system HF staff commited on
Commit
2f07800
0 Parent(s):

Update files from the datasets library (from 1.2.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.2.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - crowdsourced
4
+ language_creators:
5
+ - crowdsourced
6
+ languages:
7
+ - en
8
+ licenses:
9
+ - unknown
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 10K<n<100K
14
+ source_datasets:
15
+ - original
16
+ task_categories:
17
+ - conditional-text-generation
18
+ task_ids:
19
+ - conditional-text-generation-other-question-generation
20
+ ---
21
+
22
+ # Dataset Card Creation Guide
23
+
24
+ ## Table of Contents
25
+ - [Dataset Description](#dataset-description)
26
+ - [Dataset Summary](#dataset-summary)
27
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
28
+ - [Languages](#languages)
29
+ - [Dataset Structure](#dataset-structure)
30
+ - [Data Instances](#data-instances)
31
+ - [Data Fields](#data-instances)
32
+ - [Data Splits](#data-instances)
33
+ - [Dataset Creation](#dataset-creation)
34
+ - [Curation Rationale](#curation-rationale)
35
+ - [Source Data](#source-data)
36
+ - [Annotations](#annotations)
37
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
38
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
39
+ - [Social Impact of Dataset](#social-impact-of-dataset)
40
+ - [Discussion of Biases](#discussion-of-biases)
41
+ - [Other Known Limitations](#other-known-limitations)
42
+ - [Additional Information](#additional-information)
43
+ - [Dataset Curators](#dataset-curators)
44
+ - [Licensing Information](#licensing-information)
45
+ - [Citation Information](#citation-information)
46
+
47
+ ## Dataset Description
48
+
49
+ - **Homepage:** [Add homepage URL here if available (unless it's a GitHub repository)]()
50
+ - **Repository:** [If the dataset is hosted on github or has a github homepage, add URL here]()
51
+ - **Paper:** [If the dataset was introduced by a paper or there was a paper written describing the dataset, add URL here (landing page for Arxiv paper preferred)]()
52
+ - **Leaderboard:** [If the dataset supports an active leaderboard, add link here]()
53
+ - **Point of Contact:** [If known, name and email of at least one person the reader can contact for questions about the dataset.]()
54
+
55
+ ### Dataset Summary
56
+
57
+ [More Information Needed]
58
+
59
+ ### Supported Tasks and Leaderboards
60
+
61
+ [More Information Needed]
62
+
63
+ ### Languages
64
+
65
+ [More Information Needed]
66
+
67
+ ## Dataset Structure
68
+
69
+ ### Data Instances
70
+
71
+ [More Information Needed]
72
+
73
+ ### Data Fields
74
+
75
+ [More Information Needed]
76
+
77
+ ### Data Splits
78
+
79
+ [More Information Needed]
80
+ ## Dataset Creation
81
+
82
+ ### Curation Rationale
83
+
84
+ [More Information Needed]
85
+
86
+ ### Source Data
87
+
88
+ [More Information Needed]
89
+
90
+ #### Initial Data Collection and Normalization
91
+
92
+ [More Information Needed]
93
+
94
+ #### Who are the source language producers?
95
+
96
+ [More Information Needed]
97
+
98
+ ### Annotations
99
+
100
+ [More Information Needed]
101
+
102
+ #### Annotation process
103
+
104
+ [More Information Needed]
105
+
106
+ #### Who are the annotators?
