text
stringlengths
90
3.16k
book_name
stringlengths
15
181
category_id
stringclasses
13 values
subcategory_id
stringlengths
1
7
category_name
stringclasses
13 values
subcategory_name
stringlengths
7
56
Lemma 3.5. The order of any element in\n\n\[ \n{\left. \operatorname{Ker}\left( {\psi }^{p + 1} - 1\right) \right| }_{B{P}_{q{p}^{j + 1} - 2}\left( {P \land P}\right) }\n\]\n\ndivides \( {p}^{j + 2} \) .
2304_Topology and Its Applications 2000-03-03_ Vol 101 Iss 3
2
11
Algebra
Group theory and generalizations
Theorem 17.1 Under assumption 1 and 2, the channel capacity of the genetic code is 2.92 Shannon bits.
9381_Cryptography_ information theory_ and error-correction_ a handbook for the 21st century
10
47
Computer Science and Engineering
Information and communication, circuits
Corollary 1.1.9 If \( L, M \) are finite separable extensions of \( k \), their compositum is separable as well.
1509_Galois groups and fundamental groups
2
5
Algebra
Field theory and polynomials
Proposition 1. Let the function \( u = u\left( x\right) \in {C}^{2}\left( {B}_{R}\right) \) be given, and its Fourier coefficients \( {f}_{kl}\left( r\right) \) are defined due to the formula (26). Then the Fourier coefficients \( {\widetilde{f}}_{kl}\left( r\right) \) of \( {\Delta u} \), namely\n\n\[ \n{\widetilde{f}}_{kl}\left( r\right) \mathrel{\text{:=}} {\int }_{\left| \eta \right| = 1}{\Delta u}\left( {r\eta }\right) {H}_{kl}\left( \eta \right) {d\sigma }\left( \eta \right) ,\;k = 0,1,2,\ldots ,\;l = 1,\ldots, N\left( {k, n}\right) ,\n\]\n\nsatisfy the identity\n\n\[ \n{\widetilde{f}}_{kl}\left( r\right) = {L}_{k, n}{f}_{kl}\left( r\right) ,\;k = 0,1,2,\ldots ,\;l = 1,\ldots, N\left( {k, n}\right) , \tag{28}\n\]\n\nwith \( 0 \leq r < R \) .
22824_Partial Differential Equations_ Foundations and Integral Representations Part 1
5
29
Analysis
Harmonic analysis on Euclidean spaces
Proposition 6.9. For an equilibrium point \( \left( {{x}_{e},{y}_{e}}\right) \) as defined by Prop. 6.2 if the following equations hold:\n\n\[ \left\{ \begin{array}{l} \frac{\partial m}{\partial x} + \left( \frac{{y}_{e} + 1}{{x}_{e} + F}\right) \frac{\partial m}{\partial y} < 0 \\ \frac{\partial m}{\partial x} + \left( \frac{{y}_{e} + 1}{{x}_{e} + F}\right) \frac{\partial m}{\partial y} < 0 \end{array}\right. \tag{18} \]\n\nthen \( \left( {{x}_{e},{y}_{e}}\right) \) is asymptotically stable.
12899_Analytical and Stochastic Modeling Techniques and Applications_ 16th International Conference_ ASMTA
6
36
Differential Equations and Dynamical Systems
Partial differential equations
Lemma 7.5. Let \( m \) be a nonnegative real number.\n\n(a) The following equality holds for every positive real number \( c \) :\n\n\[ 2{c}^{2}{\int }_{0}^{1}r{\left| {J}_{m}\left( cr\right) \right| }^{2}{dr} = {c}^{2}{\left| {J}_{m}^{\prime }\left( c\right) \right| }^{2} + \left( {{c}^{2} - {m}^{2}}\right) {\left| {J}_{m}\left( c\right) \right| }^{2}. \tag{7.5} \]
11657_Fourier_series_in_control
Unknown
Unknown
Unknown
Unknown
Lemma 11.3. The operation \( \odot \) on \( {\mathbb{Z}}_{n} \) is associative and commutative and has [1] as an identity element.
175_Modern Algebra_ An Introduction_ Sixth Edition
2
6
Algebra
Commutative algebra
Lemma 9.1.8. [28] Let \( \left( {X, q{p}_{b}}\right) \) be a quasi-partial \( b \) -metric space and \( \left( {X,{d}_{q{p}_{b}}}\right) \) be the corresponding \( b \) -metric space. Then \( \left( {X,{d}_{q{p}_{b}}}\right) \) is complete if \( \left( {X, q{p}_{b}}\right) \) is complete.
25453_Advances in Mathematical Analysis and its Applications
5
28
Analysis
Sequences, series, summability
Problem 12.3. Let the process \( X\\left( t\\right), t \\in \\left\\lbrack {0, T}\\right\\rbrack \\), be the geometric Lévy pro-\n\nprocess\n\n\\[ \n{dX}\\left( t\\right) = X\\left( {t}^{ - }\\right) \\left\\lbrack {\\alpha \\left( t\\right) {dt} + \\beta \\left( t\\right) {dW}\\left( t\\right) + {\\int }_{{\\mathbb{R}}_{0}}\\gamma \\left( {t, z}\\right) \\widetilde{N}\\left( {{dt},{dz}}\\right) }\\right\\rbrack \n\\]\n\nwhere the involved coefficients are deterministic. Find \( {D}_{t, z}X\\left( T\\right) \) for \( t \\leq T \) .
35342_Malliavin calculus for Lévy processes with applications to finance _ Lévy过程的Malliavin分析及其在金融学中的应用
9
Unknown
Probability and Statistics
Unknown
Corollary 7.1 (Odd prime \( p \) ) For idempotents \( e \in {Z}_{p - 1} \) as naturals \( e < p : {e}^{p} \equiv \) \( e{\;\operatorname{mod}\;{p}^{3}} \Rightarrow e = 1 \) .
22305_Associative Digital Network Theory_ An Associative Algebra Approach to Logic_ Arithmetic and State M
3
13
Number Theory
Number theory
Theorem 7. If (W2), (W3) and (W4) hold, then eq. (50) has a nontrivial, finite energy solution. This solution has radial symmetry, namely\n\n\[ \n\mathbf{A}\left( x\right) = {g}^{-1}\mathbf{A}\left( {gx}\right) \;\forall g \in O\left( 3\right) \n\]\n\nwhere \( O\left( 3\right) \) is the orthogonal group in \( {\mathbf{R}}^{3} \) .
12335_Contributions to Nonlinear Analysis_ A Tribute to D_G_ de Figueiredo on the Occasion of his 70th Bir
6
36
Differential Equations and Dynamical Systems
Partial differential equations
Example 20.1.2 (Replacing a variable by a constant) Consider again the skeleton class declaration in Table 20.1. If none of \( {\mathrm{C}}_{1},\ldots ,{\mathrm{C}}_{k} \) contains a command of the form \( \mathrm{X} \mathrel{\text{:=}} \mathrm{E} \), then replacing each occurrence of the expression \( \mathrm{X} \) in \( {\mathrm{C}}_{1},\ldots ,{\mathrm{C}}_{k} \) by 0 (the initial value of \( \mathrm{X} \) ) and deleting the declaration of \( \mathrm{X} \) should not change the behaviour of objects of the class, and hence should not affect the behaviour of any program in which the class appears.
18074_The Pi Calculus
Unknown
Unknown
Unknown
Unknown
Proposition 7.5. The Lie algebras \( \overline{gl}\left( \infty \right) \) and \( \widehat{gl}\left( \infty \right) \) with the above introduced degree are graded Lie algebras. The algebra \( \overline{gl}\left( \infty \right) \) is also graded as associative algebra.
8322_Krichever-Novikov Type Algebras Theory and Applications
2
9
Algebra
Nonassociative rings and algebras
Theorem 1.10. A finitistic ANRU \( X \) is dominated in uniform homotopy by a uniform polyhedron \( P \) . Moreover, if \( \Delta \mathrm{d}X \leq n \), then \( P \) can be chosen so that \( \dim P \leq n \) . Here \( \Delta \mathrm{d}X \) denotes the uniform dimension of \( X \) (see [3]).
23563_Topology and Its Applications 2001-06-29_ Vol 113 Iss 1-3
4
21
Geometry and Topology
Manifolds and cell complexes
Corollary 2.11. For any invariant point selection \( \mathbf{X} \), the adjoint functors \( \mathcal{C} \) and \( \mathcal{S} \) restrict to an equivalence between the category XSO of X-sober spaces and the category XVS of X- \( \bigvee \) -spatial lattices.
