File size: 33,269 Bytes
a563a14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e69cc9
a563a14
09c2426
3675966
a563a14
09c2426
3d6fc00
a563a14
 
 
09c2426
a563a14
 
 
 
81a8e57
a563a14
 
81a8e57
a563a14
 
 
 
 
09c2426
 
 
 
 
 
3675966
09c2426
 
 
a563a14
 
 
 
 
 
 
 
 
 
09c2426
a563a14
09c2426
81a8e57
a563a14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09c2426
a563a14
09c2426
 
81a8e57
 
 
09c2426
a563a14
81a8e57
 
 
 
 
 
 
 
 
 
 
 
a563a14
 
81a8e57
 
a563a14
81a8e57
 
a563a14
 
 
 
81a8e57
 
a563a14
81a8e57
 
 
09c2426
81a8e57
 
09c2426
81a8e57
 
 
 
 
09c2426
81a8e57
 
 
 
 
09c2426
cc05f6a
81a8e57
 
 
 
 
 
a563a14
 
09c2426
a563a14
09c2426
a563a14
 
 
 
 
 
81a8e57
a563a14
 
 
 
81a8e57
09c2426
a563a14
 
 
 
 
 
 
 
 
 
 
 
 
09c2426
a563a14
 
 
 
 
 
 
 
 
09c2426
a563a14
 
09c2426
a563a14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81a8e57
a563a14
 
 
 
 
81a8e57
a563a14
 
09c2426
81a8e57
a563a14
 
81a8e57
a563a14
 
 
 
81a8e57
a563a14
 
 
 
 
 
 
 
 
 
 
81a8e57
a563a14
 
 
 
 
 
 
81a8e57
a563a14
 
 
09c2426
a563a14
 
 
 
81a8e57
a563a14
 
 
 
 
 
 
 
09c2426
a563a14
 
 
09c2426
a563a14
 
 
 
 
 
 
 
81a8e57
a563a14
 
 
09c2426
 
a563a14
 
09c2426
a563a14
 
 
09c2426
a563a14
 
 
 
09c2426
a563a14
 
 
 
09c2426
 
a563a14
 
 
09c2426
a563a14
 
 
 
 
 
 
 
 
 
 
09c2426
a563a14
 
 
 
 
 
 
 
09c2426
a563a14
 
09c2426
81a8e57
09c2426
a563a14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81a8e57
a563a14
 
 
 
 
09c2426
a563a14
 
 
 
 
 
 
 
 
 
3d6fc00
a563a14
 
 
 
81a8e57
a563a14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81a8e57
a563a14
81a8e57
a563a14
 
 
 
 
 
 
 
 
 
 
 
a56c473
a563a14
a56c473
a563a14
81a8e57
a563a14
 
 
 
81a8e57
a563a14
 
 
a56c473
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a563a14
 
 
 
 
 
 
 
a56c473
 
a563a14
 
 
 
a56c473
a563a14
 
 
 
214a181
a563a14
214a181
 
 
c7c0b81
 
 
 
214a181
 
 
81a8e57
214a181
 
 
 
 
a563a14
 
 
 
 
 
 
 
 
 
81a8e57
09c2426
a563a14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d6fc00
a563a14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214a181
a563a14
 
214a181
 
 
 
 
 
 
 
81a8e57
214a181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81a8e57
09c2426
214a181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d6fc00
214a181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This dataset script is based on pmc/open_access.py loading script.

"""PMC Open Access Subset enriched from XML."""

import datetime
import pandas as pd
import numpy as np
from itertools import compress, chain
from collections import defaultdict
import re
from lxml import etree
import json

import datasets
from datasets.tasks import LanguageModeling


# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = ""

_DESCRIPTION = """\
The PMC Open Access Subset includes more than 3.4 million journal articles and preprints that are made available under
license terms that allow reuse. 
Not all articles in PMC are available for text mining and other reuse, many have copyright protection, however articles
in the PMC Open Access Subset are made available under Creative Commons or similar licenses that generally allow more
liberal redistribution and reuse than a traditional copyrighted work. 
The PMC Open Access Subset is one part of the PMC Article Datasets

