Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Finnish
Size:
10K<n<100K
License:
File size: 5,460 Bytes
f4cf93b c4217ba f4cf93b c4217ba f4cf93b c4217ba f4cf93b c4217ba f4cf93b c4217ba f4cf93b c4217ba f4cf93b c4217ba f4cf93b c4217ba f4cf93b c4217ba f4cf93b c4217ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
import datasets
_DESCRIPTION = """\
An open, broad-coverage corpus for Finnish named entity recognition presented in Luoma et al. (2020) A Broad-coverage Corpus for Finnish Named Entity Recognition.
"""
_HOMEPAGE_URL = "https://turkunlp.org/fin-ner.html"
_URL = "https://github.com/TurkuNLP/turku-ner-corpus/archive/v1.0.tar.gz"
_CITATION = """\
@inproceedings{luoma-etal-2020-broad,
title = "A Broad-coverage Corpus for {F}innish Named Entity Recognition",
author = {Luoma, Jouni and Oinonen, Miika and Pyyk{\"o}nen, Maria and Laippala, Veronika and Pyysalo, Sampo},
booktitle = "Proceedings of The 12th Language Resources and Evaluation Conference",
year = "2020",
url = "https://www.aclweb.org/anthology/2020.lrec-1.567",
pages = "4615--4624",
}
"""
class TurkuNERCorpus(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"B-DATE",
"B-EVENT",
"B-LOC",
"B-ORG",
"B-PER",
"B-PRO",
"I-DATE",
"I-EVENT",
"I-LOC",
"I-ORG",
"I-PER",
"I-PRO",
"O",
]
)
),
},
),
supervised_keys=None,
homepage=_HOMEPAGE_URL,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
archive = dl_manager.download(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"files": dl_manager.iter_archive(archive), "data_type": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"files": dl_manager.iter_archive(archive), "data_type": "valid"},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"files": dl_manager.iter_archive(archive), "data_type": "test"},
),
]
def _generate_examples(self, files, data_type):
if data_type == "train":
data_path = "turku-ner-corpus-1.0/data/conll/train.tsv"
elif data_type == "valid":
data_path = "turku-ner-corpus-1.0/data/conll/dev.tsv"
elif data_type == "test":
data_path = "turku-ner-corpus-1.0/data/conll/test.tsv"
else:
raise Exception("data_type not understood")
sentence_counter = 0
for path, f in files:
if path == data_path:
current_words = []
current_labels = []
for row in f:
row = row.decode("utf-8").rstrip()
row_split = row.split("\t")
if len(row_split) == 2:
token, label = row_split
current_words.append(token)
current_labels.append(label)
else:
if not current_words:
continue
assert len(current_words) == len(current_labels), "word len doesnt match label length"
sentence = (
sentence_counter,
{
"id": str(sentence_counter),
"tokens": current_words,
"ner_tags": current_labels,
},
)
sentence_counter += 1
current_words = []
current_labels = []
yield sentence
# if something remains:
if current_words:
sentence = (
sentence_counter,
{
"id": str(sentence_counter),
"tokens": current_words,
"ner_tags": current_labels,
},
)
yield sentence
break
|