23554_Topology and its Applications 2004-02-28_ Vol 137 Iss 1-3
2
4
Algebra
General algebraic systems
Theorem 6.26. Let \( u,{u}^{\prime } \) be primitive elements of \( F\left( {a, b}\right) \), and set \( \bar{u} = {u}^{\pi } \) , \( \overline{{u}^{\prime }} = {u}^{\prime \pi } \) for the projections. Then\n\n\[ \n\bar{u} = \overline{{u}^{\prime }} \Leftrightarrow u,{u}^{\prime }\text{ are conjugate in }F\left( {a, b}\right) .\n\]
27350_Markov_s theorem and 100 years of the uniqueness conjecture_ a mathematical journey from irrational
2
5
Algebra
Field theory and polynomials
Lemma 4.1. Let \( C \in {\mathcal{M}}_{d}\left( \mathbb{R}\right) \) be a symmetric positive definite matrix, let \( G \sim \) \( {\mathcal{N}}_{d}\left( {0, C}\right) \), and let \( \phi ,\psi : {\mathbb{R}}^{d} \rightarrow \mathbb{R} \) be two Lipschitz and \( {\mathcal{C}}^{1} \) functions. Then\n\n\[ \n\operatorname{Cov}\left( {\phi \left( G\right) ,\psi \left( G\right) }\right) = {\int }_{0}^{1}E{\left\langle \sqrt{C}\nabla \phi \left( {G}_{\alpha }\right) ,\sqrt{C}\nabla \psi \left( {H}_{\alpha }\right) \right\rangle }_{{\mathbb{R}}^{d}}{d\alpha }, \tag{4.7} \n\] \n\nwhere \n\n\[ \n\left( {{G}_{\alpha },{H}_{\alpha }}\right) \sim {\mathcal{N}}_{2d}\left( {0,\left( \begin{matrix} C & {\alpha C} \\ {\alpha C} & C \end{matrix}\right) }\right) ,\;0 \leq \alpha \leq 1. \n\]
27353_Selected Aspects of Fractional Brownian Motion
9
44
Probability and Statistics
Probability theory and stochastic processes
Example 5.17 Consider again the Bayesian network in Figure 5.8a. Any of the cluster-trees in Figure 5.9 describes a partition of variables into clusters. We can now place each input function into a cluster that contains its scopes, and verify that each is a legitimate tree decomposition. For example, Figure 5.9c shows a cluster-tree decomposition with two vertices, and labeling \( \chi \left( 1\right) = \) \( \{ G, F\} \) and \( \chi \left( 2\right) = \{ A, B, C, D, F\} \) . Any function with scope \( \{ G\} \) must be placed in vertex 1 because vertex 1 is the only vertex that contains variable \( G \) (placing a function having \( G \) in its scope in another vertex will force us to add variable \( G \) to that vertex as well). Any function with scope \( \{ A, B, C, D\} \) or one of its subsets must be placed in vertex 2, and any function with scope \( \{ F\} \) can be placed either in vertex 1 or 2 . Notice that the tree-decomposition at Figure 5.9a is actually a bucket-tree.
16173_Reasoning with probabilistic and deterministic graphical models_ exact algorithms
8
43
Optimization and Control
Operations research, mathematical programming
Theorem 9 [35,36] Suppose \( c \in {\mathbb{R}}^{\ell }\langle \langle X\rangle \rangle \) has coefficients which satisfy\n\n\[ \left| \left( {c,\eta }\right) \right| \leq {K}_{c}{M}_{c}^{\left| \eta \right| },\;\forall \eta \in {X}^{ * }.\]\n\nThen there exists a real number \( \widehat{R} > 0 \) such that for each \( \widehat{u} \in {B}_{\infty }^{m + 1}\left\lbrack 1\right\rbrack \left( \widehat{R}\right) \), the series (57) converges absolutely for any \( N \geq 1 \) .
1529_Discrete Mechanics_ Geometric Integration and Lie_Butcher Series_ DMGILBS_ Madrid_ May 2015
5
28
Analysis
Sequences, series, summability
Theorem 11.8 Let \( f \) be a self-map and let \( \left( {X, d}\right) \) be a complete metric space. If for each \( k \neq l \in X \)\n\n\[{\int }_{0}^{d\left( {{fk},{fl}}\right) }\omega \left( s\right) {ds} \leq \gamma \left( {d\left( {k, l}\right) }\right) {\int }_{0}^{m\left( {k, l}\right) }\omega \left( s\right) {ds} \tag{11.1}\]\n\nand\n\n\[m\left( {k, l}\right) = \max \left\{ {\frac{d\left( {k,{fk}}\right) \cdot d\left( {l,{fl}}\right) }{1 + d\left( {k, l}\right) }, d\left( {k, l}\right) }\right\} , \tag{11.2}\]\n\nwhere \( \omega \in \Psi ,\gamma : {R}^{ + } \rightarrow \lbrack 0,1) \) is a function with\n\n\[\mathop{\lim }\limits_{{\delta \rightarrow t > 0}}\sup \gamma \left( \delta \right) < 1 \tag{11.3}\]\n\nThen \( f \) has a unique fixed point.
6842_Advances in Applied Mathematical Analysis and Applications
5
33
Analysis
Operator theory
Exercise 5.16. Suppose that \( \mathbb{K} \) denotes any field with characteristic not equal to 2 or 3, and \( E : {y}^{2} = {x}^{3} + {ax} + b\left( {a, b \in \mathbb{K}}\right) \). Assuming the binary operation defined before makes \( E\left( \mathbb{K}\right) \) into a group, prove that \( P = \left( {x, y}\right) \) has order 2 if and only if \( y = 0 \).
6066_An Introduction to Number Theory
4
14
Geometry and Topology
Algebraic geometry
Example 5.8.12. To compute the variance of a standard normal distributed random variable \( X \), we compute \( {\int }_{-\infty }^{\infty }{x}^{2}{f}_{X}\left( x\right) {dx} = 1 \) . This can be done with partial integration. Hence \( E\left( {X}^{2}\right) = 1 \), and since \( E\left( X\right) = 0 \), it follows that the variance of \( X \) is 1 .
23684_A Natural Introduction to Probability Theory_ Second Edition
9
44
Probability and Statistics
Probability theory and stochastic processes
Corollary 8.3.7. Let \( R \) be a ring and \( S \) is a multiplicative closed subset of \( R \). (i) If \( R \) is a directed union of Artinian subrings, then so is \( {S}^{-1}R \) .
30537_Non-Associative and Non-Commutative Algebra and Operator Theory_ NANCAOT_ Dakar_ Senegal_ May 23_25_
2
6
Algebra
Commutative algebra
Theorem 11.12 (Final Value Theorem) If the Laplace transforms of \( f : \lbrack 0,\infty ) \rightarrow \) \( \mathbb{R} \), its derivative \( {f}^{\prime } \) exist and \( F\left( s\right) = \mathcal{L}f\left( t\right) \) then\n\n\[ \mathop{\lim }\limits_{{s \rightarrow 0}}{sF}\left( s\right) = \mathop{\lim }\limits_{{t \rightarrow \infty }}f\left( t\right) \]\n\nprovided the two limits exit.
21999_Fundamentals of Partial Differential Equations
6
37
Differential Equations and Dynamical Systems
Dynamical systems and ergodic theory
Theorem 5.2. Let \( \alpha \in \left( {0,1}\right), T > 0 \) and \( \Omega \) be a bounded domain in \( {\mathbb{R}}^{d} \) . Let \( {u}_{0} \in {L}_{\infty }\left( \Omega \right) \) and suppose that the assumptions (HA) and (Hf) are satisfied. Let \( u \in {W}_{\alpha } \) be a bounded weak solution of (16) in \( \left( {0, T}\right) \times \Omega \) . Then there holds for any \( Q \subset \left( {0, T}\right) \times \Omega \) separated from the parabolic boundary \( \left( {\{ 0\} \times \Omega }\right) \cup \left( {\left( {0, T}\right) \times \partial \Omega }\right) \) by a positive distance \( D \) ,\n\n\[{\left\lbrack u\right\rbrack }_{{C}^{\frac{\alpha \epsilon }{2},\epsilon }\left( \bar{Q}\right) } \leq C\left( {{\left| u\right| }_{{L}_{\infty }\left( {\left( {0, T}\right) \times \Omega }\right) } + {\left| {u}_{0}\right| }_{{L}_{\infty }\left( \Omega \right) } + {\left| f\right| }_{{L}_{r}\left( {\left( {0, T}\right) ;{L}_{q}\left( \Omega \right) }\right) }}\right)\]\n\nwith positive constants \( \epsilon = \epsilon \left( {{\left| A\right| }_{\infty }, v,\alpha, r, q, d,\operatorname{diam}\Omega ,\mathop{\inf }\limits_{{\left( {\tau, z}\right) \in Q}}\tau }\right) \) and \( C = C\left( {{\left| A\right| }_{\infty }, v,\alpha ,}\right. \) \( r, q, d,\operatorname{diam}\Omega ,{\lambda }_{d + 1}\left( Q\right), D) \) .
20333_Handbook of Fractional Calculus with Applications_ Volume 2_ Fractional Differential Equations
5
32
Analysis
Functional analysis
Example 3.20 For the random variable \( \widetilde{X} \), the range set and probability mass function are given as\n\n\[ \n{R}_{\widetilde{X}} = \{ a, b, c\}\n\]\n\n\[ \np\left( {x = a}\right) = \frac{1}{4}\;p\left( {x = b}\right) = \frac{2}{4}\;p\left( {x = c}\right) = \frac{1}{4}.\n\]\n\n(a) Let \( {\widetilde{X}}_{1}^{N} \sim p\left( x\right) \) . Find a strongly typical sequence \( {x}_{1}^{N} \) for \( N = {20} \), and verify the inequality\n\n\[ \n{2}^{-N\left( {H\left( \widetilde{X}\right) + \epsilon }\right) } \leq p\left( {{x}_{1},{x}_{2},\ldots ,{x}_{N}}\right) \leq {2}^{-N\left( {H\left( \widetilde{X}\right) - \epsilon }\right) } \tag{3.44}\n\]\n\nfor your sequence.