This version takes XML version as source, benefiting from the structured text
to split the articles in parts, naming the introduction, methods, results,
discussion and conclusion, and refers with keywords in the text to external or internal
resources (articles, figures, tables, formulas, boxed-text, quotes, code, footnotes, chemicals, graphics, medias).
"""

_HOMEPAGE = "https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/"

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = """
https://www.ncbi.nlm.nih.gov/pmc/about/copyright/

Within the PMC Open Access Subset, there are three groupings:

Commercial Use Allowed - CC0, CC BY, CC BY-SA, CC BY-ND licenses
Non-Commercial Use Only - CC BY-NC, CC BY-NC-SA, CC BY-NC-ND licenses; and
Other - no machine-readable Creative Commons license, no license, or a custom license.
"""

_URL_ROOT = "https://ftp.ncbi.nlm.nih.gov/pub/pmc/"
_URL      = _URL_ROOT+"oa_bulk/{subset}/xml/"

_SUBSETS = {
    "commercial": "oa_comm",
    "non_commercial": "oa_noncomm",
    "other": "oa_other",
}
_BASELINE_DATE = "2023-12-18"

REFS_KEYS     = ["pmid_ref", "unknown_pub_ref", "figure_ref", "table_ref", "formula_ref", "box_ref", "code_ref",
                 "quote_ref", "chemical_ref", "supplementary_ref", "footnote_ref", "graphic_ref", "media_ref"]
CONTENT_KEYS  = ["introduction", "methods", "results", "discussion", "conclusion",
                 "front", "body", "back", "figure", "table", "formula", "box",
                 "code", "quote", "chemical", "supplementary", "footnote"]
begin_doc_rgx = re.compile("""<!DOCTYPE.*""")
def clean_raw(xml_text):
    """
    Fixes the formating of xml of files and returns it.
    Some have bad formating but they can be fixed/improved
    """
    #Some XML can't be parsed because they are not starting with the DOCTYPE declaration
    # Could be disabled if we handle the parsing error (TBD, how many files would be trashed)

    begin_doc = begin_doc_rgx.search(xml_text)
    xml_text  = xml_text[begin_doc.start():]

    #Some XML are poisoned with consecutive tabs and new lines
    # xml_text  = re.sub('\s+',' ',xml_text) # Commented because <code> requires those spacing
    return xml_text

# Tag name to "reference type" linking
TAG_DIC = {"fig":("FIG","figure_ref"),             "table-wrap":("TAB","table_ref"),
           "array":("TAB","table_ref"),            "boxed-text":("BOX","box_ref"),
           "graphic":("GRAPH","graphic_ref"),      "inline-graphic":("GRAPH","graphic_ref"),
           "media":("MEDIA","media_ref"),          "inline-media":("MEDIA","media_ref"),
           "disp-formula":("FORMU","formula_ref"), "inline-formula":("FORMU","formula_ref"),
           "table-wrap-foot":("FOOTN","footnote_ref"), "fn-group":("FOOTN","footnote_ref"),
           "code":("CODE","code_ref"),                 "chem-struct-wrap":("CHEM","chemical_ref"),
           "disp-quote":("QUOTE","quote_ref"),         "speech":("QUOTE","quote_ref"),
           "supplementary-material":("SUPPL","supplementary_ref"),
           "inline-supplementary-material":("SUPPL","supplementary_ref")}

def get_ref_indexes(ref_el_l, refs_pmid, refs_nonpmid_keys):
    """
    For all the element found as xref, give them an index to be later found in their corresponding section.
    Also sort them into the different types of references (eg <array> and <table-wrap> are both
    labeled as table_ref).
    """
    count_ref_d = defaultdict(lambda:0)
    reference_d = {}
    for k, v in refs_pmid.items():
        reference_d[k] = (v, "REF", "pmid_ref")
    for i, k in enumerate(refs_nonpmid_keys):
        reference_d[k] = (i, "UREF", "unknown_pub_ref")

