File size: 4,488 Bytes
63b863f b01d8a9 63b863f b01d8a9 63b863f b01d8a9 63b863f b01d8a9 63b863f b01d8a9 63b863f b01d8a9 63b863f b01d8a9 63b863f b01d8a9 63b863f b01d8a9 63b863f b01d8a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
import datasets
import pandas as pd
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {2d-masks-presentation-attack-detection},
author = {TrainingDataPro},
year = {2023}
}
"""
_DESCRIPTION = """\
The dataset consists of videos of individuals wearing printed 2D masks or
printed 2D masks with cut-out eyes and directly looking at the camera.
Videos are filmed in different lightning conditions and in different places
(indoors, outdoors). Each video in the dataset has an approximate duration of 2
seconds.
"""
_NAME = '2d-masks-presentation-attack-detection'
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
_LICENSE = ""
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
class MasksPresentationAttackDetection(datasets.GeneratorBasedBuilder):
"""Small sample of image-text pairs"""
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({
'user': datasets.Value('string'),
'real_1': datasets.Value('string'),
'real_2': datasets.Value('string'),
'real_3': datasets.Value('string'),
'real_4': datasets.Value('string'),
'mask_1': datasets.Value('string'),
'mask_2': datasets.Value('string'),
'mask_3': datasets.Value('string'),
'mask_4': datasets.Value('string'),
'cut_1': datasets.Value('string'),
'cut_2': datasets.Value('string'),
'cut_3': datasets.Value('string'),
'cut_4': datasets.Value('string')
}),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
files = dl_manager.download(f"{_DATA}files.tar.gz")
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
files = dl_manager.iter_archive(files)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN,
gen_kwargs={
"files": files,
'annotations': annotations
}),
]
def _generate_examples(self, files, annotations):
annotations_df = pd.read_csv(annotations, sep=';')
for idx, (file_path, file) in enumerate(files):
if 'real_1' in file_path.lower():
user = file_path.split('/')[-2]
yield idx, {
'user':
user,
'real_1':
annotations_df.loc[annotations_df['user'] == user]
['real_1'].values[0],
'real_2':
annotations_df.loc[annotations_df['user'] == user]
['real_2'].values[0],
'real_3':
annotations_df.loc[annotations_df['user'] == user]
['real_3'].values[0],
'real_4':
annotations_df.loc[annotations_df['user'] == user]
['real_4'].values[0],
'mask_1':
annotations_df.loc[annotations_df['user'] == user]
['mask_1'].values[0],
'mask_2':
annotations_df.loc[annotations_df['user'] == user]
['mask_2'].values[0],
'mask_3':
annotations_df.loc[annotations_df['user'] == user]
['mask_3'].values[0],
'mask_4':
annotations_df.loc[annotations_df['user'] == user]
['mask_4'].values[0],
'cut_1':
annotations_df.loc[annotations_df['user'] == user]
['cut_1'].values[0],
'cut_2':
annotations_df.loc[annotations_df['user'] == user]
['cut_2'].values[0],
'cut_3':
annotations_df.loc[annotations_df['user'] == user]
['cut_3'].values[0],
'cut_4':
annotations_df.loc[annotations_df['user'] == user]
['cut_4'].values[0],
}
|