3010_Information Theory for Electrical Engineers
9
44
Probability and Statistics
Probability theory and stochastic processes
Lemma 4.73. Let \( w \in C\left( {\left\lbrack {0, T}\right\rbrack \;;\;{H}_{\mathrm{{per}}}^{s}}\right) \cap {C}^{1}\left( {\left\lbrack {0, T}\right\rbrack \;;\;{H}_{\mathrm{{per}}}^{s - 1}}\right) \; \) satisfy \( \;{\partial }_{t}^{2}w\left( t\right) = \) \( {c}^{2}{\partial }_{x}^{2}w\left( t\right) \) . Define\n\n\[ \n{E}_{s}\left( t\right) = {E}_{s}\left( {t;w}\right) = {\begin{Vmatrix}\frac{1}{c}{\partial }_{t}w\left( t\right) \end{Vmatrix}}_{s - 2}^{2} + {\begin{Vmatrix}{\partial }_{x}w\left( t\right) \end{Vmatrix}}_{s - 2}^{2}. \tag{4.137} \n\]\n\nThen\n\n\[ \n{\partial }_{t}{E}_{s}\left( t\right) = 0\forall t \in \left\lbrack {0, T}\right\rbrack , \tag{4.138} \n\]\n\nso that\n\n\[ \n{E}_{s}\left( t\right) = {E}_{s}\left( 0\right) \;\forall t \in \left\lbrack {0, T}\right\rbrack . \tag{4.139} \n\]
13050_Fourier Analysis and Partial Differential Equations
Unknown
Unknown
Unknown
Unknown
Theorem 6.2 If \( \lambda \in \Lambda \), then any solution of \( J{u}^{\prime } + {qu} = {\lambda wu} \) is identically equal to 0 .
25784_From Complex Analysis to Operator Theory_ A Panorama_ In Memory of Sergey Naboko _Operator Theory_ A
6
35
Differential Equations and Dynamical Systems
Ordinary differential equations
Lemma 9.5.29. The following statements are true.\n\n(b1) Equation (9.5.89) has solutions of prime period 2 if and only if \( \alpha = 1 \) .
26736_Discrete oscillation theory
6
37
Differential Equations and Dynamical Systems
Dynamical systems and ergodic theory
Theorem 3.2. Let \( \\left( {\\mu }_{n}\\right) \) be a sequence of probability measures on \( \\mathbb{Z} \) and for \( f : \\mathbb{Z} \\rightarrow \\mathbb{R} \) define the maximal operator\n\n\[ \n\\left( {Mf}\\right) \\left( x\\right) = \\mathop{\\sup }\\limits_{n}\\left| {\\left( {{\\mu }_{n}f}\\right) \\left( x\\right) }\\right|, x \\in \\mathbb{Z}. \n\]\n\nWe assume\n\n(*) (Regularity of coefficients). There is \( 0 < \\alpha \\leq 1 \) and \( C > 0 \) such that, for each \( n \\geq 1 \) ,\n\n\[ \n\\left| {{\\mu }_{n}\\left( {x + y}\\right) - {\\mu }_{n}\\left( x\\right) }\\right| \\leq C\\frac{{\\left| y\\right| }^{\\alpha }}{{\\left| x\\right| }^{1 + \\alpha }}\\text{ for }x, y \\in \\mathbb{Z},0 < 2\\left| y\\right| \\leq \\left| x\\right| . \n\]\n\nThen the maximal operator \( M \) is weak-type \( \\left( {1,1}\\right) \) ; i.e., there is a \( {C}^{\\prime } > 0 \) such that for any \( \\lambda > 0 \)\n\n\[ \n\\left| \\left\\{ {x \\in \\mathbb{Z} : \\left( {Mf}\\right) \\left( x\\right) > \\lambda }\\right\\} \\right| \\leq \\frac{{C}^{\\prime }}{\\lambda }\\parallel f{\\parallel }_{1}\\text{ for all }f \\in {\\ell }^{1} = {\\ell }^{1}\\left( \\mathbb{Z}\\right) . \n\]
18335_Harmonic Analysis and Partial Differential Equations_ Essays in Honor of Alberto P_ Calderon _Chicag
9
44
Probability and Statistics
Probability theory and stochastic processes
Theorem 6.14. Euler’s Theorem. If \( m \) is a positive integer and \( a \) is an integer with \( \left( {a, m}\right) = 1 \), then \( {a}^{\phi \left( m\right) } \equiv 1\left( {\;\operatorname{mod}\;m}\right) \) .
31750_Elementary Number Theory and Its Applications_Fourth Edition
3
13
Number Theory
Number theory
Example 6.3.3. The balance equations for the \( M/M/2/3 \) queueing system with \( \lambda = {2\mu } \)\n\nare:\n\nstate \( j \) departure rate from \( j = \) arrival rate to \( j \)\n\n\[ \n{2\mu }{\pi }_{0} = \mu {\pi }_{1} \n\]\n\n\[ \n1\;\left( {{2\mu } + \mu }\right) {\pi }_{1} = {2\mu }{\pi }_{0} + \left( {2 \times \mu }\right) {\pi }_{2} \n\]\n\n\[ \n2\;\left( {{2\mu } + 2 \times \mu }\right) {\pi }_{2} = {2\mu }{\pi }_{1} + \left( {2 \times \mu }\right) {\pi }_{3} \n\]\n\n\[ \n\left( {2 \times \mu }\right) {\pi }_{3} = {2\mu }{\pi }_{2} \n\]\n\nThat is,\n\n\[ \n2{\pi }_{0}\overset{\left( 0\right) }{ = }{\pi }_{1} \n\]\n\n\[ \n3{\pi }_{1}\overset{\left( 1\right) }{ = }2{\pi }_{0} + 2{\pi }_{2} \n\]\n\n\[ \n2{\pi }_{2}\overset{\left( 2\right) }{ = }{\pi }_{1} + {\pi }_{3} \n\]\n\n\[ \n{\pi }_{3}\overset{\left( 3\right) }{ = }{\pi }_{2} \n\]
8535_Basic Probability Theory with Applications
6
37
Differential Equations and Dynamical Systems
Dynamical systems and ergodic theory
Problem 472. Describe the sample space, if two distinguishable coins are rolled simultaneously.
24820_Discrete Mathematics with Cryptographic Applications_ A Self-Teaching Introduction
9
44
Probability and Statistics
Probability theory and stochastic processes
Automobile Emissions. We can apply Theorem 7.3.3 to answer the question at the end of Example 7.3.7. In the notation of the theorem, we have \( n = {46},{\sigma }^{2} = {0.5}^{2} = {0.25} \) , \( {\mu }_{0} = 2 \), and \( {v}^{2} = {1.0} \) . The average of the 46 measurements is \( {\bar{x}}_{n} = {1.329} \) . The posterior distribution of \( \theta \) is then the normal distribution with mean and variance given by
7422_Probability and Statistics 4
9
44
Probability and Statistics
Probability theory and stochastic processes
Corollary 26.6.9 Suppose that \( f \) is a meromorphic function on a domain \( U \), and that \( {S}_{f} \) is the disjoint union of \( A \) and \( B \) . Then there exist meromorphic functions \( g \) and \( h \) such that \( f = g + h,{S}_{g} = A \) and \( {S}_{h} = B \) .
30436_A Course in Mathematical Analysis_ Volume III_ Complex Analysis_ Measure and Integration
5
24
Analysis
Functions of a complex variable
Example 4.4.1. Let \( f\left( x\right) = {x}^{2},0 \leq x \leq {10} \) . The function is continuous and strictly monotone increasing. Therefore, its inverse \( g\left( x\right) = \sqrt{x},0 \leq x \leq {100} \) is continuous strictly monotone increasing as well.
27302_Calculus Light
5
22
Analysis
Real functions
Example 3.4.5. Let \( {\bar{B}}_{{c}_{0}}\left( {0,1}\right) \) be the closed unit ball of \( {c}_{0} \), the space of all null sequences \( \mathrm{x} = \left\{ {{x}_{n} : n \in \mathbb{N}}\right\} ,\mathop{\lim }\limits_{n}{x}_{n} = 0 \), endowed with the norm \( \parallel \mathrm{x}\parallel = \mathop{\sup }\limits_{i}\left| {x}_{i}\right| \) . We define \( f : {\bar{B}}_{{c}_{0}}\left( {0,1}\right) \rightarrow {\bar{B}}_{{c}_{0}}\left( {0,1}\right) \), by \( f\left( \mathrm{x}\right) = f\left( {{x}_{1},{x}_{2},\ldots }\right) = \left( {1,{x}_{1},{x}_{2},\ldots }\right) \) . Then \( \parallel f\left( \mathrm{x}\right) - f\left( \mathrm{z}\right) \parallel = \parallel \mathrm{x} - \mathrm{z}\parallel \), for every \( \mathrm{x},\mathrm{z} \in {c}_{0} \), however, the equation \( f\left( \mathrm{x}\right) = \mathrm{x} \) is satisfied only if \( \mathrm{x} = \left( {1,1,\ldots }\right) \) which is not in \( {c}_{0} \).
17895_Variational Methods in Nonlinear Analysis_ With Applications in Optimization and Partial Differentia
5
33
Analysis
Operator theory
Proposition 13.4.18. For \( n \geq 1 \) an element \( x \in {G}_{n} \) is thin if and only if \( {\Phi x} = 0 \) .
10462_Nonabelian Algebraic Topology_ filtered spaces_ crossed complexes_ cubical higher homotopy groupoids
2
11
Algebra
Group theory and generalizations
Corollary 46. (The Divergence Theorem) If \( X \) is a vector field on \( \left( {M, g}\right) \) with compact support, then\n\n\[ \n{\int }_{M}\operatorname{div}X \cdot d\operatorname{vol} = 0 \n\]
18462_Riemannian geometry
4
18
Geometry and Topology
Differential geometry
Proposition 4. Let \( A \) be a simple algebra over \( K \) . Then every automorphism \( \alpha \) of \( A \) over \( K \) is of the form \( x \rightarrow {a}^{-1}{xa} \) with \( a \in {A}^{ \times } \) .