    refs_key_l = []
    for el in ref_el_l:
        keyword, ref_name = TAG_DIC[el.tag]
        idx = count_ref_d[ref_name]
        key = el.attrib["id"] if "id" in el.attrib.keys() else f"{el.tag}{idx}"
        reference_d[key] = (idx, keyword, ref_name)
        refs_key_l.append(key)
        count_ref_d[ref_name]+=1
    return reference_d, refs_key_l

def parseout_el_refs(el, rids):
    """
    Extract the text from the tag opening to its closing, discarding the tail's text.
    Removes xml namespace from the text for storage savings, such as:
        - xmlns:xlink="http://www.w3.org/1999/xlink"
        - xmlns:mml="http://www.w3.org/1998/Math/MathML"

    Extract then from the text all the references founds to the rids dictionnary,
    and replace them by keywords of the corresponding family (eg "##FIG##4##Doe 2022##" for a figure,
    "##TAB##0##Table 1##" for a table, or "##MATHS##1##(2)##" for mathematical formulas)

    The range reference (e.g. 1-3 or 15-17) are replaced by their range (1,2,3 or 15,16,17)

    Returns the parsed text
    """
    for xref in el.xpath(".//xref"):
        inner_text = "".join(xref.itertext())
        if inner_text == "":  # Removing "empty" references
            tail    = xref.tail if xref.tail else ""
            prev_el = xref.getprevious()
            parent  = xref.getparent()
            if prev_el is None:
                parent.text  = "".join([(parent.text if parent.text else ""), tail])
            else:
                prev_el.tail = "".join([(prev_el.tail if prev_el.tail else ""), tail])
            parent.remove(xref)

    res_rid     = defaultdict(list)
    res_reftext = defaultdict(list)
    ref_rstart, ref_rstop = None, None
    has_ref_range = None
    for xref in el.xpath(".//xref[not(ancestor::xref)]"): #Ignore innermost of imbricated references
        inner_text = "".join(xref.itertext())
        parent  = xref.getparent()
        rid = xref.get("rid")
        if rid in rids.keys():
            ref_idx, ref_kword, ref_class = rids[rid]
            res_rid[ref_class].append(ref_idx)
            res_reftext[ref_class].append(inner_text)

            tail    = xref.tail if xref.tail else ""
            #### START HANDLING REF RANGE ########
            try:
                if has_ref_range is None:
                    if ref_kword in ["UREF", "REF"]:                 # Otherwise it's a year
                        has_ref_range = res_reftext[ref_class][-1].isnumeric() and int(res_reftext[ref_class][-1]) < 500

                if has_ref_range and ref_kword in ["UREF", "REF"]:
                    if tail=="-":
                        ref_rstart = int(res_reftext[ref_class][-1])
                        tail = ", "
                    elif ref_rstart is not None:
                        ref_rstop = int(res_reftext[ref_class][-1])
                        new_ref_kwords = [f"##{ref_kword}##{ref_idx}##{inner_text}##"]
                        for i in range(ref_rstart+1, ref_rstop):
                            new_rid = re.sub(str(ref_rstop), str(i), rid, count=1)
                            ref_idx_, ref_kword_, ref_class_ = rids[new_rid]
                            res_rid[ref_class_].insert(-1, ref_idx_)
                            res_reftext[ref_class_].insert(-1, str(i))
                            new_ref_kwords.insert(-1, f"##{ref_kword_}##{ref_idx_}##{str(i)}##")
                        ref_kword = ", ".join(new_ref_kwords)
                        ref_rstart = None
            except (KeyError, ValueError):
                ref_rstart = None
                continue  # The substitution failed, happen when text don't match the rid
            #### END HANDLING REF RANGE ########

            prev_el = xref.getprevious()
            if prev_el is None:
                parent.text  = "".join([(parent.text if parent.text else ""), f"##{ref_kword}##{ref_idx}##{inner_text}##", tail])
            else:
                prev_el.tail = "".join([(prev_el.tail if prev_el.tail else ""), f"##{ref_kword}##{ref_idx}##{inner_text}##", tail])
            parent.remove(xref)

