File size: 6,697 Bytes
2f07800 6e92088 2f07800 6e92088 2f07800 6e92088 2f07800 6e92088 2f07800 6e92088 2f07800 6e92088 2f07800 ddeef5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Inquisitive Question Generation for High Level Text Comprehension"""
import itertools
import datasets
_CITATION = """\
@InProceedings{ko2020inquisitive,
author = {Ko, Wei-Jen and Chen, Te-Yuan and Huang, Yiyan and Durrett, Greg and Li, Junyi Jessy},
title = {Inquisitive Question Generation for High Level Text Comprehension},
booktitle = {Proceedings of EMNLP},
year = {2020},
}
"""
_DESCRIPTION = """\
A dataset of about 20k questions that are elicited from readers as they naturally read through a document sentence by sentence. \
Compared to existing datasets, INQUISITIVE questions target more towards high-level (semantic and discourse) comprehension of text. \
Because these questions are generated while the readers are processing the information, the questions directly communicate gaps between \
the reader’s and writer’s knowledge about the events described in the text, and are not necessarily answered in the document itself. \
This type of question reflects a real-world scenario: if one has questions during reading, some of them are answered by the text later on, \
the rest are not, but any of them would help further the reader’s understanding at the particular point when they asked it. \
This resource could enable question generation models to simulate human-like curiosity and cognitive processing, which may open up a new realm of applications.
"""
_ARTICLES_URL = "https://github.com/wjko2/INQUISITIVE/raw/master/articles.tgz"
_QUESTIONS_URL = "https://github.com/wjko2/INQUISITIVE/raw/master/questions.txt"
ALL_ARTICLE_IDS = list(range(1, 1501))
DEV_ARTICLE_IDS = list(itertools.chain(range(1, 101), range(1051, 1101)))
TEST_ARTICLE_IDS = list(itertools.chain(range(101, 151), range(501, 551), range(1101, 1151)))
DEV_AND_TEST_IDS = DEV_ARTICLE_IDS + TEST_ARTICLE_IDS
TRAIN_ARTICLE_IDS = [id_ for id_ in ALL_ARTICLE_IDS if id_ not in DEV_AND_TEST_IDS]
class InquisitiveQgConfig(datasets.BuilderConfig):
"""BuilderConfig for INQUISITIVE."""
def __init__(self, **kwrags):
"""BuilderConfig for INQUISITIVE.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(InquisitiveQgConfig, self).__init__(**kwrags)
class InquisitiveQg(datasets.GeneratorBasedBuilder):
"""Inquisitive Question Generation for High Level Text Comprehension"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
InquisitiveQgConfig(name="plain_text", version=datasets.Version("1.0.0", ""), description="plain_text"),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("int32"),
"article_id": datasets.Value("int32"),
"article": datasets.Value("string"),
"sentence_id": datasets.Value("int32"),
"sentence": datasets.Value("string"),
"span": datasets.Value("string"),
"question": datasets.Value("string"),
"span_start_position": datasets.Value("int32"),
"span_end_position": datasets.Value("int32"),
}
),
supervised_keys=None,
homepage="https://github.com/wjko2/INQUISITIVE",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
questions_file = dl_manager.download(_QUESTIONS_URL)
archive = dl_manager.download(_ARTICLES_URL)
articles_dir = "article"
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"articles_dir": articles_dir,
"questions_file": questions_file,
"article_ids": TRAIN_ARTICLE_IDS,
"files": dl_manager.iter_archive(archive),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"articles_dir": articles_dir,
"questions_file": questions_file,
"article_ids": DEV_ARTICLE_IDS,
"files": dl_manager.iter_archive(archive),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"articles_dir": articles_dir,
"questions_file": questions_file,
"article_ids": TEST_ARTICLE_IDS,
"files": dl_manager.iter_archive(archive),
},
),
]
def _generate_examples(self, articles_dir, questions_file, article_ids, files):
articles = {}
for path, f in files:
articles[path] = f.read().decode("utf-8")
with open(questions_file, encoding="utf-8") as f:
questions_counter = 0
rows = f.readlines()
for i, row in enumerate(rows):
if i == 0:
continue # skip header line
row = row.strip()
cols = row.split("\t")
article_id = int(cols[0])
if article_id not in article_ids:
continue
fname = str(article_id).rjust(4, "0") + ".txt"
article_path = articles_dir + "/" + fname
article = articles[article_path]
id_ = str(questions_counter)
example = {
"article_id": article_id,
"sentence_id": int(cols[1]),
"sentence": cols[2],
"span": cols[3],
"question": cols[4],
"span_start_position": cols[5],
"span_end_position": cols[6],
"id": id_,
"article": article,
}
yield id_, example
questions_counter += 1
|