107
+
108
+ [More Information Needed]
109
+
110
+ ### Personal and Sensitive Information
111
+
112
+ [More Information Needed]
113
+
114
+ ## Considerations for Using the Data
115
+
116
+ ### Social Impact of Dataset
117
+
118
+ [More Information Needed]
119
+
120
+ ### Discussion of Biases
121
+
122
+ [More Information Needed]
123
+
124
+ ### Other Known Limitations
125
+
126
+ [More Information Needed]
127
+
128
+ ## Additional Information
129
+
130
+ ### Dataset Curators
131
+
132
+ [More Information Needed]
133
+
134
+ ### Licensing Information
135
+
136
+ [More Information Needed]
137
+
138
+ ### Citation Information
139
+
140
+ [More Information Needed]
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"plain_text": {"description": "A dataset of about 20k questions that are elicited from readers as they naturally read through a document sentence by sentence. Compared to existing datasets, INQUISITIVE questions target more towards high-level (semantic and discourse) comprehension of text. Because these questions are generated while the readers are pro-cessing the information, the questions directly communicate gaps between the reader\u2019s and writer\u2019s knowledge about the events described in the text, and are not necessarily answered in the document itself. This type of question reflects a real-world scenario: if one has questions during reading, some of them are answered by the text later on, the rest are not, but any of them would help further the reader\u2019s understanding at the particular point when they asked it. This resource could enable question generation models to simulate human-like curiosity and cognitive processing, which may open up a new realm of applications.\n", "citation": "@InProceedings{ko2020inquisitive,\n author = {Ko, Wei-Jen and Chen, Te-Yuan and Huang, Yiyan and Durrett, Greg and Li, Junyi Jessy},\n title = {Inquisitive Question Generation for High Level Text Comprehension},\n booktitle = {Proceedings of EMNLP},\n year = {2020},\n}\n", "homepage": "https://github.com/wjko2/INQUISITIVE", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "article_id": {"dtype": "int32", "id": null, "_type": "Value"}, "article": {"dtype": "string", "id": null, "_type": "Value"}, "sentence_id": {"dtype": "int32", "id": null, "_type": "Value"}, "sentence": {"dtype": "string", "id": null, "_type": "Value"}, "span": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "span_start_position": {"dtype": "int32", "id": null, "_type": "Value"}, "span_end_position": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "inquisitive_qg", "config_name": "plain_text", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 66099232, "num_examples": 15931, "dataset_name": "inquisitive_qg"}, "validation": {"name": "validation", "num_bytes": 8904329, "num_examples": 1991, "dataset_name": "inquisitive_qg"}, "test": {"name": "test", "num_bytes": 7167203, "num_examples": 1894, "dataset_name": "inquisitive_qg"}}, "download_checksums": {"https://github.com/wjko2/INQUISITIVE/raw/master/questions.txt": {"num_bytes": 4769525, "checksum": "3d954e957d6df1dde297682b1c1f8c63ccc0c7cff1dcb9b995a7e054b3dd04ee"}, "https://github.com/wjko2/INQUISITIVE/raw/master/articles.tgz": {"num_bytes": 2316416, "checksum": "c2bf68d391514807b4e982d9983373b943d8295fd61f099784df200266571b2d"}}, "download_size": 7085941, "post_processing_size": null, "dataset_size": 82170764, "size_in_bytes": 89256705}}
dummy/plain_text/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:630c525596f8a5fb16b82c5bd5293aa0e5cdbb736efea091f0461ae84f49dd39
3
+ size 17335
inquisitive_qg.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """Inquisitive Question Generation for High Level Text Comprehension"""
18
+
19
+ from __future__ import absolute_import, division, print_function
20
+
21
+ import itertools
22
+ import os
23
+
24
+ import datasets
25
+
26
+
27
+ _CITATION = """\
28
+ @InProceedings{ko2020inquisitive,
29
+ author = {Ko, Wei-Jen and Chen, Te-Yuan and Huang, Yiyan and Durrett, Greg and Li, Junyi Jessy},
30
+ title = {Inquisitive Question Generation for High Level Text Comprehension},
31
+ booktitle = {Proceedings of EMNLP},
32
+ year = {2020},
33
+ }
34
+ """
35
+
36
+ _DESCRIPTION = """\
37
+ A dataset of about 20k questions that are elicited from readers as they naturally read through a document sentence by sentence. \
38
+ Compared to existing datasets, INQUISITIVE questions target more towards high-level (semantic and discourse) comprehension of text. \
39
+ Because these questions are generated while the readers are processing the information, the questions directly communicate gaps between \
40
+ the reader’s and writer’s knowledge about the events described in the text, and are not necessarily answered in the document itself. \
41
+ This type of question reflects a real-world scenario: if one has questions during reading, some of them are answered by the text later on, \
42
+ the rest are not, but any of them would help further the reader’s understanding at the particular point when they asked it. \
43
+ This resource could enable question generation models to simulate human-like curiosity and cognitive processing, which may open up a new realm of applications.
44
+ """
45
+
46
+ _ARTICLES_URL = "https://github.com/wjko2/INQUISITIVE/raw/master/articles.tgz"
47
+ _QUESTIONS_URL = "https://github.com/wjko2/INQUISITIVE/raw/master/questions.txt"
48
+
49
+ ALL_ARTICLE_IDS = list(range(1, 1501))
50
+ DEV_ARTICLE_IDS = list(itertools.chain(range(1, 101), range(1051, 1101)))
51
+ TEST_ARTICLE_IDS = list(itertools.chain(range(101, 151), range(501, 551), range(1101, 1151)))
52
+ DEV_AND_TEST_IDS = DEV_ARTICLE_IDS + TEST_ARTICLE_IDS
53
+ TRAIN_ARTICLE_IDS = [id_ for id_ in ALL_ARTICLE_IDS if id_ not in DEV_AND_TEST_IDS]
54
+
55
+
56
+ class InquisitiveQgConfig(datasets.BuilderConfig):
57
+ """BuilderConfig for INQUISITIVE."""