    text = etree.tostring(el, with_tail=False, encoding='unicode', method='xml')
    #Removing the xml namespace, (otherwise they would be everywhere)
    tag_start = text.find(">")+1
    tag_txt = text[:tag_start]

    for k, v in el.nsmap.items():
        tag_txt = tag_txt.replace(f' xmlns:{k}="{v}"', "", 1)

    text = "".join([tag_txt, text[tag_start:]])

    return text


def get_references(article_tree):
    """
    Retrieve two dictionnaries of the bibr references for that article.
    The first has the references' PMID for those having one.
    The second contains the <ref> tag fields, that could be identified to retrieve the
    referenced documents (some have PMID that could be found from the title and authors of a document).
    """
    references_pmid    = {}
    references_nonpmid = []
    references_nonpmid_keys = []
    refs = article_tree.find(".//ref-list")
    if refs is None: #Some don't have any references
        return {}, [], []
    refs = refs.findall("ref")
    for i, ref in enumerate(refs):
        pmid = None
        for pubid in ref.findall(".//pub-id"):
            if pubid.get("pub-id-type") == "pmid":
                pmid = int(pubid.text)
                break
        if pmid is not None and pmid<100000000: 
            #In an article (oa_comm:PMC2679651), broken PMID were found (>10e9).
            #May be several of those. Not sure what to do with them, and what threshold to use
            #Keeping them would result in loosing info about the reference (article title, authors, ...)

            #Only the PMID is kept, as it links to the documents in pubmed abstract dataset.
            references_pmid[ref.attrib["id"]] = str(pmid)
        else:
            ref_key = ref.attrib["id"] if "id" in ref.attrib.keys() else f"URef{i+1}"
            citation_d = defaultdict(list)
            #Authors are the only elements that can come in multiples (I could be wrong)
            for el in ref.iterdescendants():
                if isinstance(el.text, str) and isinstance(el.tag, str):
                    citation_d[el.tag].append(el.text)
            references_nonpmid.append(dict(citation_d))
            references_nonpmid_keys.append(ref_key)
    return references_pmid, references_nonpmid, references_nonpmid_keys

def construct_datadict(article_tree):
    """
    Where the magic happens. A long script that:
    - Get the external references (from pmid if present)
    - Get glossary and remove it from the document
    - Find internal references (figures, tables, ...) and build a xref dictionary
    - Extract paragraphs and titles with their path in the document
    - Titles are used to identify ["introduction", "methods", "results" and "discussion"]
    - The path are then used to group paragraphs and titles into corresponding content.
    - Remaining p and title are put in three other section: front, body, back

    Returns:
        - content_d: Dictionnary with the content result
        - reference_d: The references of each kind (figure, table, ...) for each content type (intro, figure caption, ...)
        - reference_text_d: The replaced text by the keywords of the references, with keys matching reference_d.
        - reference_count: The count of unique external-document references.

    Useful information about the tags can be found here: https://jats.nlm.nih.gov/archiving/tag-library/1.3/
    """
    res_content_d = {}

    refs_pmid, refs_nonpmid, refs_nonpmid_keys = get_references(article_tree)
    reference_count = len(refs_pmid)+len(refs_nonpmid)

    res_content_d["unknown_pub"] = json.dumps(refs_nonpmid)
    refs_el = article_tree.find(".//ref-list")
    if refs_el is not None:
        refs_el.getparent().remove(refs_el)

    # Extracts the glossary if exists, and removes it from the tree
    glossary = {}
    def search_def(el):
        for item in el.findall(".//def-item"):
            abbrev = item.find(".//term")
            if abbrev is None:
                continue
            k = "".join(abbrev.itertext())
            definition = item.find(".//def")
            definition = "".join(definition.itertext()) if definition is not None else ""
            glossary[k] = definition

    for el in article_tree.findall(".//glossary"):
        search_def(el)
        el.getparent().remove(el)
    for el in article_tree.findall(".//def-list"):
        search_def(el) #There may be still more def-list outside of a glossary
        el.getparent().remove(el)
    res_content_d["glossary"] = glossary

