File size: 18,294 Bytes
d1d6816 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
import matplotlib.pyplot as plt
import librosa
import matplotlib
import pandas as pd
from typing import Optional
from torch import tensor
from ddsp.core import tf_float32
import torch
from torch import Tensor
import numpy as np
import tensorflow as tf
from torchsynth.config import SynthConfig
import ddsp
from pathlib import Path
from typing import Dict
from data_generation.encoding import ParameterDescription
from typing import List
from configurations.read_configuration import parameter_range, is_discrete, midi_parameter_range, midi_is_discrete
import shutil
from tqdm import tqdm
from scipy.io.wavfile import write
from melody_synth.complex_torch_synth import DoubleSawSynth, SinSawSynth, SinTriangleSynth, TriangleSawSynth
sample_rate = 16000
n_samples = sample_rate * 4.5
class NoteGenerator:
"""
This class is responsible for single-note audio generation by function 'get_note'.
"""
def __init__(self,
sample_rate=sample_rate,
n_samples=sample_rate * 4.5):
self.sample_rate = sample_rate
self.n_samples = n_samples
synthconfig = SynthConfig(
batch_size=1, reproducible=False, sample_rate=sample_rate,
buffer_size_seconds=np.float64(n_samples) / np.float64(sample_rate)
)
self.Saw_Square_Voice = DoubleSawSynth(synthconfig)
self.SinSawVoice = SinSawSynth(synthconfig)
self.SinTriVoice = SinTriangleSynth(synthconfig)
self.TriSawVoice = TriangleSawSynth(synthconfig)
def get_note(self, params: Dict[str, float]):
osc_amp2 = np.float64(params.get("osc_amp2", 0))
if osc_amp2 < 0.45:
osc1_amp = 0.9
osc2_amp = osc_amp2
else:
osc1_amp = 0.9 - osc_amp2
osc2_amp = 0.9
attack_1 = np.float64(params.get("attack_1", 0))
decay_1 = np.float64(params.get("decay_1", 0))
sustain_1 = np.float64(params.get("sustain_1", 0))
release_1 = np.float64(params.get("release_1", 0))
attack_2 = np.float64(params.get("attack_2", 0))
decay_2 = np.float64(params.get("decay_2", 0))
sustain_2 = np.float64(params.get("sustain_2", 0))
release_2 = np.float64(params.get("release_2", 0))
amp_mod_freq = params.get("amp_mod_freq", 0)
amp_mod_depth = params.get("amp_mod_depth", 0)
amp_mod_waveform = params.get("amp_mod_waveform", 0)
pitch_mod_freq_1 = params.get("pitch_mod_freq_1", 0)
pitch_mod_depth = params.get("pitch_mod_depth", 0)
cutoff_freq = params.get("cutoff_freq", 4000)
pitch = np.float64(params.get("pitch", 0))
duration = np.float64(params.get("duration", 0))
syn_parameters = {
("adsr_1", "attack"): tensor([attack_1]), # [0.0, 2.0]
("adsr_1", "decay"): tensor([decay_1]), # [0.0, 2.0]
("adsr_1", "sustain"): tensor([sustain_1]), # [0.0, 2.0]
("adsr_1", "release"): tensor([release_1]), # [0.0, 2.0]
("adsr_1", "alpha"): tensor([5]), # [0.1, 6.0]
("adsr_2", "attack"): tensor([attack_2]), # [0.0, 2.0]
("adsr_2", "decay"): tensor([decay_2]), # [0.0, 2.0]
("adsr_2", "sustain"): tensor([sustain_2]), # [0.0, 2.0]
("adsr_2", "release"): tensor([release_2]), # [0.0, 2.0]
("adsr_2", "alpha"): tensor([5]), # [0.1, 6.0]
("keyboard", "midi_f0"): tensor([pitch]),
("keyboard", "duration"): tensor([duration]),