7839_Basic Number Theory
2
4
Algebra
General algebraic systems
Exercise 9.1 Solve the following differential equations.\n\n1. \( \frac{\mathrm{d}y}{\mathrm{\;d}x} = \frac{x + y}{x - y} \)
22067_Algebraic and Differential Methods for Nonlinear Control Theory_ Elements of Commutative Algebra and
6
35
Differential Equations and Dynamical Systems
Ordinary differential equations
Corollary 3.2. Let the notation be as above. If \( \gcd \left( {m, n}\right) = 1 \) then \( \# A\left( {\mathbb{F}}_{{q}^{mn}}\right) = \) \( \# B\left( {\mathbb{F}}_{{q}^{m}}\right) \) . If \( n \mid m \) then \( \# B\left( {\mathbb{F}}_{{q}^{m}}\right) = {\left( \# A\left( {\mathbb{F}}_{{q}^{m/n}}\right) \right) }^{n} \) .
24975_Public-Key Cryptography and Computational Number Theory_ Proceedings of the International Conference
2
5
Algebra
Field theory and polynomials
Lemma 5.3.4. Assume that \( \mathrm{G} = \mathrm{T} \) is a torus. Then the theorem holds.
22751_Geometry of Moduli Spaces and Representation Theory
4
16
Geometry and Topology
Geometry
Theorem 2. For any element \( g \in {\mathbb{F}}_{p} \) of multiplicative order \( q \leq {p}^{1 - \varepsilon } \), any fixed \( \gamma > 0 \) and any function \( H \) with\n\n\[ U \leq \frac{{\left| \mathcal{M}\right| }^{2}{q}^{3 - \gamma }}{{p}^{3}} \]\n\ngiven an oracle \( {\mathcal{O}}_{\ell }^{NR} \) with \( \ell = \left\lceil {{\log }^{1/2}q}\right\rceil + \left\lceil {\log \log q}\right\rceil \), there exists a probabilistic polynomial time algorithm to recover the signer’s NR secret key \( \alpha \), from \( O\left( {{\log }^{1/2}q}\right) \) signatures \( \left( {r\left( {k,\mu }\right), v\left( {k,\mu }\right) }\right) \) with \( k \in \left\lbrack {0, q - 1}\right\rbrack \) and \( \mu \in \mathcal{M} \) selected independently and uniformly at random. The probability of success is at least \( 1 - {2}^{-{\left( \log q\right) }^{1/2}\log \log q} \) .
28100_Cryptography and Lattices_ International Conference_ CaLC 2001 Providence_ RI_ USA_ March 29_30_ 200
3
13
Number Theory
Number theory
Theorem 4.16 (Weiss). (Weiss 1985) If \( \pi \) : \( \left( {X, X,\mu, T}\right) \rightarrow \left( {Y,\mathcal{Y}, v, S}\right) \) is a factor map with \( \left( {X, X,\mu, T}\right) \) ergodic and \( \left( {\widehat{Y},{\mathcal{B}}_{\widehat{Y}},\widehat{v},\widehat{S}}\right) \) is a uniquely ergodic model for \( \left( {Y,\mathcal{Y}, v, T}\right) \), then there is a uniquely ergodic model \( \left( {\widehat{X},{\mathcal{B}}_{\widehat{X}},\widehat{\mu },\widehat{T}}\right) \; \) for \( \left( {X, X,\mu, T}\right) \) and a factor map \( \widehat{\pi } : \widehat{X} \rightarrow \widehat{Y} \) which is a model for \( \pi : X \rightarrow Y \) .
14139_Ergodic Theory _Encyclopedia of Complexity and Systems Science Series_
6
37
Differential Equations and Dynamical Systems
Dynamical systems and ergodic theory
Lemma 58.5. A skeletal category \( \mathcal{C} \) is equivalent to the category Set if and only if it satisfies the following properties:\n\n(1) \( \mathcal{C} \) is locally small;\n\n(2) \( \mathcal{C} \) is balanced;\n\n(3) \( \mathcal{C} \) has equalizers;\n\n(4) \( \mathcal{C} \) has arbitrary coproducts;\n\n(5) \( \mathcal{C} \) has a terminal object 1 ;\n\n(6) 1 is a \( \mathcal{C} \) -generator;\n\n(7) \( \mathcal{C} \) is element-separating.
8796_Classical Set Theory_ Theory of Sets and Classes
0
1
Foundations and Logic
Category theory
Lemma 11.2.3 Let \( \left\{ {s}_{n}\right\} \) be a kth-order linearly recursive sequence in \( {\mathbb{F}}_{2} \) with primitive characteristic polynomial \( f\left( x\right) \) . For convenience of notation, we write \( s\left( n\right) = {s}_{n}, n \geq 0 \) . Let \( {r}_{s} = {2}^{k} - 1 \) denote the (maximal) period of \( s \) . Fix \( b, c \geq 0 \) with \( \gcd \left( {c,{r}_{s}}\right) = 1 \), and let \( s\left( {b + {ac}}\right), a \geq 0 \), denote the subsequence of \( s \) . Then the period of \( s\left( {b + {ac}}\right) \) is \( {r}_{s} \) .
9776_Cryptography for Secure Encryption
3
13
Number Theory
Number theory
Proposition 6. Let \( \\Omega \) be a nonempty bounded subset of \( X \) such that \( \\alpha \\left( \\Omega \\right) > 0 \) and \( C \) a closed convex subset of \( X \) . Suppose that \( T : C \\rightarrow C \) is a nonexpansive mapping such that \( I - T \) is \( \\psi \) -expansive. Then for every \( \\varepsilon > 0,0 < c < \\alpha \\left( \\Omega \\right) + \\varepsilon \), and all \( \\delta ,{\\delta }^{\\prime } > 0 \) with \( 0 < \\delta + {\\delta }^{\\prime } < \\psi \\left( c\\right) \), we have\n\n\[ \n\\left\\lbrack {{F}_{\\delta }\\left( {T,\\Omega }\\right) \\times {F}_{{\\delta }^{\\prime }}\\left( {T,\\Omega }\\right) }\\right\\rbrack \\cap {N}_{\\varepsilon }^{c}\\left( \\Omega \\right) = \\varnothing .\n\]
13979_Applied Mathematics in Tunisia_ International Conference on Advances in Applied Mathematics _ICAAM__
2
7
Algebra
Linear and multilinear algebra; matrix theory
Theorem 12.15 (Polya) If \( d = 1,2 \), then the \( d \) -dimensional simple random walk comes back to \( \mathbf{0} \) infinitely often. If \( d \geq 3 \), eventually the random walk stops coming back to 0 . In other words, if \( d = 1,2 \), the chain is recurrent and if \( d \geq 3 \) the chain is transient.
10912_Probability and Stochastic Processes
9
44
Probability and Statistics
Probability theory and stochastic processes
Theorem 2.1 (Maximum principle for non-zero-sum games).\n\n(i) Let \( \\left( {\\widehat{\\pi },{\\widehat{\\theta }}}\\right) \\in {\\mathcal{A}}_{\\Pi } \\times {\\mathcal{A}}_{\\Theta } \) be a Nash equilibrium with corresponding state process\n\n\( \\widehat{X}\\left( t\\right) = {X}^{\\left( \\widehat{\\pi },{\\widehat{\\theta }}\\right) }\\left( t\\right) \), i.e.,\n\n\[ \n{J}_{1}\\left( {\\pi ,{\\widehat{\\theta }}}\\right) \\leq {J}_{1}\\left( {\\widehat{\\pi },{\\widehat{\\theta }}}\\right) ,\\;\\text{ for all }\\pi \\in {\\mathcal{A}}_{\\Pi },\n\]\n\n\[ \n{J}_{2}\\left( {\\widehat{\\pi },\\theta }\\right) \\leq {J}_{2}\\left( {\\widehat{\\pi },{\\widehat{\\theta }}}\\right) ,\\;\\text{ for all }\\theta \\in {\\mathcal{A}}_{\\Theta }.\n\]\n\nAssume that the random variables \( \\frac{\\partial {f}_{i}}{\\partial x} \) and \( {F}_{i}\\left( {t, s}\\right), i = 1,2 \), belong to \( {\\mathbb{D}}_{1,2} \) . Then\n\n\[ \n{\\left. {\\mathbb{E}}^{x}\\left\\lbrack {\\nabla }_{\\pi }{\\widehat{H}}_{1}\\left( t,{X}^{\\left( \\pi ,{\\widehat{\\theta }}\\right) }\\left( t\\right) ,\\pi ,{\\widehat{\\theta }},\\omega \\right) {\\left. \\right| }_{\\pi = \\widehat{\\pi }}{\\mathcal{E}}_{t}\\right) \\right| }_{\\pi = \\widehat{\\pi }} = 0, \\tag{22.22}\n\]\n\n\[ \n{\\left. {\\mathbb{E}}^{x}\\left\\lbrack {\\nabla }_{\\theta }{\\widehat{H}}_{2}\\left( t,{X}^{\\left( \\widehat{\\pi },\\theta \\right) }\\left( t\\right) ,{\\widehat{\\pi }},\\theta ,\\omega \\right) \\left. \\right| {}_{\\theta = \\widehat{\\theta }}\\;\\right) {\\mathcal{E}}_{t}\\right| }_{\\theta = \\widehat{\\theta }} = 0, \\tag{22.23}\n\]\n\nfor a.a. \( t,\\omega \) .\n\n(ii) Conversely, suppose that there exists \( \\left( {\\widehat{\\pi },{\\widehat{\\theta }}}\\right) \\in {\\mathcal{A}}_{\\Pi } \\times {\\mathcal{A}}_{\\Theta } \) such that Eqs. (22.22) and (22.23) hold. Then\n\n\[ \n{\\left. \\frac{\\partial }{\\partial y}{J}_{1}\\left( \\widehat{\\pi } + y\\beta ,{\\widehat{\\theta }}\\right) \\right| }_{y = 0} = 0\\;\\text{ for all }\\beta ,\n\]\n\n\[ \n{\\left. \\frac{\\partial }{\\partial v}{J}_{2}\\left( \\widehat{\\pi },{\\widehat{\\theta } + v\\eta }\\right) \\right| }_{v = 0} = 0\\;\\text{ for all }\\eta \n\]\n\nIn particular, if\n\n\[ \n\\pi \\rightarrow {J}_{1}\\left( {\\pi ,{\\widehat{\\theta }}}\\right) \\;\\text{ and }\\;\\theta \\rightarrow {J}_{2}\\left( {\\widehat{\\pi },\\theta }\\right) , \\tag{22.24}\n\]\n\nare concave, then \( \\left( {\\widehat{\\pi },{\\widehat{\\theta }}}\\right) \) is a Nash equilibrium.