    # After testing, no question were found in the dataset, so I commented that part
    # question_l = []
    # for el in article_tree.xpath(".//question-preamble|.//question|.//answer|.//explanation"):
        # text = parseout_el_refs(el, {})
        # question_l.append(text)
    # res_content_d["question"] = "\n".join(question_l)
    # for el in article_tree.xpath(".//question-wrap-group|.//question-wrap|.//answer-set|.//explanation"):
        # el.getparent().remove(el)

    # One big query is faster than multiple small ones
    ref_el_l = article_tree.xpath(".//fig|.//table-wrap|.//array|.//supplementary-material\
                                  |.//inline-supplementary-material|.//disp-formula\
                                  |.//inline-formula|.//graphic|.//inline-graphic\
                                  |.//media|.//inline-media|.//boxed-text\
                                  |.//table-wrap-foot|.//fn-group|.//chem-struct-wrap\
                                  |.//code|.//disp-quote|.//speech")
    rids, key_l = get_ref_indexes(ref_el_l, refs_pmid, refs_nonpmid_keys)
    text_l_d = defaultdict(list)
    for el, key in zip(ref_el_l[::-1], key_l[::-1]):
        #The iteration is done backward to always process first the most inner reference,
        # it makes the processing is agnostic to structure rules differences between articles
        new_text = parseout_el_refs(el, rids)

        ref_class = rids[key][2]
        text_l_d[ref_class].insert(0, new_text)

        repl_xref = etree.Element("xref", attrib={"rid":key})
        repl_xref.tail = el.tail
        el.addprevious(repl_xref)
        el.getparent().remove(el)

    # Finally, the discovered references and text are added to the result
    for ref_k in REFS_KEYS[2:]: #Slicing from 2, to not add pmid and unknown ref here
        res_content_d[ref_k[:-4]] = text_l_d[ref_k]#"\n".join(text_l_d[ref_k])

    path_l, text_l = [], []
    t_paths, t_texts_lowcase  = [], []
    for part in ["front", "body", "back"]: #Iterate parts and insert first front and back
        tmp_path_l, tmp_text_l = [], []
        tmp_t_paths, tmp_t_texts_lowcase  = [], []
        part_el = article_tree.find(".//"+part)
        if part_el is None:
            res_content_d[part] = []
            continue
        #Only the outermost p are kept, to prevent duplication.
        #Also seen title with p inside. not(ancestor::title) prevents duplication of that p
        for el in part_el.xpath(".//p[not(ancestor::p) and not(ancestor::title)]| .//title[not(ancestor::p) and not(ancestor::title)]"):
            new_text = parseout_el_refs(el, rids)
            tmp_path_l.append(article_tree.getelementpath(el))
            tmp_text_l.append(new_text)
            if el.tag=="title":
                tmp_t_paths.append(tmp_path_l[-1])
                tmp_t_texts_lowcase.append(new_text.lower())
        if part=="body": #We keep the body for processing right bellow.
            path_l, text_l      = tmp_path_l, tmp_text_l
            t_paths, t_texts_lowcase = tmp_t_paths, tmp_t_texts_lowcase
        else:
            res_content_d[part] = tmp_text_l

    # Figuring from the titles which are the different categories
    mask_intro = np.array(["introduction" in t_text or "background" in t_text for t_text in t_texts_lowcase]).astype(bool)
    mask_metho = np.array(["method" in t_text  for t_text in t_texts_lowcase]).astype(bool)
    mask_resul = np.array(["result" in t_text for t_text in t_texts_lowcase]).astype(bool)
    mask_discu = np.array(["discussion" in t_text for t_text in t_texts_lowcase]).astype(bool)
    mask_concl = np.array(["conclusion" in t_text for t_text in t_texts_lowcase]).astype(bool)
    processed_mask = np.zeros(len(text_l), dtype="bool")
    for mask, name_section in zip([mask_intro, mask_metho, mask_resul, mask_discu, mask_concl],
                                  ["introduction", "methods", "results", "discussion", "conclusion"]):
        if not np.any(mask):
            res_content_d[name_section] = []
            continue