# Mixer parameter
("mixer", "vco_1"): tensor([osc1_amp]), # [0, 1]
("mixer", "vco_2"): tensor([osc2_amp]), # [0, 1]
# Constant parameters:
("vco_1", "mod_depth"): tensor([pitch_mod_depth]), # [-96, 96]
("vco_1", "tuning"): tensor([0.0]), # [-24.0, 24]
("vco_2", "mod_depth"): tensor([pitch_mod_depth]), # [-96, 96]
("vco_2", "tuning"): tensor([0.0]), # [-24.0, 24]
# LFOs
("lfo_amp_sin", "frequency"): tensor([amp_mod_freq]), # [0, 20]
("lfo_amp_sin", "mod_depth"): tensor([0]), # [-10, 20]
("lfo_pitch_sin_1", "frequency"): tensor([pitch_mod_freq_1]), # [0, 20]
("lfo_pitch_sin_1", "mod_depth"): tensor([10]), # [-10, 20]
("lfo_pitch_sin_2", "frequency"): tensor([pitch_mod_freq_1]), # [0, 20]
("lfo_pitch_sin_2", "mod_depth"): tensor([10]), # [-10, 20]
}
osc_types = params.get("osc_types", 0)
if osc_types == 0:
synth = self.SinSawVoice
syn_parameters[("vco_2", "shape")] = tensor([1])
elif osc_types == 1:
synth = self.SinSawVoice
syn_parameters[("vco_2", "shape")] = tensor([0])
elif osc_types == 2:
synth = self.Saw_Square_Voice
syn_parameters[("vco_1", "shape")] = tensor([1])
syn_parameters[("vco_2", "shape")] = tensor([0])
elif osc_types == 3:
synth = self.SinTriVoice
elif osc_types == 4:
synth = self.TriSawVoice
syn_parameters[("vco_2", "shape")] = tensor([1])
else:
synth = self.TriSawVoice
syn_parameters[("vco_2", "shape")] = tensor([0])
synth.set_parameters(syn_parameters)
audio_out = synth.get_signal(amp_mod_depth, amp_mod_waveform, int(sample_rate * duration), osc1_amp, osc2_amp)
single_note = audio_out[0].detach().numpy()
cutoff_freq = tf_float32(cutoff_freq)
impulse_response = ddsp.core.sinc_impulse_response(cutoff_freq, 2048, self.sample_rate)
single_note = tf_float32(single_note)
return ddsp.core.fft_convolve(single_note[tf.newaxis, :], impulse_response)[0, :]
class MelodyGenerator:
"""
This class is responsible for multi-note audio generation by function 'get_melody'.
"""
def __init__(self,
sample_rate=sample_rate,
n_note_samples=sample_rate * 4.5,
n_melody_samples=sample_rate * 4.5):
self.sample_rate = sample_rate
self.noteGenerator = NoteGenerator(sample_rate, sample_rate * 4.5)
self.n_melody_samples = int(n_melody_samples)
def get_melody(self, params_list: List[Dict[str, float]], onsets):
track = np.zeros(self.n_melody_samples)
for i in range(len(onsets)):
location = onsets[i]
single_note = self.noteGenerator.get_note(params_list[i])
single_note = np.hstack(
[np.zeros(int(location)), single_note, np.zeros(self.n_melody_samples)])[
:self.n_melody_samples]
track = track + single_note
return track
def plot_log_spectrogram(signal: np.ndarray,
path: str,
n_fft=2048,
frame_length=1024,
frame_step=256):
"""Write spectrogram."""
stft = librosa.stft(signal, n_fft=1024, hop_length=256, win_length=1024)
amp = np.square(np.real(stft)) + np.square(np.imag(stft))
magnitude_spectrum = np.abs(amp)
log_mel = np_power_to_db(magnitude_spectrum)
matplotlib.pyplot.imsave(path, log_mel, vmin=-100, vmax=0, origin='lower')
def np_power_to_db(S, amin=1e-16, top_db=80.0):
"""A helper function for scaling."""
def np_log10(x):
numerator = np.log(x)
denominator = np.log(10)