2914_Malliavin Calculus and Stochastic Analysis A Festschrift in Honor of David Nualart
12
58
Social and Behavioral Sciences
Game theory, economics, social and behavioral sciences
Theorem 12.5.5 Assume that \( d = {12} \) . Then \( {n}_{h} = 1 \), and the following hold.\n\n(i) We have \( {n}_{S} = 2{\left( {n}_{k} + 1\right) }^{2}\left( {{n}_{k}^{4} + {n}_{k}^{2} + 1}\right) \).\n\n(ii) We have \( {m}_{st} = {n}_{k}^{6},{m}_{{\lambda }_{h}} = {n}_{k}^{6},{m}_{{\lambda }_{k}} = 1 \), and\n\n\[ \n{m}_{{\chi }_{1}} = \frac{{n}_{k}}{6}{\left( {n}_{k} + 1\right) }^{2}\left( {{n}_{k}^{2} + {n}_{k} + 1}\right) \n\]\n\n\[ \n{m}_{{\chi }_{2}} = \frac{{n}_{k}}{2}{\left( {n}_{k} + 1\right) }^{2}\left( {{n}_{k}^{2} - {n}_{k} + 1}\right) \n\]\n\n\[ \n{m}_{{\chi }_{3}} = \frac{2{n}_{k}}{3}\left( {{n}_{k}^{4} + {n}_{k}^{2} + 1}\right) \n\]\n\n\[ \n{m}_{{\chi }_{4}} = \frac{{n}_{k}}{2}{\left( {n}_{k} + 1\right) }^{2}\left( {{n}_{k}^{2} - {n}_{k} + 1}\right) \n\]\n\n\[ \n{m}_{{\chi }_{5}} = \frac{{n}_{k}}{6}{\left( {n}_{k} + 1\right) }^{2}\left( {{n}_{k}^{2} + {n}_{k} + 1}\right) . \n\]
1526_Theory of Association Schemes _Springer Monographs in Mathematics_
2
5
Algebra
Field theory and polynomials
Corollary 7 From (115) the Moments associated with the Dirichlet beta-L series are given by the following relationship, namely\n\n\[ \n{M}_{O}^{\left( k\right) } = \left\{ \begin{array}{l} 2 \cdot {M}_{{L}_{\left( 4,1\right) }}^{\left( k\right) } - {M}_{\widetilde{O}}^{\left( k\right) } \\ 2 \cdot {M}_{{L}_{\left( 4,3\right) }}^{\left( k\right) } + {M}_{\widetilde{O}}^{\left( k\right) } \end{array}\right\} \tag{141} \n\]
11466_Frontiers in Functional Equations and Analytic Inequalities
5
27
Analysis
Special functions
Corollary 9.4. Any element of \( {\left( {L}_{l}\left( \mathbb{Z}\left\lbrack {\mu }_{5}\right\rbrack \left\lbrack \frac{1}{5}\right\rbrack \right) \right) }_{i}^{\diamond } \) for \( i \leq 2 \) is geometric.
27435_Arithmetic and Geometry Around Galois Theory
2
6
Algebra
Commutative algebra
Theorem 6.8.4. A metric space \( X \) is a uniform AR (resp. a uniform ANR) if and only if \( X \) is a uniform \( {AE} \) (resp. a uniform \( {ANE} \) ).
1774_Geometric Aspects of General Topology
Unknown
Unknown
Unknown
Unknown
Exercise 230 Let \( n \) be a positive integer and let \( V \) be the subspace of \( \mathbb{R}\left\lbrack X\right\rbrack \) composed of all polynomials of degree at most \( n \) . Let \( \alpha : V \rightarrow V \) be the linear transformation given by \( \alpha : p\left( X\right) \mapsto p\left( {X + 1}\right) - p\left( X\right) \) . Find \( \ker \left( \alpha \right) \) and \( \operatorname{im}\left( \alpha \right) \) .
32020_The Linear Algebra a Beginning Graduate Student Ought to Know_ Second Edition
2
Unknown
Algebra
Unknown
Exercise 9.5.14. Let \( \lambda \) be Lebesgue measure on \( \left\lbrack {0,1}\right\rbrack \), and let \( f\left( {x, y}\right) = \) \( {8xy}\left( {{x}^{2} - {y}^{2}}\right) {\left( {x}^{2} + {y}^{2}\right) }^{-3} \) for \( \left( {x, y}\right) \neq \left( {0,0}\right) \), with \( f\left( {0,0}\right) = 0 \) . (a) Compute \( {\int }_{0}^{1}\left( {{\int }_{0}^{1}f\left( {x, y}\right) \lambda \left( {dy}\right) }\right) \lambda \left( {dx}\right) \) . [Hint: Make the substitution \( \left. {u = {x}^{2} + {y}^{2}, v = x\text{, so }{du} = {2y}\mathrm{\;d}y\text{,}{dv} = {dx}\text{, and }{x}^{2} - {y}^{2} = 2{v}^{2} - u\text{. }}\right\rbrack
21494_A First Look at Rigorous Probability Theory
Unknown
Unknown
Unknown
Unknown
Example 10.8.7. The Ornstein-Uhlenbeck process \( {X}_{t} \) in Example 10.8.2 is a diffusion process with the diffusion coefficient and drift\n\n\[ Q\left( {t, x}\right) = I,\;\rho \left( {t, x}\right) = - x, \]
6611_Introduction to Stochastic Integration
Unknown
Unknown
Unknown
Unknown
Problem 7. Find the \( {17}^{\text{th }} \) term of the AP with first term 5 and common difference 2.
6704_Discrete Mathematics and Structures
2
7
Algebra
Linear and multilinear algebra; matrix theory
Theorem 1. For a given generator (2), group transformations (1) can be found by solving the Lie equations\n\n\\[ \n\\frac{d{\\bar{x}}^{i}}{da} = {\\xi }^{i}\\left( {\\bar{x},\\bar{u}}\\right) ,{\\left. \\;{\\bar{x}}^{i}\\right| }_{a = 0} = {x}^{i},\\;i = 1,\\ldots, n \n\\] \n\n\\[ \n\\frac{d{\\bar{u}}^{\\mu }}{da} = {\\eta }^{\\mu }\\left( {\\bar{x},\\bar{u}}\\right) ,{\\left. \\;{\\bar{u}}^{\\mu }\\right| }_{a = 0} = {u}^{\\mu },\\;\\mu = 1,\\ldots, m.\n\\]
20333_Handbook of Fractional Calculus with Applications_ Volume 2_ Fractional Differential Equations
6
35
Differential Equations and Dynamical Systems
Ordinary differential equations
Theorem 4.3.4 (Closed Graph Theorem). Let \( V \) and \( W \) be Banach spaces and let \( T \) be a linear transformation from \( V \) to \( W \) . If the graph of \( T \) is closed in \( V \times W \), then \( T \) is bounded.
10882_Fundamentals of Mathematical Analysis
5
33
Analysis
Operator theory
Theorem 6.2.4 A metric space \( \left( {M, d}\right) \) is compact iff \( {C}_{b}\left( M\right) = C\left( M\right) \) .
27579_An Introduction to Mathematical Analysis for Economic Theory and Econometrics
4
19
Geometry and Topology
General topology
Lemma 2. Let \( h\left( \widehat{z}\right) \) be an holomorphic function near the origin. Then there exists a unique formal series expansion \( \psi \left( {x,\widehat{z}}\right) = \mathop{\sum }\limits_{{n \geq 0}}{a}_{n}\left( \widehat{z}\right) {x}^{n} \) solution of (24) such that the \( {a}_{n}\left( \widehat{z}\right) \) are holomorphic functions near \( \widehat{z} = 0 \), with \( {a}_{0}\left( \widehat{z}\right) = 1 \) and \( {a}_{1}\left( \widehat{z}\right) = h\left( \widehat{z}\right) \) . In this case, one has\n\n\[ \n{a}_{n}\left( \widehat{z}\right) = \frac{1}{n - 1}{\int }_{0}^{1}{u}^{n - 1}\left( {{a}_{n - 1}^{\prime \prime }\left( {{u}^{2}\widehat{z}}\right) + {b}_{n - 2}\left( {{u}^{2}\widehat{z}}\right) }\right) {du},\;\text{ for }n \geq 2, \tag{28} \n\] \n\nwhere the \( {b}_{n} \) ’s are defined by (26). Furthermore, if \( h\left( z\right) \) is even, then every \( {a}_{n}\left( z\right) \) is even.
702_Algebraic Analysis of Differential Equations_ from Microlocal Analysis to Exponential Asymptotics
5
24
Analysis
Functions of a complex variable
Exercise 6.11.20 Under the conditions of Theorem 6.11.19, show that if \( K \) is a compact subset of \( M \), then there exists an \( N \) such that for all \( n \geq N, K \subset {K}_{N} \) .