        filtered_path_l = list(compress(t_paths, mask))
        levels    = np.array([len(path.split("/")) for path in filtered_path_l])
        root_path = filtered_path_l[np.argmin(levels)]
        root_path = root_path[:root_path.rindex("/")]
        mask_contents = np.array([path.startswith(root_path) for path in path_l]).astype(bool)
        processed_mask |= mask_contents
        res_content_d[name_section] = list(compress(text_l, mask_contents))

    processed_mask = ~processed_mask #Finally, add the body part as everything that don't belong to previous categories
    res_content_d["body"] = list(compress(text_l, processed_mask))

    return (res_content_d, reference_count)

class OpenAccessXMLConfig(datasets.BuilderConfig):
    """BuilderConfig for the PMC Open Access Subset."""

    def __init__(self, subsets=None, **kwargs):
        """BuilderConfig for the PMC Open Access Subset.
        Args:
            subsets (:obj:`List[str]`): List of subsets/groups to load.
            **kwargs: Keyword arguments forwarded to super.
        """
        subsets = [subsets] if isinstance(subsets, str) else subsets
        super().__init__(
            name="+".join(subsets), **kwargs,
        )
        self.subsets = subsets if self.name != "all" else list(_SUBSETS.keys())


class OpenAccessXML(datasets.GeneratorBasedBuilder):
    """PMC Open Access Subset enriched from XML files."""

    VERSION = datasets.Version("1.0.0")
    BUILDER_CONFIG_CLASS = OpenAccessXMLConfig
    BUILDER_CONFIGS = [OpenAccessXMLConfig(subsets="all")] + [OpenAccessXMLConfig(subsets=subset) for subset in _SUBSETS]
    DEFAULT_CONFIG_NAME = "all"

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "accession_id":  datasets.Value("string"),
                    "pmid":          datasets.Value("string"),

                    "introduction":  datasets.features.Sequence(datasets.Value("string")),
                    "methods":       datasets.features.Sequence(datasets.Value("string")),
                    "results":       datasets.features.Sequence(datasets.Value("string")),
                    "discussion":    datasets.features.Sequence(datasets.Value("string")),
                    "conclusion":    datasets.features.Sequence(datasets.Value("string")),

                    "front":    datasets.features.Sequence(datasets.Value("string")),
                    "body":     datasets.features.Sequence(datasets.Value("string")),
                    "back":     datasets.features.Sequence(datasets.Value("string")),

                    "figure":        datasets.features.Sequence(datasets.Value("string")),
                    "table":         datasets.features.Sequence(datasets.Value("string")),
                    "formula":       datasets.features.Sequence(datasets.Value("string")),
                    "box":           datasets.features.Sequence(datasets.Value("string")),
                    "code":          datasets.features.Sequence(datasets.Value("string")),
                    "quote":         datasets.features.Sequence(datasets.Value("string")),
                    "chemical":      datasets.features.Sequence(datasets.Value("string")),
                    "supplementary": datasets.features.Sequence(datasets.Value("string")),
                    "footnote":      datasets.features.Sequence(datasets.Value("string")),
                    "graphic":       datasets.features.Sequence(datasets.Value("string")),
                    "media":         datasets.features.Sequence(datasets.Value("string")),

                    "unknown_pub": datasets.Value("string"),
                    # "question":    datasets.Value("string"),
                    "glossary":    datasets.features.Sequence(
                        {"acronym": datasets.Value("string"), "definition": datasets.Value("string")}
                    ),
                    "n_references": datasets.Value("int32"),
                    "license": datasets.Value("string"),
                    "retracted": datasets.Value("string"),
                    "last_updated": datasets.Value("string"),
                    "citation": datasets.Value("string"),
                    "package_file": datasets.Value("string"),
                }
            ),
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
            task_templates=[LanguageModeling(text_column="content")],
        )

    def _split_generators(self, dl_manager):

        incremental_paths = {
            "incremental_file_lists": [],
            "incremental_archives": []
            }

        baseline_package_list = dl_manager.download(f"{_URL_ROOT}oa_file_list.csv")