58
+
59
+ def __init__(self, **kwrags):
60
+ """BuilderConfig for INQUISITIVE.
61
+
62
+ Args:
63
+ **kwargs: keyword arguments forwarded to super.
64
+ """
65
+ super(InquisitiveQgConfig, self).__init__(**kwrags)
66
+
67
+
68
+ class InquisitiveQg(datasets.GeneratorBasedBuilder):
69
+ """Inquisitive Question Generation for High Level Text Comprehension"""
70
+
71
+ VERSION = datasets.Version("1.0.0")
72
+ BUILDER_CONFIGS = [
73
+ InquisitiveQgConfig(name="plain_text", version=datasets.Version("1.0.0", ""), description="plain_text"),
74
+ ]
75
+
76
+ def _info(self):
77
+ return datasets.DatasetInfo(
78
+ description=_DESCRIPTION,
79
+ features=datasets.Features(
80
+ {
81
+ "id": datasets.Value("int32"),
82
+ "article_id": datasets.Value("int32"),
83
+ "article": datasets.Value("string"),
84
+ "sentence_id": datasets.Value("int32"),
85
+ "sentence": datasets.Value("string"),
86
+ "span": datasets.Value("string"),
87
+ "question": datasets.Value("string"),
88
+ "span_start_position": datasets.Value("int32"),
89
+ "span_end_position": datasets.Value("int32"),
90
+ }
91
+ ),
92
+ supervised_keys=None,
93
+ homepage="https://github.com/wjko2/INQUISITIVE",
94
+ citation=_CITATION,
95
+ )
96
+
97
+ def _split_generators(self, dl_manager):
98
+ questions_file = dl_manager.download(_QUESTIONS_URL)
99
+ extracted_path = dl_manager.download_and_extract(_ARTICLES_URL)
100
+ articles_dir = os.path.join(extracted_path, "article")
101
+
102
+ return [
103
+ datasets.SplitGenerator(
104
+ name=datasets.Split.TRAIN,
105
+ gen_kwargs={
106
+ "articles_dir": articles_dir,
107
+ "questions_file": questions_file,
108
+ "article_ids": TRAIN_ARTICLE_IDS,
109
+ },
110
+ ),
111
+ datasets.SplitGenerator(
112
+ name=datasets.Split.VALIDATION,
113
+ gen_kwargs={
114
+ "articles_dir": articles_dir,
115
+ "questions_file": questions_file,
116
+ "article_ids": DEV_ARTICLE_IDS,
117
+ },
118
+ ),
119
+ datasets.SplitGenerator(
120
+ name=datasets.Split.TEST,
121
+ gen_kwargs={
122
+ "articles_dir": articles_dir,
123
+ "questions_file": questions_file,
124
+ "article_ids": TEST_ARTICLE_IDS,
125
+ },
126
+ ),
127
+ ]
128
+
129
+ def _generate_examples(self, articles_dir, questions_file, article_ids):
130
+ with open(questions_file, encoding="utf-8") as f:
131
+ questions_counter = 0
132
+ rows = f.readlines()
133
+ for i, row in enumerate(rows):
134
+ if i == 0:
135
+ continue # skip header line
136
+ row = row.strip()
137
+ cols = row.split("\t")
138
+
139
+ article_id = int(cols[0])
140
+ if article_id not in article_ids:
141
+ continue
142
+
143
+ # read the article file
144
+ fname = str(article_id).rjust(4, "0") + ".txt"
145
+ article_path = os.path.join(articles_dir, fname)
146
+ with open(article_path, encoding="utf-8") as f:
147
+ article = f.read()
148
+
149
+ id_ = str(questions_counter)
150
+ example = {
151
+ "article_id": article_id,
152
+ "sentence_id": int(cols[1]),
153
+ "sentence": cols[2],
154
+ "span": cols[3],
155
+ "question": cols[4],
156
+ "span_start_position": cols[5],
157
+ "span_end_position": cols[6],
158
+ "id": id_,
159
+ "article": article,
160
+ }
161
+ yield id_, example