Datasets:
word
stringlengths 1
14
| visual
float64 0
1
| phonetic
float64 0
1
| textual
float64 0
1
|
---|---|---|---|
a | 0.193237 | 0.693046 | 0.302083 |
abandoned | 0.652174 | 0.422062 | 0.682292 |
abbey | 0.415459 | 0.736211 | 0.757813 |
abide | 0.415459 | 0.28777 | 0.169271 |
about | 0.227053 | 0 | 0.789063 |
abstract | 0.664268 | 0.722682 | 0.43359 |
academy | 0.376812 | 0.422062 | 0.572917 |
across | 0.497585 | 0.2494 | 0.492188 |
action | 0.318841 | 0.510791 | 0.309896 |
activism | 0.425121 | 0.616307 | 0.476563 |
activities | 0.362319 | 0.570743 | 0.481771 |
activity | 0.396135 | 0.628297 | 0.231771 |
actually | 0.091787 | 0.597122 | 0.15625 |
ad | 0.449275 | 0.784173 | 0.572917 |
adam | 0.449275 | 0.803357 | 0.71875 |
add | 0.507246 | 0.784173 | 0.247396 |
added | 0.251208 | 0.565947 | 0.416667 |
address | 0.603865 | 0.736211 | 0.664063 |
adobe | 0.516908 | 0.422062 | 0.825521 |
adventure | 0.589372 | 0.467626 | 0.674479 |
advertising | 0.47343 | 0.563549 | 0.627604 |
aerial | 0.903745 | 0.135831 | 0.627401 |
affairs | 0.661836 | 0.386091 | 0.552083 |
africa | 0.57971 | 0.724221 | 0.588542 |
african | 0.338164 | 0.640288 | 0.46875 |
after | 0.26087 | 0.179856 | 0.434896 |
ago | 0.101449 | 0.273381 | 0.265625 |
agriculture | 0.492754 | 0.604317 | 0.648438 |
air | 0.352657 | 0.592326 | 0.559896 |
aircraft | 0.768116 | 0.635492 | 0.682292 |
airplane | 0.811594 | 0.82494 | 0.940104 |
airplanes | 0.772947 | 0.724221 | 0.893229 |
airport | 0.483092 | 0.983213 | 0.570313 |
al | 0.371981 | 0.800959 | 0.617188 |
alan | 0.381643 | 0.755396 | 0.630208 |
albert | 0.386473 | 0.609113 | 0.820313 |
album | 0.555556 | 0.726619 | 0.658854 |
alex | 0.386473 | 0.741007 | 0.614583 |
alexander | 0.449275 | 0.577938 | 0.75 |
alice | 0.444444 | 0.760192 | 0.570313 |
all | 0.231884 | 0.827338 | 0.526042 |
allowed | 0.36715 | 0.122302 | 0.148438 |
along | 0.753623 | 0.136691 | 0.653646 |
alpha | 0.587115 | 0.518718 | 0.46684 |
already | 0.227053 | 0.395683 | 0.085938 |
also | 0.231884 | 0.139089 | 0.309896 |
alumni | 0.613527 | 0.577938 | 0.692708 |
always | 0.458937 | 0.206235 | 0.830729 |
am | 0.391304 | 0.556355 | 0.632813 |
amazing | 0.231884 | 0.239808 | 0.502604 |
ambassador | 0.657005 | 0.808153 | 0.627604 |
america | 0.381643 | 0.417266 | 0.601563 |
american | 0.541063 | 0.458034 | 0.5625 |
among | 0.285024 | 0.18705 | 0.388021 |
amsterdam | 0.454106 | 0.556355 | 0.757813 |
amy | 0.415459 | 0.505995 | 0.721354 |
an | 0.202899 | 0.498801 | 0.908854 |
ana | 0.429952 | 0.760192 | 0.552083 |
analogue | 0.429952 | 0.820144 | 0.369792 |
and | 0.391304 | 0.776978 | 0.815104 |
andrea | 0.42029 | 0.489209 | 0.726563 |
andrew | 0.36715 | 0.733813 | 0.710938 |
andy | 0.357488 | 0.53717 | 0.84375 |
angel | 0.246377 | 0.729017 | 0.796875 |
angeles | 0.400966 | 0.642686 | 0.763021 |
angels | 0.700483 | 0.757794 | 0.903646 |
animals | 0.676329 | 0.800959 | 0.919271 |
animation | 0.478261 | 0.321343 | 0.692708 |
ann | 0.2657 | 0.781775 | 0.786458 |
anna | 0.405797 | 0.760192 | 0.570313 |
anne | 0.429952 | 0.781775 | 0.403646 |
anniversary | 0.342995 | 0.53717 | 0.476563 |
annual | 0.458937 | 0.695444 | 0.403646 |
another | 0.183575 | 0.227818 | 0.567708 |
antonio | 0.333333 | 0.606715 | 0.760417 |
anyone | 0.328502 | 0.386091 | 0.197917 |
anything | 0.217391 | 0.479616 | 0.132813 |
apartment | 0.357272 | 0.557809 | 0.945779 |
apple | 0.449275 | 0.940048 | 0.760417 |
approximately | 0.36715 | 0.431655 | 0.578125 |
april | 0.31401 | 0.803357 | 0.604167 |
arch | 0.594203 | 0.757794 | 0.708333 |
archaeology | 0.724638 | 0.757794 | 0.721354 |
architect | 0.541063 | 0.676259 | 0.6875 |
architectural | 0.536232 | 0.70024 | 0.585938 |
architecture | 0.666667 | 0.71223 | 0.580729 |
are | 0.454106 | 0.59952 | 0.638021 |
area | 0.376812 | 0.378897 | 0.479167 |
areas | 0.468599 | 0.714628 | 0.528646 |
arena | 0.550725 | 0.436451 | 0.8125 |
argentina | 0.425121 | 0.70024 | 0.601563 |
arizona | 0.521739 | 0.417266 | 0.867188 |
army | 0.439614 | 0.892086 | 0.375 |
around | 0.347826 | 0.321343 | 0.802083 |
arrangements | 0.444444 | 0.453237 | 0.53125 |
arrived | 0.202899 | 0.29976 | 0.809896 |
art | 0.371981 | 0.678657 | 0.315104 |
artistic | 0.497585 | 0.776978 | 0.546875 |
artists | 0.439614 | 0.657074 | 0.606771 |
arts | 0.347826 | 0.705036 | 0.385417 |
End of preview. Expand
in Dataset Viewer.
English Words Imageability
This dataset is a collection of two datasets provided by Marc A. Kastner on GitHub. I merged the datasets and kept only the word, visual, phonetic, and textual columns. The data is scaled using a MinMaxScaler so that the whole dataset can be used as one.
Usage
This dataset is ideal for training and evaluating machine learning models for word imageability.
Acknowledgments
We extend our heartfelt gratitude to all the authors of the original datasets.
License
This dataset is made available under the MIT license.
- Downloads last month
- 37