vkashko commited on
Commit
b01d8a9
1 Parent(s): 63b863f

fix: update script

Browse files
2d-masks-presentation-attack-detection.py CHANGED
@@ -3,20 +3,20 @@ import pandas as pd
3
 
4
  _CITATION = """\
5
  @InProceedings{huggingface:dataset,
6
- title = {selfie_and_video},
7
  author = {TrainingDataPro},
8
  year = {2023}
9
  }
10
  """
11
 
12
  _DESCRIPTION = """\
13
- 4000 people in this dataset. Each person took a selfie on a webcam,
14
- took a selfie on a mobile phone. In addition, people recorded video from
15
- the phone and from the webcam, on which they pronounced a given set of numbers.
16
- Includes folders corresponding to people in the dataset. Each folder includes
17
- 8 files (4 images and 4 videos).
18
  """
19
- _NAME = 'selfie_and_video'
20
 
21
  _HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
22
 
@@ -25,26 +25,26 @@ _LICENSE = ""
25
  _DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
26
 
27
 
28
- class SelfieAndVideo(datasets.GeneratorBasedBuilder):
29
  """Small sample of image-text pairs"""
30
 
31
  def _info(self):
32
  return datasets.DatasetInfo(
33
  description=_DESCRIPTION,
34
  features=datasets.Features({
35
- 'photo_1': datasets.Image(),
36
- 'photo_2': datasets.Image(),
37
- 'video_3': datasets.Value('string'),
38
- 'video_4': datasets.Value('string'),
39
- 'photo_5': datasets.Image(),
40
- 'photo_6': datasets.Image(),
41
- 'video_7': datasets.Value('string'),
42
- 'video_8': datasets.Value('string'),
43
- 'set_id': datasets.Value('string'),
44
- 'worker_id': datasets.Value('string'),
45
- 'age': datasets.Value('int8'),
46
- 'country': datasets.Value('string'),
47
- 'gender': datasets.Value('string')
48
  }),
49
  supervised_keys=None,
50
  homepage=_HOMEPAGE,
@@ -52,58 +52,60 @@ class SelfieAndVideo(datasets.GeneratorBasedBuilder):
52
  )
53
 
54
  def _split_generators(self, dl_manager):
55
- images = dl_manager.download(f"{_DATA}data.tar.gz")
56
  annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
57
- images = dl_manager.iter_archive(images)
58
  return [
59
  datasets.SplitGenerator(name=datasets.Split.TRAIN,
60
  gen_kwargs={
61
- "images": images,
62
  'annotations': annotations
63
  }),
64
  ]
65
 
66
- def _generate_examples(self, images, annotations):
67
  annotations_df = pd.read_csv(annotations, sep=';')
68
- images_data = pd.DataFrame(columns=['Link', 'Bytes'])
69
- for idx, (image_path, image) in enumerate(images):
70
- if image_path.lower().endswith('.jpg'):
71
- images_data.loc[idx] = {
72
- 'Link': image_path,
73
- 'Bytes': image.read()
74
- }
75
-
76
- annotations_df = pd.merge(annotations_df,
77
- images_data,
78
- on=['Link'],
79
- how='left')
80
-
81
- for idx, worker_id in enumerate(pd.unique(annotations_df['WorkerId'])):
82
- annotation = annotations_df.loc[annotations_df['WorkerId'] ==
83
- worker_id]
84
- annotation = annotation.sort_values(['Link'])
85
- data = {
86
- (f'photo_{row[7][37]}' if row[7].lower().endswith('.jpg') else f'video_{row[7][37]}'):
87
- ({
88
- 'path': row[7],
89
- 'bytes': row[8]
90
- } if row[7].lower().endswith('.jpg') else row[7])
91
- for row in annotation.itertuples()
92
- }
93
-
94
- age = annotation.loc[annotation['Link'].str.lower().str.endswith(
95
- '1.jpg')]['Age'].values[0]
96
- country = annotation.loc[annotation['Link'].str.lower().str.
97
- endswith('1.jpg')]['Country'].values[0]
98
- gender = annotation.loc[annotation['Link'].str.lower().str.
99
- endswith('1.jpg')]['Gender'].values[0]
100
- set_id = annotation.loc[annotation['Link'].str.lower().str.
101
- endswith('1.jpg')]['SetId'].values[0]
102
 