        baseline_file_lists    = []
        baseline_archives      = []
        for subset in self.config.subsets:
            url = _URL.format(subset=_SUBSETS[subset])
            basename = f"{_SUBSETS[subset]}_xml."
            # Baselines
            baselines = [f"PMC00{i}xxxxxx.baseline.{_BASELINE_DATE}" for i in range(9)]

            for baseline in baselines:
                baseline_file_list_url = f"{url}{basename}{baseline}.filelist.csv"
                baseline_archive_url = f"{url}{basename}{baseline}.tar.gz"
                try:
                    baseline_file_list = dl_manager.download(baseline_file_list_url)
                    baseline_archive = dl_manager.download(baseline_archive_url)
                except FileNotFoundError:  # non-commercial PMC000xxxxxx baseline does not exist
                    continue

                baseline_file_lists.append(baseline_file_list)
                baseline_archives.append(baseline_archive)

            baseline_file_list_url = f"{url}{basename}{baseline}.filelist.csv"

            # Incremental commented because some articles are already in the main parts (updates?)
            # Need to find a way to add them to the dataset without duplicating the articles.
            # Also adding them would mean that each new day the dataset is loaded, the whole dataset is recreated.
            date_delta = datetime.date.today() - datetime.date.fromisoformat(_BASELINE_DATE)
            incremental_dates = [
                (datetime.date.fromisoformat(_BASELINE_DATE) + datetime.timedelta(days=i + 1)).isoformat()
                for i in range(date_delta.days)
            ]
            incrementals = [f"incr.{date}" for date in incremental_dates]
            for incremental in incrementals:
                incremental_file_list_url = f"{url}{basename}{incremental}.filelist.csv"
                incremental_archive_url = f"{url}{basename}{incremental}.tar.gz"
                try:
                    incremental_file_list = dl_manager.download(incremental_file_list_url)
                    incremental_archive = dl_manager.download(incremental_archive_url)
                except FileNotFoundError:  # Some increment might not exist
                    continue
                incremental_paths["incremental_file_lists"].append(incremental_file_list)
                incremental_paths["incremental_archives"].append(incremental_archive)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "baseline_file_lists": baseline_file_lists,
                    "baseline_archives": [dl_manager.iter_archive(archive) for archive in baseline_archives],
                    "baseline_package_list": baseline_package_list,
                    "incremental_file_lists": incremental_paths["incremental_file_lists"],
                    "incremental_archives": [dl_manager.iter_archive(archive) for archive in incremental_paths["incremental_archives"]],
                },
            ),
        ]

    def _generate_examples(self, baseline_file_lists, baseline_archives, baseline_package_list, incremental_file_lists, incremental_archives):
        #Loading the file listing folders of individual PMC Article package (with medias and graphics)
        oa_package_list = pd.read_csv(baseline_package_list, index_col="Accession ID")
        oa_package_list = oa_package_list[["File"]]
        oa_package_list.sort_index(inplace=True)
        processed_ids = set()

        # Incrementals
        if incremental_file_lists:
            for incremental_file_list, incremental_archive in zip(incremental_file_lists[::-1], incremental_archives[::-1]):
                try:
                    incrementals = pd.read_csv(incremental_file_list, index_col="AccessionID")
                except FileNotFoundError:  # File not found can happen here in stream mode
                    continue
                incrementals = incrementals.join(oa_package_list).reset_index().set_index("Article File")
                incrementals.File = incrementals.File.fillna('')
                incrementals = incrementals.to_dict(orient="index")

                for path, file in incremental_archive:
                    data = incrementals.pop(path)
                    pmcid = data["AccessionID"]
                    if pmcid in processed_ids: #oa_package_list.loc[pmcid, "yet_processed"]:
                        continue
                    content = file.read()
                    try:
                        text = content.decode("utf-8").strip()
                    except UnicodeDecodeError as e:
                        text = content.decode("latin-1").strip()
                    text = clean_raw(text)
                    try:
                        article_tree = etree.ElementTree(etree.fromstring(text))
                    except etree.XMLSyntaxError: #In some files, xml is broken
                        continue