return numerator / denominator
# Scale magnitude relative to maximum value in S. Zeros in the output
# correspond to positions where S == ref.
ref = np.max(S)
# 每个元素取max
log_spec = 10.0 * np_log10(np.maximum(amin, S))
log_spec -= 10.0 * np_log10(np.maximum(amin, ref))
log_spec = np.maximum(log_spec, np.max(log_spec) - top_db)
return log_spec
synth = MelodyGenerator()
param_descriptions: List[ParameterDescription]
param_descriptions = [
# Oscillator levels
ParameterDescription(name="osc_amp2",
values=parameter_range('osc_amp2'),
discrete=is_discrete('osc_amp2')),
# ADSR params
ParameterDescription(name="attack_1",
values=parameter_range('attack'),
discrete=is_discrete('attack')),
ParameterDescription(name="decay_1",
values=parameter_range('decay'),
discrete=is_discrete('decay')),
ParameterDescription(name="sustain_1",
values=parameter_range('sustain'),
discrete=is_discrete('sustain')),
ParameterDescription(name="release_1",
values=parameter_range('release'),
discrete=is_discrete('release')),
ParameterDescription(name="attack_2",
values=parameter_range('attack'),
discrete=is_discrete('attack')),
ParameterDescription(name="decay_2",
values=parameter_range('decay'),
discrete=is_discrete('decay')),
ParameterDescription(name="sustain_2",
values=parameter_range('sustain'),
discrete=is_discrete('sustain')),
ParameterDescription(name="release_2",
values=parameter_range('release'),
discrete=is_discrete('release')),
ParameterDescription(name="cutoff_freq",
values=parameter_range('cutoff_freq'),
discrete=is_discrete('cutoff_freq')),
ParameterDescription(name="pitch",
values=midi_parameter_range('pitch'),
discrete=midi_is_discrete('pitch')),
ParameterDescription(name="duration",
values=midi_parameter_range('duration'),
discrete=midi_is_discrete('duration')),
ParameterDescription(name="amp_mod_freq",
values=parameter_range('amp_mod_freq'),
discrete=is_discrete('amp_mod_freq')),
ParameterDescription(name="amp_mod_depth",
values=parameter_range('amp_mod_depth'),
discrete=is_discrete('amp_mod_depth')),
ParameterDescription(name="pitch_mod_freq_1",
values=parameter_range('pitch_mod_freq'),
discrete=is_discrete('pitch_mod_freq')),
ParameterDescription(name="pitch_mod_freq_2",
values=parameter_range('pitch_mod_freq'),
discrete=is_discrete('pitch_mod_freq')),
ParameterDescription(name="pitch_mod_depth",
values=parameter_range('pitch_mod_depth'),
discrete=is_discrete('pitch_mod_depth')),
# Oscillators types
# 0 for sin saw, 1 for sin square, 2 for saw square
# 3 for sin triangle, 4 for triangle saw, 5 for triangle square
ParameterDescription(name="osc_types",
values=parameter_range('osc_types'),
discrete=is_discrete('osc_types')),
]
frame_length = 1024
frame_step = 256
spectrogram_len = 256
n_fft = 1024
def generate_synth_dataset_log_muted_512(n: int, path_name="./data/data_log", write_spec=False):
if Path(path_name).exists():
shutil.rmtree(path_name)
Path(path_name).mkdir(parents=True, exist_ok=True)
print("Generating dataset...")
synthetic_data = np.ones((n, 512, 256))
for i in range(n):
index = i
parameter_values = [param.generate() for param in param_descriptions]
parameter_values_raw = {param.name: param.value for param in parameter_values}
parameter_values_raw["duration"] = 3.0
parameter_values_raw["pitch"] = 52
parameter_values_raw["pitch_mod_depth"] = 0.0
signal = synth.get_melody([parameter_values_raw], [0])
# mel = librosa.feature.melspectrogram(signal, sr=sample_rate, n_fft=n_fft, hop_length=frame_step, win_length=frame_length)[:,:spectrogram_len]
stft = librosa.stft(signal, n_fft=1024, hop_length=256, win_length=1024)
amp = np.square(np.real(stft)) + np.square(np.imag(stft))
synthetic_data[i] = amp[:512, :256]
if write_spec:
write(path_name + f"/{i}.wav", synth.sample_rate, signal)
plot_log_spectrogram(signal, path=path_name + f"/{i}.png", frame_length=frame_length, frame_step=frame_step)
print(f"Generating dataset over, {n} samples generated!")
return synthetic_data
def generate_synth_dataset_log_512(n: int, path_name="./data/data_log", write_spec=False):
"""Generate the synthetic dataset with a progress bar."""
if Path(path_name).exists():
shutil.rmtree(path_name)
Path(path_name).mkdir(parents=True, exist_ok=True)
print("Generating dataset...")
synthetic_data = np.ones((n, 512, 256))
for i in tqdm(range(n)):
index = i
parameter_values = [param.generate() for param in param_descriptions]
parameter_values_raw = {param.name: param.value for param in parameter_values}
parameter_values_raw["duration"] = 3.0
parameter_values_raw["pitch"] = 52
parameter_values_raw["pitch_mod_depth"] = 0.0
signal = synth.get_melody([parameter_values_raw], [0])
# mel = librosa.feature.melspectrogram(signal, sr=sample_rate, n_fft=n_fft, hop_length=frame_step, win_length=frame_length)[:,:spectrogram_len]
stft = librosa.stft(signal, n_fft=1024, hop_length=256, win_length=1024)
amp = np.square(np.real(stft)) + np.square(np.imag(stft))
synthetic_data[i] = amp[:512, :256]
if write_spec:
write(path_name + f"/{i}.wav", synth.sample_rate, signal)
plot_log_spectrogram(signal, path=path_name + f"/{i}.png", frame_length=frame_length, frame_step=frame_step)
print(f"Generating dataset over, {n} samples generated!")