27579_An Introduction to Mathematical Analysis for Economic Theory and Econometrics
4
21
Geometry and Topology
Manifolds and cell complexes
Lemma 5.1.3. Let \( A \) be regular, \( I \) an ideal of \( A \), and \( x \in A \) . Then \( \widehat{x} \) belongs locally to \( I \) at each point of \( h{\left( x\right) }^{0} \), the interior of \( h\left( x\right) \), and at each point of \( \Delta \left( A\right) \smallsetminus h\left( I\right) \) .
25969_A Course in Commutative Banach Algebras _Graduate Texts in Mathematics_ 246_
2
6
Algebra
Commutative algebra
Theorem 5.13 (Riemann’s Inequality) Let \( {g}_{X} \) denote the genus of the non singular projective curve \( X \), defined over the algebraically closed field \( k \) . Then for any divisor \( D \) on \( X \) ,\n\n\[ \n\ell \left( D\right) \geq \deg \left( D\right) + 1 - {g}_{X} \n\]
16380_A royal road to algebraic geometry
4
14
Geometry and Topology
Algebraic geometry
Theorem 1.2.18 (Long tables). Let \( \Gamma \) be a simplicial complex and fix \( {r}_{2},\ldots ,{r}_{m} \) . There exists a number \( b\left( {\Gamma ,{r}_{2},\ldots ,{r}_{m}}\right) < \infty \) such that the 1-norms of the elements of any minimal Markov basis for \( \Gamma \) on \( s \times {r}_{2} \times \cdots \times {r}_{m} \) tables are less than or equal to \( b\left( {\Gamma ,{r}_{2},\ldots ,{r}_{m}}\right) \) . This bound is independent of \( s \), which can grow large.
23092_Lectures on Algebraic Statistics
1
2
Combinatorics
Combinatorics
Lemma 10.2.2. Let \( f \in C\left\lbrack t\right\rbrack \) . Let \( l \) be a positive integer such that \( l \equiv 0{\;\operatorname{mod}\;r} \) . Then\n\n\[ \frac{{f}^{{p}^{l}} - f}{{t}^{{p}^{l}} - t} \in C\left\lbrack t\right\rbrack \]
26724_Hilbert_s Tenth Problem_ Diophantine Classes and Extensions to Global Fields _New Mathematical Monog
2
5
Algebra
Field theory and polynomials
Corollary 9.1.4.\n\n\\[ \n\\operatorname{Pf}\\left( {A\\left( D\\right) }\\right) = s\\left( {D, M}\\right) \\mathcal{P}\\left( {D, M}\\right) \n\\]
12046_Discrete Mathematics in Statistical Physics_ Introductory Lectures
0
0
Foundations and Logic
Mathematical logic and foundations
Theorem 4.1.1. Let \( \{ \overrightarrow{\xi }\left( m\right), m \in \mathbb{Z}\} \) be a stochastic sequence which defines the stationary GM increment sequence \( {\chi }_{\bar{\mu },\bar{s}}^{\left( d\right) }\left( {\overrightarrow{\xi }\left( m\right) }\right) = {\left\{ {\chi }_{\bar{\mu },\bar{s}}^{\left( d\right) }\left( {\xi }_{p}\left( m\right) \right) \right\} }_{p = 1}^{T} \) with the absolutely continuous spectral function \( F\left( \lambda \right) \) which has spectral density \( f\left( \lambda \right) \) . Let \( \{ \overrightarrow{\eta }\left( m\right), m \in \mathbb{Z}\} \) be an uncorrelated with the sequence \( \overrightarrow{\xi }\left( m\right) \) stationary stochastic sequence with an absolutely continuous spectral function \( G\left( \lambda \right) \) which has spectral density \( g\left( \lambda \right) \) . Let minimality condition (4.2) be satisfied. The optimal linear estimate \( {\widehat{A}}_{N}\overrightarrow{\xi } \) of the functional \( {A}_{N}\overrightarrow{\xi } \) which depends on the unknown values of elements \( \overrightarrow{\xi }\left( k\right), k = 0,1,2,\ldots, N \), from observations of the sequence \( \overrightarrow{\xi }\left( m\right) + \overrightarrow{\eta }\left( m\right) \) at points of the set \( Z \smallsetminus \{ 0,1,2,\ldots, N\} \) is calculated by formula (4.8), where the spectral characteristic \( {\overrightarrow{h}}_{\bar{\mu }, N}\left( \lambda \right) \) is calculated by the formula
12806_Non-Stationary Stochastic Processes Estimation_ Vector Stationary Increments_ Periodically Stationar
9
44
Probability and Statistics
Probability theory and stochastic processes
Theorem 1. Assume that \( \left( {H}_{1}\right) - \left( {H}_{4}\right) \) hold. Moreover, if there exists a constant \( M > 0 \), such that\n\n\[ M\left\lbrack {q\left( M\right) \left( {\frac{\psi \left( b\right) - \psi \left( a\right) }{{2\Gamma }\left( {\alpha - 1}\right) }{\int }_{a}^{b}{\left( \psi \left( b\right) - \psi \left( s\right) \right) }^{\alpha - 2}p\left( s\right) {\psi }^{\prime }\left( s\right) {ds}}\right. }\right.\n\n\[ {\left. \left. +\frac{2}{\Gamma \left( \alpha \right) }{\left( \psi \left( b\right) - \psi \left( a\right) \right) }^{\alpha - 1}{\int }_{a}^{b}p\left( s\right) {\psi }^{\prime }\left( s\right) ds\right) \right\rbrack }^{-1} > 1. \tag{23} \]\n\nThen (4) has at least one solution on \( \left\lbrack {a, b}\right\rbrack \) .
28491_Fractional Differential Equations_ Inclusions and Inequalities with Applications
6
Unknown
Differential Equations and Dynamical Systems
Unknown
Theorem 4. The Hilbert-Schmidt operator \( \mathbb{K} : \mathcal{H} \rightarrow \mathcal{H} \) from (6) with the integral kernel (5) represents a bounded linear operator on the Hilbert space \( \mathcal{H} = {L}^{2}\left( {Q,\mathbb{C}}\right) \), and we have the estimate\n\n\[ \n\parallel \mathbb{K}\parallel \leq \parallel K\parallel \n\]
35105_偏微分方程_第2卷_英文
5
33
Analysis
Operator theory
Theorem 2.1.16 (Iskovskikh (1979a)). Let \( X \) be a nonsingular three-dimensional Fano variety of index \( r \) and genus \( g \) . Assume that the anticanon-ical linear system \( \left| {-{K}_{X}}\right| \) determines a morphism \( \varphi : X \rightarrow {X}^{\prime } \subset {\mathbb{P}}^{g + 1} \) which is not an embedding. Then \( \varphi : X \rightarrow {X}^{\prime } \) is a double cover with a smooth ramification divisor \( D \subset {X}^{\prime } \) . The variety \( X \) is completely determined by the pair \( \left( {{X}^{\prime }, D}\right) \), and for this pair only the following cases are possible:\n\n(i) \( {X}^{\prime } \subset {\mathbb{P}}^{6} \) is a cone over the Veronese surface, and \( D \subset {X}^{\prime } \) is cut out by a cubic hypersurface; in this case \( X \) is isomorphic to the variety from 3.1.6 (i);\n\n(ii) \( {X}^{\prime } = {\mathbb{P}}^{3} \), and \( D \subset {\mathbb{P}}^{3} \) is a surface of degree 6; in this case \( r = 1, g\left( X\right) = 2 \) , and \( \operatorname{Pic}\left( X\right) = \mathbb{Z} \) ;\n\n(iii) \( {X}^{\prime } = Q \subset {\mathbb{P}}^{4} \) is a smooth quadric, and \( D \subset Q \) is cut out by a quadric in \( {\mathbb{P}}^{4} \) ; in this case \( r = 1, g\left( X\right) = 3 \), and \( \operatorname{Pic}\left( X\right) = \mathbb{Z} \) ;\n\n(iv) \( {X}^{\prime } = {\mathbb{P}}^{1} \times {\mathbb{P}}^{2} \subset {\mathbb{P}}^{5} \) embedded by Segre, and \( D \) is a divisor of bidegree \( \left( {2,4}\right) \) ; in this case \( r = 1, g\left( X\right) = 4 \), and \( \operatorname{Pic}\left( X\right) = \mathbb{Z} \oplus \mathbb{Z} \) ;\n\n(v) \( {X}^{\prime } = {\mathbb{P}}_{{\mathbb{P}}^{1}}\left( \mathcal{E}\right) \), where \( \mathcal{E} = {\mathcal{O}}_{{\mathbb{P}}^{1}}\left( 2\right) \oplus {\mathcal{O}}_{{\mathbb{P}}^{1}}\left( 1\right) \oplus {\mathcal{O}}_{{\mathbb{P}}^{1}}\left( 1\right) \), and \( {X}^{\prime } \) is embedded in \( {\mathbb{P}}^{6} \) by the linear system \( \left| {{\mathcal{O}}_{\mathbb{P}\left( \mathcal{E}\right) }\left( 1\right) }\right| \), and \( D \in \left| {{\mathcal{O}}_{\mathbb{P}\left( \mathcal{E}\right) }\left( 4\right) }\right| \) ; in this case \( r = 1 \) , \( g\left( X\right) = 5 \), and \( \operatorname{Pic}\left( X\right) = \mathbb{Z} \oplus \mathbb{Z} \) ; the variety \( X \) can also be realized as a blow-up of a Fano variety \( {Y}_{2} \) of index 2 along a nonsingular elliptic curve \( {H}_{1} \cap {H}_{2} \), where \( {H}_{1},{H}_{2} \in \frac{1}{2}\left| {-{K}_{{Y}_{2}}}\right| \) ;\n\n(vi) \( {X}^{\prime } = {\mathbb{P}}^{1} \times {\mathbb{P}}^{2} \subset {\mathbb{P}}^{8}\; \) embedded by the linear system \( \left| {{p}_{1}^{ * }{\mathcal{O}}_{{\mathbb{P}}^{1}}\left( 2\right) \otimes {p}_{2}^{ * }{\mathcal{O}}_{{\mathbb{P}}^{2}}\left( 1\right) }\right| , \) and \( D \in \left| {{p}_{2}^{ * }{\mathcal{O}}_{{\mathbb{P}}^{2}}\left( 4\right) }\right| \) ; in this case \( r = 1, g\left( X\right) = 7 \), and \( \operatorname{Pic}\left( X\right) = {\mathbb{Z}}^{9} \) ; the variety \( X \) is isomorphic to \( {\mathbb{P}}^{1} \times F \), where \( F \) is a del Pezzo surface of degree 2.