                    content_d, n_ref = construct_datadict(article_tree)
                    glossary = np.array([[k,v] for k,v in content_d["glossary"].items()])
                    data = {
                        "introduction":  content_d["introduction"],
                        "methods":       content_d["methods"],
                        "results":       content_d["results"],
                        "discussion":    content_d["discussion"],
                        "conclusion":    content_d["conclusion"],
                        "front":         content_d["front"],
                        "body":          content_d["body"],
                        "back":          content_d["back"],
                        "figure":        content_d["figure"],
                        "table":         content_d["table"],
                        "formula":       content_d["formula"],
                        "box":           content_d["box"],
                        "code":          content_d["code"],
                        "quote":         content_d["quote"],
                        "chemical":      content_d["chemical"],
                        "supplementary": content_d["supplementary"],
                        "footnote":      content_d["footnote"],
                        "graphic":       content_d["graphic"],
                        "media":         content_d["media"],
                        # "question":         content_d["question"],
                        "unknown_pub": content_d["unknown_pub"],
                        "glossary": {"acronym":glossary[:,0], "definition":glossary[:,1]} if len(glossary)>0 else {"acronym":[], "definition":[]},
                        "n_references": n_ref,
                        "pmid": data["PMID"],
                        "accession_id": pmcid,
                        "license": data["License"],
                        "last_updated": data["LastUpdated (YYYY-MM-DD HH:MM:SS)"],
                        "retracted": data["Retracted"],
                        "citation": data["Article Citation"],
                        "package_file": data["File"],
                    }
                    processed_ids.add(pmcid)
                    yield pmcid, data

        # Baselines
        for baseline_file_list, baseline_archive in zip(baseline_file_lists, baseline_archives):

            #try:
            baselines = pd.read_csv(baseline_file_list, index_col="AccessionID")
            baselines = baselines.join(oa_package_list).reset_index().set_index("Article File")
            baselines.File = baselines.File.fillna('')
            baselines = baselines.to_dict(orient="index")

            for path, file in baseline_archive:
                data = baselines.pop(path)
                pmcid = data["AccessionID"]
                if pmcid in processed_ids:
                    continue
                content = file.read()
                try:
                    text = content.decode("utf-8").strip()
                except UnicodeDecodeError as e:
                    text = content.decode("latin-1").strip()
                text = clean_raw(text)
                try:
                    article_tree = etree.ElementTree(etree.fromstring(text))
                except etree.XMLSyntaxError: #In some files, xml is broken
                    continue

                content_d, n_ref = construct_datadict(article_tree)
                glossary = np.array([[k,v] for k,v in content_d["glossary"].items()])
                data = {
                    "introduction":  content_d["introduction"],
                    "methods":       content_d["methods"],
                    "results":       content_d["results"],
                    "discussion":    content_d["discussion"],
                    "conclusion":    content_d["conclusion"],
                    "front":         content_d["front"],
                    "body":          content_d["body"],
                    "back":          content_d["back"],
                    "figure":        content_d["figure"],
                    "table":         content_d["table"],
                    "formula":       content_d["formula"],
                    "box":           content_d["box"],
                    "code":          content_d["code"],
                    "quote":         content_d["quote"],
                    "chemical":      content_d["chemical"],
                    "supplementary": content_d["supplementary"],
                    "footnote":      content_d["footnote"],
                    "graphic":       content_d["graphic"],
                    "media":         content_d["media"],
                    # "question":         content_d["question"],
                    "unknown_pub": content_d["unknown_pub"],
                    "glossary": {"acronym":glossary[:,0], "definition":glossary[:,1]} if len(glossary)>0 else {"acronym":[], "definition":[]},
                    "n_references": n_ref,
                    "pmid": data["PMID"],
                    "accession_id": pmcid,
                    "license": data["License"],
                    "last_updated": data["LastUpdated (YYYY-MM-DD HH:MM:SS)"],
                    "retracted": data["Retracted"],
                    "citation": data["Article Citation"],
                    "package_file": data["File"],
                }
                processed_ids.add(pmcid)
                yield pmcid, data

            #except FileNotFoundError:  # non-commercial PMC000xxxxxx baseline does not exist
            #    continue