File size: 5,460 Bytes
f4cf93b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4217ba
f4cf93b
 
 
c4217ba
f4cf93b
 
 
c4217ba
f4cf93b
 
 
c4217ba
f4cf93b
 
 
c4217ba
f4cf93b
c4217ba
f4cf93b
c4217ba
f4cf93b
c4217ba
f4cf93b
 
 
 
c4217ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4cf93b
 
 
 
 
 
 
 
 
c4217ba
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3

import datasets


_DESCRIPTION = """\
An open, broad-coverage corpus for Finnish named entity recognition presented in Luoma et al. (2020) A Broad-coverage Corpus for Finnish Named Entity Recognition.
"""
_HOMEPAGE_URL = "https://turkunlp.org/fin-ner.html"
_URL = "https://github.com/TurkuNLP/turku-ner-corpus/archive/v1.0.tar.gz"
_CITATION = """\
@inproceedings{luoma-etal-2020-broad,
title = "A Broad-coverage Corpus for {F}innish Named Entity Recognition",
author = {Luoma, Jouni and Oinonen, Miika and Pyyk{\"o}nen, Maria and Laippala, Veronika and Pyysalo, Sampo},
booktitle = "Proceedings of The 12th Language Resources and Evaluation Conference",
year = "2020",
url = "https://www.aclweb.org/anthology/2020.lrec-1.567",
pages = "4615--4624",
}
"""


class TurkuNERCorpus(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "B-DATE",
                                "B-EVENT",
                                "B-LOC",
                                "B-ORG",
                                "B-PER",
                                "B-PRO",
                                "I-DATE",
                                "I-EVENT",
                                "I-LOC",
                                "I-ORG",
                                "I-PER",
                                "I-PRO",
                                "O",
                            ]
                        )
                    ),
                },
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE_URL,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        archive = dl_manager.download(_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"files": dl_manager.iter_archive(archive), "data_type": "train"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"files": dl_manager.iter_archive(archive), "data_type": "valid"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"files": dl_manager.iter_archive(archive), "data_type": "test"},
            ),
        ]

    def _generate_examples(self, files, data_type):
        if data_type == "train":
            data_path = "turku-ner-corpus-1.0/data/conll/train.tsv"
        elif data_type == "valid":
            data_path = "turku-ner-corpus-1.0/data/conll/dev.tsv"
        elif data_type == "test":
            data_path = "turku-ner-corpus-1.0/data/conll/test.tsv"
        else:
            raise Exception("data_type not understood")

        sentence_counter = 0
        for path, f in files:
            if path == data_path:
                current_words = []
                current_labels = []
                for row in f:
                    row = row.decode("utf-8").rstrip()
                    row_split = row.split("\t")
                    if len(row_split) == 2:
                        token, label = row_split
                        current_words.append(token)
                        current_labels.append(label)
                    else:
                        if not current_words:
                            continue
                        assert len(current_words) == len(current_labels), "word len doesnt match label length"
                        sentence = (
                            sentence_counter,
                            {
                                "id": str(sentence_counter),
                                "tokens": current_words,
                                "ner_tags": current_labels,
                            },
                        )
                        sentence_counter += 1
                        current_words = []
                        current_labels = []
                        yield sentence

                # if something remains:
                if current_words:
                    sentence = (
                        sentence_counter,
                        {
                            "id": str(sentence_counter),
                            "tokens": current_words,
                            "ner_tags": current_labels,
                        },
                    )
                    yield sentence
                break