38847_代数几何 Fano簇
4
Unknown
Geometry and Topology
Unknown
Corollary 8.4.5 (How to recognize a Brownian motion).\n\nLet\n\n\\[ d{Y}_{t} = u\\left( {t,\\omega }\\right) {dt} + v\\left( {t,\\omega }\\right) d{B}_{t} \\]\n\nbe an Itô process in \\( {\\mathbf{R}}^{n} \\) . Then \\( {Y}_{t} \\) is a Brownian motion if and only if\n\n\\[ {E}^{x}\\left\\lbrack {u\\left( {t, \\cdot }\\right) \\mid {\\mathcal{N}}_{t}}\\right\\rbrack = 0\\;\\text{ and }\\;v{v}^{T}\\left( {t,\\omega }\\right) = {I}_{n} \\tag{8.4.14} \\]\n\nfor a.a. \\( \\left( {t,\\omega }\\right) \\) .
24297_Oksendal Stochastic differential equations
9
44
Probability and Statistics
Probability theory and stochastic processes
Problem 2. Characterize diagonals \( {\left\{ \left\langle E{e}_{i},{e}_{i}\right\rangle \right\} }_{i \in I} \) of a self-adjoint operator \( E \), where \( {\left\{ {e}_{i}\right\} }_{i \in I} \) is any orthonormal basis of \( \mathcal{H} \) .
9449_Excursions in Harmonic Analysis_ Volume 4_ The February Fourier Talks at the Norbert Wiener Center
5
33
Analysis
Operator theory
Corollary 1. Let at least one of the price sequences, for example, \( {\left\{ {p}_{i}^{k}\right\} }_{k = 0}^{\infty } \), grow unlimitedly. Then all the other price sequences also grow unlimitedly under the Assumption 1.
24032_Mathematical Optimization Theory and Operations Research_ 19th International Conference_ MOTOR 2020_
8
42
Optimization and Control
Calculus of variations and optimal control; optimization
Theorem 18.8 (Slutsky’s Theorem). Let \( {\left( {X}_{n}\right) }_{n \geq 1} \) and \( {\left( {Y}_{n}\right) }_{n \geq 1} \) be two sequences of \( {\mathbf{R}}^{d} \) valued random variables, with \( {X}_{n}\overset{\mathcal{D}}{ \rightarrow }X \) and \( \begin{Vmatrix}{{X}_{n} - {Y}_{n}}\end{Vmatrix} \rightarrow 0 \) in probability. Then \( {Y}_{n}\overset{\mathcal{D}}{ \rightarrow }X \) .
15222_Probability essentials
9
44
Probability and Statistics
Probability theory and stochastic processes
Theorem 1.1 Let \( \mathcal{D} \) be the normalized in \( {L}_{p},2 \leq p < \infty \), real \( d \) -variate trigonometric system. Then for any \( {f}_{0} \in {L}_{p} \) the WCGA with weakness parameter \( t \) gives\n\n\[{\begin{Vmatrix}{f}_{C\left( {t, p, d}\right) m\ln \left( {m + 1}\right) }\end{Vmatrix}}_{p} \leq C{\sigma }_{m}{\left( {f}_{0},\mathcal{D}\right) }_{p}. \tag{1.3}\]
31382_Mathematical Analysis_ Probability and Applications _ Plenary Lectures_ ISAAC 2015_ Macau_ China
5
22
Analysis
Real functions
Proposition 11.5.13 ([841, Proposition 2.4]) Let \( \mathcal{C},\mathcal{D} \subseteq {\mathbb{F}}_{q}^{n \times m} \) be rank-metric codes. If \( \mathcal{C} \sim \mathcal{D} \), then\n\n\[ \n{d}_{i}\left( \mathcal{C}\right) = {d}_{i}\left( \mathcal{D}\right) \text{ for }i = 1,2,\ldots ,\dim \left( \mathcal{C}\right) .\n\]
32121_Concise Encyclopedia Of Coding Theory
1
2
Combinatorics
Combinatorics
Theorem 13.5 Assume that in two dimensions at \( {x}_{0} \in {\Phi }_{t}^{-1}{M}_{t} \) the normal \( {n}_{\mathrm{M}}\left( {x}_{0}\right) \neq 0 \) so that the pre-Maxwell set does not have a generalized cusp at \( {x}_{0} \) . Then, the Maxwell set can only have a cusp at \( {\Phi }_{t}\left( {x}_{0}\right) \) if \( {\Phi }_{t}\left( {x}_{0}\right) \in {C}_{t} \) . Moreover, if:\n\n\[ x = {\Phi }_{t}\left( {x}_{0}\right) \in {\Phi }_{t}\left\{ {{\Phi }_{t}^{-1}{C}_{t} \cap {\Phi }_{t}^{-1}{M}_{t}}\right\} \]\n\nthe Maxwell set will have a generalized cusp at \( x \) .
22349_Analysis and Stochastics of Growth Processes and Interface Models
4
18
Geometry and Topology
Differential geometry
Lemma 2.5. Let \( G \) be an \( {\aleph }_{0} \) -bounded \( P \) -group. Then every continuous homomorphic image \( K \) of \( G \) with \( \psi \left( K\right) \leq \omega \) is countable.
1088_Topology and its Applications 2004-01-28_ Vol 136 Iss 1-3
2
11
Algebra
Group theory and generalizations
Proposition 20 (Proposition 2.30, [8]) If \( G \) is a connected Lie group and Ad denotes the adjoint action of \( G \) on its Lie algebra, then \( \Delta \left( g\right) = \det \left( {\operatorname{Ad}\left( {g}^{-1}\right) }\right) \) .
23387_Harmonic and Applied Analysis_ From Radon Transforms to Machine Learning
4
15
Geometry and Topology
Topological groups, Lie groups
Exercise 6.9 Show that \( {g}^{ij} = \left( {\mathrm{d}{x}^{i} \mid \mathrm{d}{x}^{j}}\right) \) . (Cf. Exercise 6.7.)
12530_Differentiable Manifolds - A Theoretical Physics Approach
4
Unknown
Geometry and Topology
Unknown
Theorem 1.2.15. Let \( \mu \in \mathcal{F}\mathcal{P}\left( G\right) \) and let \( a = \land \{ \eta \left( e\right) \mid \mu \subseteq \eta ,\eta \in \mathcal{F}\left( G\right) \} \) . Then \[ \langle \mu \rangle = {e}_{a} \cup \left( {{ \cup }_{n = 1}^{\infty }{\left( \mu \cup {\mu }^{-1}\right) }^{n}}\right) = { \cup }_{n = 1}^{\infty }{\left( {e}_{a} \cup \mu \cup {\mu }^{-1}\right) }^{n}. \]
14520_Fuzzy Group Theory
2
11
Algebra
Group theory and generalizations
Proposition 8.1. (see [BF],[M1]) The set \( {B}_{2, K}^{k} \) can be given a natural scheme structure. Its expected dimension is\n\n\[ \n{\rho }_{2, K}^{k} = \dim U\left( {2, K}\right) - \left( \begin{matrix} k + 1 \\ 2 \end{matrix}\right) .\n\]\n\nThe tangent space to \( {B}_{2, K}^{k} \) at a point \( E \) is naturally identified to the orthogonal to the image of the symmetric Petri map\n\n\[ \n{S}^{2}\left( {{H}^{0}\left( {C, E}\right) }\right) \rightarrow {H}^{0}\left( {C,{S}^{2}\left( E\right) }\right) .\n\]
15980_Moduli Spaces and Vector Bundles
4
14
Geometry and Topology
Algebraic geometry
Proposition 8.2.4 The following formulas are valid in PLTL, for any formulas \( \alpha \) and \( \beta \) :\n\n1. \( \sim \sim \alpha \leftrightarrow \alpha \) ,\n\n2. \( \sim \left( {\alpha \land \beta }\right) \leftrightarrow \sim \alpha \vee \sim \beta \) ,\n\n3. \( \sim \left( {\alpha \vee \beta }\right) \leftrightarrow \sim \alpha \land \sim \beta \) ,\n\n\[ \text{4.} \sim \left( {\alpha \rightarrow \beta }\right) \leftrightarrow \alpha \land \sim \beta \text{,} \]\n\n\[ \text{5.} \sim \neg \alpha \leftrightarrow \neg \sim \alpha \text{,} \]\n\n\[ \text{6.} \sim \mathrm{X}\alpha \leftrightarrow \mathrm{X} \sim \alpha \text{,} \]\n\n\[ \text{7.} \sim \mathrm{F}\alpha \leftrightarrow \mathrm{G} \sim \alpha \text{,} \]\n\n\[ \text{8.} \sim \mathrm{G}\alpha \leftrightarrow \mathrm{F} \sim \alpha \text{.} \]
13166_Proof Theory of N4-Paraconsistent Logics
0
0
Foundations and Logic
Mathematical logic and foundations
Theorem 8.2 (The Gauss Formula). Suppose \( \left( {M, g}\right) \) is an embedded Riemannian submanifold of a Riemannian or pseudo-Riemannian manifold \( \left( {\widetilde{M},\widetilde{g}}\right) \) . If \( X, Y \in \) \( \mathfrak{X}\left( M\right) \) are extended arbitrarily to smooth vector fields on a neighborhood of \( M \) in \( \widetilde{M} \), the following formula holds along \( M \) :\n\n\[ \n{\widetilde{\nabla }}_{X}Y = {\nabla }_{X}Y + \coprod \left( {X, Y}\right) \n\]
31699_Introduction to Riemannian manifolds _Corrected version of second edition_
4
18
Geometry and Topology
Differential geometry
Theorem 9.8. [46] The central fiber of this map is the polarized toric variety for the torus \( {T}_{N} \) given by the polyhedron \( {\bar{\Xi }}_{f} \) and the generic fiber is a compactification of the cluster variety \( \mathcal{A} \) .
