Datasets:
File size: 6,391 Bytes
0346107 ec2d33b 0346107 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
---
language:
- multilingual
license:
- cc-by-nc-sa-4.0
multilinguality:
- multilingual
size_categories:
- 10M<n<100M
source_datasets:
- original
task_categories:
- text-generation
- structure-prediction
- object-detection
- text-mining
- information-retrieval
- other
task_ids:
- other
pretty_name: Mario Maker 2 level comments
---
# Mario Maker 2 level comments
Part of the [Mario Maker 2 Dataset Collection](https://tgrcode.com/posts/mario_maker_2_datasets)
## Dataset Description
The Mario Maker 2 level comment dataset consists of 31.9 million level comments from Nintendo's online service totaling around 23GB of data. The dataset was created using the self-hosted [Mario Maker 2 api](https://tgrcode.com/posts/mario_maker_2_api) over the course of 1 month in February 2022.
### How to use it
The Mario Maker 2 level comment dataset is a very large dataset so for most use cases it is recommended to make use of the streaming API of `datasets`. You can load and iterate through the dataset with the following code:
```python
from datasets import load_dataset
ds = load_dataset("TheGreatRambler/mm2_level_comments", streaming=True, split="train")
print(next(iter(ds)))
#OUTPUT:
{
'data_id': 3000006,
'comment_id': '20200430072710528979_302de3722145c7a2_2dc6c6',
'type': 2,
'pid': '3471680967096518562',
'posted': 1561652887,
'clear_required': 0,
'text': '',
'reaction_image_id': 10,
'custom_image': [some binary data],
'has_beaten': 0,
'x': 557,
'y': 64,
'reaction_face': 0,
'unk8': 0,
'unk10': 0,
'unk12': 0,
'unk14': [some binary data],
'unk17': 0
}
```
Comments can be one of three types: text, reaction image or custom image. `type` can be used with the enum below to identify different kinds of comments. Custom images are binary PNGs.
You can also download the full dataset. Note that this will download ~23GB:
```python
ds = load_dataset("TheGreatRambler/mm2_level_comments", split="train")
```
## Data Structure
### Data Instances
```python
{
'data_id': 3000006,
'comment_id': '20200430072710528979_302de3722145c7a2_2dc6c6',
'type': 2,
'pid': '3471680967096518562',
'posted': 1561652887,
'clear_required': 0,
'text': '',
'reaction_image_id': 10,
'custom_image': [some binary data],
'has_beaten': 0,
'x': 557,
'y': 64,
'reaction_face': 0,
'unk8': 0,
'unk10': 0,
'unk12': 0,
'unk14': [some binary data],
'unk17': 0
}
```
### Data Fields
|Field|Type|Description|
|---|---|---|
|data_id|int|The data ID of the level this comment appears on|
|comment_id|string|Comment ID|
|type|int|Type of comment, enum below|
|pid|string|Player ID of the comment creator|
|posted|int|UTC timestamp of when this comment was created|
|clear_required|bool|Whether this comment requires a clear to view|
|text|string|If the comment type is text, the text of the comment|
|reaction_image_id|int|If this comment is a reaction image, the id of the reaction image, enum below|
|custom_image|bytes|If this comment is a custom drawing, the custom drawing as a PNG binary|
|has_beaten|int|Whether the user had beaten the level when they created the comment|
|x|int|The X position of the comment in game|
|y|int|The Y position of the comment in game|
|reaction_face|int|The reaction face of the mii of this user, enum below|
|unk8|int|Unknown|
|unk10|int|Unknown|
|unk12|int|Unknown|
|unk14|bytes|Unknown|
|unk17|int|Unknown|
### Data Splits
The dataset only contains a train split.
## Enums
The dataset contains some enum integer fields. This can be used to convert back to their string equivalents:
```python
CommentType = {
0: "Custom Image",
1: "Text",
2: "Reaction Image"
}
CommentReactionImage = {
0: "Nice!",
1: "Good stuff!",
2: "So tough...",
3: "EASY",
4: "Seriously?!",
5: "Wow!",
6: "Cool idea!",
7: "SPEEDRUN!",
8: "How?!",
9: "Be careful!",
10: "So close!",
11: "Beat it!"
}
CommentReactionFace = {
0: "Normal",
16: "Wink",
1: "Happy",
4: "Surprised",
18: "Scared",
3: "Confused"
}
```
<!-- TODO create detailed statistics -->
<!--
## Dataset Statistics
The dataset contains 115M files and the sum of all the source code file sizes is 873 GB (note that the size of the dataset is larger due to the extra fields). A breakdown per language is given in the plot and table below:
![dataset-statistics](https://huggingface.co/datasets/codeparrot/github-code/resolve/main/github-code-stats-alpha.png)
| | Language |File Count| Size (GB)|
|---:|:-------------|---------:|-------:|
| 0 | Java | 19548190 | 107.70 |
| 1 | C | 14143113 | 183.83 |
| 2 | JavaScript | 11839883 | 87.82 |
| 3 | HTML | 11178557 | 118.12 |
| 4 | PHP | 11177610 | 61.41 |
| 5 | Markdown | 8464626 | 23.09 |
| 6 | C++ | 7380520 | 87.73 |
| 7 | Python | 7226626 | 52.03 |
| 8 | C# | 6811652 | 36.83 |
| 9 | Ruby | 4473331 | 10.95 |
| 10 | GO | 2265436 | 19.28 |
| 11 | TypeScript | 1940406 | 24.59 |
| 12 | CSS | 1734406 | 22.67 |
| 13 | Shell | 1385648 | 3.01 |
| 14 | Scala | 835755 | 3.87 |
| 15 | Makefile | 679430 | 2.92 |
| 16 | SQL | 656671 | 5.67 |
| 17 | Lua | 578554 | 2.81 |
| 18 | Perl | 497949 | 4.70 |
| 19 | Dockerfile | 366505 | 0.71 |
| 20 | Haskell | 340623 | 1.85 |
| 21 | Rust | 322431 | 2.68 |
| 22 | TeX | 251015 | 2.15 |
| 23 | Batchfile | 236945 | 0.70 |
| 24 | CMake | 175282 | 0.54 |
| 25 | Visual Basic | 155652 | 1.91 |
| 26 | FORTRAN | 142038 | 1.62 |
| 27 | PowerShell | 136846 | 0.69 |
| 28 | Assembly | 82905 | 0.78 |
| 29 | Julia | 58317 | 0.29 |
-->
## Dataset Creation
The dataset was created over a little more than a month in Febuary 2022 using the self hosted [Mario Maker 2 api](https://tgrcode.com/posts/mario_maker_2_api). As requests made to Nintendo's servers require authentication the process had to be done with upmost care and limiting download speed as to not overload the API and risk a ban. There are no intentions to create an updated release of this dataset.
## Considerations for Using the Data
The dataset consists of comments from many different Mario Maker 2 players globally and as such their text could contain harmful language. Harmful depictions could also be present in the custom images.
|