return synthetic_data
def generate_DANN_dataset_muted(n: int, path_name="./data/data_DANN", write_spec=False):
"""Generate the synthetic dataset without a progress bar."""
if Path(path_name).exists():
shutil.rmtree(path_name)
Path(path_name).mkdir(parents=True, exist_ok=True)
print("Generating dataset...")
multinote_data = np.ones((n, 512, 256))
single_data = np.ones((n, 512, 256))
for i in range(n):
index = i
par_list = []
n_notes = np.random.randint(1, 5)
onsets = []
for j in range(n_notes):
parameter_values = [param.generate() for param in param_descriptions]
parameter_values_raw = {param.name: param.value for param in parameter_values}
# parameter_values_raw["duration"] = 0.5
parameter_values_raw["pitch_mod_depth"] = 0.0
par_list.append(parameter_values_raw)
onsets.append(np.random.randint(0, sample_rate * 3))
signal = synth.get_melody(par_list, onsets)
stft = librosa.stft(signal, n_fft=1024, hop_length=256, win_length=1024)
amp = np.square(np.real(stft)) + np.square(np.imag(stft))
multinote_data[i] = amp[:512, :256]
if write_spec:
write(path_name + f"/{i}.wav", synth.sample_rate, signal)
plot_log_spectrogram(signal, path=path_name + f"/mul_{i}.png", frame_length=frame_length,
frame_step=frame_step)
single_par = par_list[np.argmin(onsets)]
single_par["duration"] = 3.0
single_par["pitch"] = 52
signal = synth.get_melody([single_par], [0])
stft = librosa.stft(signal, n_fft=1024, hop_length=256, win_length=1024)
amp = np.square(np.real(stft)) + np.square(np.imag(stft))
single_data[i] = amp[:512, :256]
if write_spec:
write(path_name + f"/{i}.wav", synth.sample_rate, signal)
plot_log_spectrogram(signal, path=path_name + f"/single_{i}.png", frame_length=frame_length,
frame_step=frame_step)
print(f"Generating dataset over, {n} samples generated!")
return multinote_data, single_data
def generate_DANN_dataset(n: int, path_name="./data/data_DANN", write_spec=False):
"""Generate the synthetic dataset for adversarial training."""
if Path(path_name).exists():
shutil.rmtree(path_name)
Path(path_name).mkdir(parents=True, exist_ok=True)
print("Generating dataset...")
multinote_data = np.ones((n, 512, 256))
single_data = np.ones((n, 512, 256))
for i in tqdm(range(n)):
par_list = []
n_notes = np.random.randint(1, 5)
onsets = []
for j in range(n_notes):
parameter_values = [param.generate() for param in param_descriptions]
parameter_values_raw = {param.name: param.value for param in parameter_values}
parameter_values_raw["pitch_mod_depth"] = 0.0
par_list.append(parameter_values_raw)
onsets.append(np.random.randint(0, sample_rate * 3))
signal = synth.get_melody(par_list, onsets)
stft = librosa.stft(signal, n_fft=1024, hop_length=256, win_length=1024)
amp = np.square(np.real(stft)) + np.square(np.imag(stft))
multinote_data[i] = amp[:512, :256]
if write_spec:
write(path_name + f"/{i}.wav", synth.sample_rate, signal)
plot_log_spectrogram(signal, path=path_name + f"/mul_{i}.png", frame_length=frame_length,
frame_step=frame_step)
single_par = par_list[np.argmin(onsets)]
single_par["duration"] = 3.0
single_par["pitch"] = 52
signal = synth.get_melody([single_par], [0])
stft = librosa.stft(signal, n_fft=1024, hop_length=256, win_length=1024)
amp = np.square(np.real(stft)) + np.square(np.imag(stft))
single_data[i] = amp[:512, :256]
if write_spec:
write(path_name + f"/{i}.wav", synth.sample_rate, signal)
plot_log_spectrogram(signal, path=path_name + f"/single_{i}.png", frame_length=frame_length,
frame_step=frame_step)
print(f"Generating dataset over, {n} samples generated!")
return multinote_data, single_data
|