7930_Representation Theory _ Current Trends and Perspectives_Henning Krause_Peter Littelmann_Gunter Malle
4
Unknown
Geometry and Topology
Unknown
Lemma 6.41. Let \( {H}_{1} \) and \( {H}_{2} \) be subgroups of \( G \), and let \( g \in G \) . Then\n\n\[ \n\# {H}_{1}g{H}_{2} = \frac{\# {H}_{1} \cdot \# {H}_{2}}{\# \left( {{g}^{-1}{H}_{1}g \cap {H}_{2}}\right) }. \tag{6.16} \n\]
11112_Abstract Algebra_ An Integrated Approach
2
11
Algebra
Group theory and generalizations
Theorem 9.3.4. Let \( p \in \left\lbrack {1, + \infty }\right\rbrack \) . Let \( F \) be as in (9.3.2) satisfying (9.2.5), (9.2.9),(9.3.3) ÷ (9.3.6),(9.2.2),(9.3.7),(9.3.8),(9.2.3), and let \( {f}_{F} \) be given by (9.1.6). Then \( {f}_{F} \) is convex and lower semicontinuous, and (9.3.1) holds.\n\nConversely, given \( f : {\mathbf{R}}^{n} \rightarrow \left\lbrack {0, + \infty }\right\rbrack \) convex and lower semicontinuous, and defined \( F \) by (9.3.1) with \( {f}_{F} = f \), it turns out that conditions (9.2.5), (9.2.9), (9.3.3)÷(9.3.6), (9.2.2), (9.3.7), (9.3.8), (9.2.3) are satisfied by \( F \) .
17661_Unbounded Functionals in the Calculus of Variations_ Representation_ Relaxation_ and Homogenization
5
22
Analysis
Real functions
Lemma 2. Suppose \( B \) is a \( d \times d \) strictly positive definite matrix. Let\n\n\[ \n{D}_{n} = {\int }_{{\mathbb{R}}^{d}}\exp \left( {-\frac{n}{2}{x}^{T}{Bx}}\right) {dx} \]\n\nand\n\n\[ \n{D}_{n}\left( r\right) = {\int }_{\left| x\right| \leq r}\exp \left( {-\frac{n}{2}{x}^{T}{Bx}}\right) {dx}. \]\n\nThen for \( r > 0 \) ,\n\n\[ \n\mathop{\lim }\limits_{{n \rightarrow \infty }}{D}_{n}\left( r\right) /{D}_{n} = 1 \]\n
27890_Discrete Geometry_ Combinatorics and Graph Theory_ 7th China-Japan Conference_ CJCDGCGT 2005_ Tianji
5
23
Analysis
Measure and integration
Lemma 1. For every Spectrum Allocation instance \( \left( {G, D, k}\right) \) and its optimal solution \( I \), there exists a permutation \( \operatorname{Per}\left( D\right) \) of the demands, such that demands from Per (D) are allocated one by one with the lowest available wavelengths will deliver the optimal solution \( I \) .
682_Mathematical Optimization Theory and Operations Research_ Recent Trends_ 21st International Conference_ MOTOR 2022_ Petrozavodsk_ Russia_ July 2_6_ 2022_ Revised Selected Papers
1
2
Combinatorics
Combinatorics
Proposition 3.1 - Let \( A \) be a finitely generated \( k \) -algebra. If \( \mathfrak{m} \in \operatorname{Spm}\left( A\right) \) , then the canonical map \( k \rightarrow A/\mathfrak{m} \) is an isomorphism.
15589_Introduction to algebraic groups
2
6
Algebra
Commutative algebra
Proposition 2.3.15 ([4, Proposition 3.5]). If \( i, j, k \) are not all the same, then(2.3.6)
25377_2-Kac-Moody Algebras
1
2
Combinatorics
Combinatorics
Example 3.23 Find the surface area of rotation of \( y = \sqrt{x} \) about the \( x \)-axis from \( x = 0 \) to \( x = 4 \) .
17898_Fast Start Advanced Calculus
5
22
Analysis
Real functions
Theorem 3.4.1. If a finite set of closed \( d \) -dimensional balls of radius \( \frac{\pi }{2} \) (i.e., of closed hemispheres) in the \( d \) -dimensional spherical space \( {\mathbb{S}}^{d}, d \geq 2 \) is rearranged so that the (spherical) distance between each pair of centers does not increase, then the (spherical) d-dimensional volume of the intersection does not decrease and the (spherical) \( d \) -dimensional volume of the union does not increase.
22389_Lectures on Sphere Arrangements - the Discrete Geometric Side
4
16
Geometry and Topology
Geometry
Lemma 6 (Lemma III.4,[5]). Let \( \sum = \left( {{A}_{1},{A}_{2},{B}_{1},{B}_{2}, C, D}\right) \) be a \( {2D} \) linear system and \( X\left( {{z}_{1},{z}_{2}}\right) \) the corresponding matrix defined in (4). Then \( \sum \) is modally reachable if and only if the matrix \( X\left( {{z}_{1},{z}_{2}}\right) \) is \( \ell {FP} \) .
1561_Coding Theory and Applications _ 5th International Castle Meeting_ ICMCTA 2017_ Vihula_ Estonia_ Aug
13
59
Systems Theory and Control
Systems theory; control
Exercise 7.17 Let \( V = {\mathbb{R}}^{n} \) with the standard inner product. Let \( \mathbf{x} \in {\mathbb{R}}^{n} \) . Use the Cauchy-Schwarz inequality to prove that\n\n\[ \left| {x}_{1}\right| + \left| {x}_{2}\right| + \cdots + \left| {x}_{n}\right| \leq \sqrt{n}\parallel \mathbf{x}\parallel \]
22051_Elements of Linear Algebra
5
29
Analysis
Harmonic analysis on Euclidean spaces
Corollary 9.8 [41] Let the sequence \( \left\{ {x}_{n}\right\} \) be generated by the mapping\n\n\[ \n{x}_{n + 1} = {\alpha }_{n}{\gamma f}\left( {x}_{n}\right) + \left( {I - \mu {\alpha }_{n}F}\right) T{x}_{n},\n\]\n\nwhere \( T \) is nonexpansive, \( {\alpha }_{n} \) is a sequence in \( \left( {0,1}\right) \) satisfying the following conditions:\n\n\[ \n\left\{ \begin{array}{ll} \text{ (i) } & \mathop{\lim }\limits_{{n \rightarrow \infty }}{\alpha }_{n} = 0,\;\sum {\alpha }_{n} = \infty ; \\ \text{ (ii) } & \sum \left| {{\alpha }_{n + 1} - {\alpha }_{n}}\right| < \infty ,\;\sum \left| {{\beta }_{n + 1} - {\beta }_{n}}\right| < \infty ; \\ \text{ (iii) } & 0 \leq \mathop{\max }\limits_{i}{k}_{i} \leq {\beta }_{n} < a < 1,\forall n \geq 0. \end{array}\right. \tag{9.71}\n\]\n\nIt was proved in [41] that \( \left\{ {x}_{n}\right\} \) converged strongly to the common fixed-point \( {x}^{ * } \) of \( T \), which is the solution of variational inequality problem\n\n\[ \n\left\langle {\left( {{\gamma f} - {\mu F}}\right) {x}^{ * }, x - {x}^{ * }}\right\rangle \leq 0,\;\forall x \in \operatorname{Fix}\left( T\right) . \tag{9.72}\n\]
31124_Mathematical Analysis and Applications_ Selected Topics
6
38
Differential Equations and Dynamical Systems
Difference and functional equations
Theorem 8.2.4 If \( 1 \leq k \leq p - 1 \), then\n\n\[ S\left( {p, k}\right) = {kS}\left( {p - 1, k}\right) + S\left( {p - 1, k - 1}\right) . \]
37834_组合数学 英文版
1
2
Combinatorics
Combinatorics
Corollary 2.5. If \( \Omega \) is a symmetric admissible Tricomi domain, then the reflected Tricomi operator \( R{T}_{AC} : {W}_{A} \subset {W}_{{AC} \cup \sigma }^{1} \rightarrow {L}^{2}\left( \Omega \right) \) admits infinitely many positive and negative eigenvalues \( {\lambda }_{j}^{ \pm } = {\left( {\mu }_{j}^{ \pm }\right) }^{-1} \) with associated eigen-functions \( {\left\{ {e}_{j}^{ \pm }\right\} }_{j \in \mathbb{N}} \) where \( {\lambda }_{j}^{ \pm } \rightarrow \pm \infty \) as \( j \rightarrow + \infty \) .
10376_Nonlinear Analysis and its Applications to Differential Equations
6
36
Differential Equations and Dynamical Systems
Partial differential equations
README.md exists but content is empty. Use the Edit dataset card button to edit it.
Downloads last month
42
Edit dataset card