ((↑) : s → A)).range := by rw [← Algebra.adjoin_range_eq_range_freeAlgebra_lift, Subtype.range_coe] end FreeAlgebra
Algebra\FreeNonUnitalNonAssocAlgebra.lean
/- Copyright (c) 2021 Oliver Nash. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Oliver Nash -/ import Mathlib.Algebra.Free import Mathlib.Algebra.MonoidAlgebra.Basic /-! # Free algebras Given a semiring `R` and a type `X`, we construct the free non-unital, non-associative algebra on `X` with coefficients in `R`, together with its universal property. The construction is valuable because it can be used to build free algebras with more structure, e.g., free Lie algebras. Note that elsewhere we have a construction of the free unital, associative algebra. This is called `FreeAlgebra`. ## Main definitions * `FreeNonUnitalNonAssocAlgebra` * `FreeNonUnitalNonAssocAlgebra.lift` * `FreeNonUnitalNonAssocAlgebra.of` ## Implementation details We construct the free algebra as the magma algebra, with coefficients in `R`, of the free magma on `X`. However we regard this as an implementation detail and thus deliberately omit the lemmas `of_apply` and `lift_apply`, and we mark `FreeNonUnitalNonAssocAlgebra` and `lift` as irreducible once we have established the universal property. ## Tags free algebra, non-unital, non-associative, free magma, magma algebra, universal property, forgetful functor, adjoint functor -/ universe u v w noncomputable section variable (R : Type u) (X : Type v) [Semiring R] /-- The free non-unital, non-associative algebra on the type `X` with coefficients in `R`. -/ abbrev FreeNonUnitalNonAssocAlgebra := MonoidAlgebra R (FreeMagma X) namespace FreeNonUnitalNonAssocAlgebra variable {X} /-- The embedding of `X` into the free algebra with coefficients in `R`. -/ def of : X → FreeNonUnitalNonAssocAlgebra R X := MonoidAlgebra.ofMagma R _ ∘ FreeMagma.of variable {A : Type w} [NonUnitalNonAssocSemiring A] variable [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] /-- The functor `X ↦ FreeNonUnitalNonAssocAlgebra R X` from the category of types to the category of non-unital, non-associative algebras over `R` is adjoint to the forgetful functor in the other direction. -/ def lift : (X → A) ≃ (FreeNonUnitalNonAssocAlgebra R X →ₙₐ[R] A) := FreeMagma.lift.trans (MonoidAlgebra.liftMagma R) @[simp] theorem lift_symm_apply (F : FreeNonUnitalNonAssocAlgebra R X →ₙₐ[R] A) : (lift R).symm F = F ∘ of R := rfl @[simp] theorem of_comp_lift (f : X → A) : lift R f ∘ of R = f := (lift R).left_inv f @[simp] theorem lift_unique (f : X → A) (F : FreeNonUnitalNonAssocAlgebra R X →ₙₐ[R] A) : F ∘ of R = f ↔ F = lift R f := (lift R).symm_apply_eq @[simp] theorem lift_of_apply (f : X → A) (x) : lift R f (of R x) = f x := congr_fun (of_comp_lift _ f) x @[simp] theorem lift_comp_of (F : FreeNonUnitalNonAssocAlgebra R X →ₙₐ[R] A) : lift R (F ∘ of R) = F := (lift R).apply_symm_apply F @[ext] theorem hom_ext {F₁ F₂ : FreeNonUnitalNonAssocAlgebra R X →ₙₐ[R] A} (h : ∀ x, F₁ (of R x) = F₂ (of R x)) : F₁ = F₂ := (lift R).symm.injective <| funext h end FreeNonUnitalNonAssocAlgebra
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
35