103
- data['worker_id'] = worker_id
104
- data['age'] = age
105
- data['country'] = country
106
- data['gender'] = gender
107
- data['set_id'] = set_id
108
-
109
- yield idx, data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
  _CITATION = """\
5
  @InProceedings{huggingface:dataset,
6
+ title = {2d-masks-presentation-attack-detection},
7
  author = {TrainingDataPro},
8
  year = {2023}
9
  }
10
  """
11
 
12
  _DESCRIPTION = """\
13
+ The dataset consists of videos of individuals wearing printed 2D masks or
14
+ printed 2D masks with cut-out eyes and directly looking at the camera.
15
+ Videos are filmed in different lightning conditions and in different places
16
+ (indoors, outdoors). Each video in the dataset has an approximate duration of 2
17
+ seconds.
18
  """
19
+ _NAME = '2d-masks-presentation-attack-detection'
20
 
21
  _HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
22
 
 
25
  _DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
26
 
27
 
28
+ class MasksPresentationAttackDetection(datasets.GeneratorBasedBuilder):
29
  """Small sample of image-text pairs"""
30
 
31
  def _info(self):
32
  return datasets.DatasetInfo(
33
  description=_DESCRIPTION,
34
  features=datasets.Features({
35
+ 'user': datasets.Value('string'),
36
+ 'real_1': datasets.Value('string'),
37
+ 'real_2': datasets.Value('string'),
38
+ 'real_3': datasets.Value('string'),
39
+ 'real_4': datasets.Value('string'),
40
+ 'mask_1': datasets.Value('string'),
41
+ 'mask_2': datasets.Value('string'),
42
+ 'mask_3': datasets.Value('string'),
43
+ 'mask_4': datasets.Value('string'),
44
+ 'cut_1': datasets.Value('string'),
45
+ 'cut_2': datasets.Value('string'),
46
+ 'cut_3': datasets.Value('string'),
47
+ 'cut_4': datasets.Value('string')
48
  }),
49
  supervised_keys=None,
50
  homepage=_HOMEPAGE,
 
52
  )
53
 
54
  def _split_generators(self, dl_manager):
55
+ files = dl_manager.download(f"{_DATA}files.tar.gz")
56
  annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
57
+ files = dl_manager.iter_archive(files)
58
  return [
59
  datasets.SplitGenerator(name=datasets.Split.TRAIN,
60
  gen_kwargs={
61
+ "files": files,
62
  'annotations': annotations
63
  }),
64
  ]
65
 
66
+ def _generate_examples(self, files, annotations):
67
  annotations_df = pd.read_csv(annotations, sep=';')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
+ for idx, (file_path, file) in enumerate(files):
70
+ if 'real_1' in file_path.lower():
71
+ user = file_path.split('/')[-2]
72
+ yield idx, {
73
+ 'user':
74
+ user,
75
+ 'real_1':
76
+ annotations_df.loc[annotations_df['user'] == user]
77
+ ['real_1'].values[0],
78
+ 'real_2':
79
+ annotations_df.loc[annotations_df['user'] == user]
80
+ ['real_2'].values[0],
81
+ 'real_3':
82
+ annotations_df.loc[annotations_df['user'] == user]
83
+ ['real_3'].values[0],
84
+ 'real_4':
85
+ annotations_df.loc[annotations_df['user'] == user]
86
+ ['real_4'].values[0],
87
+ 'mask_1':
88
+ annotations_df.loc[annotations_df['user'] == user]
89
+ ['mask_1'].values[0],
90
+ 'mask_2':
91
+ annotations_df.loc[annotations_df['user'] == user]
92
+ ['mask_2'].values[0],
93
+ 'mask_3':
94
+ annotations_df.loc[annotations_df['user'] == user]
95
+ ['mask_3'].values[0],
96
+ 'mask_4':
97
+ annotations_df.loc[annotations_df['user'] == user]
98
+ ['mask_4'].values[0],
99
+ 'cut_1':
100
+ annotations_df.loc[annotations_df['user'] == user]
101
+ ['cut_1'].values[0],
102
+ 'cut_2':
103
+ annotations_df.loc[annotations_df['user'] == user]
104
+ ['cut_2'].values[0],
105
+ 'cut_3':
106
+ annotations_df.loc[annotations_df['user'] == user]
107
+ ['cut_3'].values[0],
108
+ 'cut_4':
109
+ annotations_df.loc[annotations_df['user'] == user]
110
+ ['cut_4'].values[0],
111
+ }