The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.

E621 TFRecords to train classifiers and other stuff with my codebases.

TFRecord serialization/deserialization code:

NUM_CLASSES = 9331


# Function to convert value to bytes_list
def _bytes_feature(value):
    if isinstance(value, type(tf.constant(0))):
        value = value.numpy()
    elif isinstance(value, str):
        value = value.encode()
    return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))


# Function to convert bool/enum/int/uint to int64_list
def _int64_feature(value):
    int64_list = tf.train.Int64List(value=tf.reshape(value, (-1,)))
    return tf.train.Feature(int64_list=int64_list)


# Function to create a tf.train.Example message
def serialize_example(image_id, image_bytes, label_indexes, tag_string):
    feature = {
        "image_id": _int64_feature(image_id),
        "image_bytes": _bytes_feature(image_bytes),
        "label_indexes": _int64_feature(label_indexes),
        "tag_string": _bytes_feature(tag_string),
    }
    example_proto = tf.train.Example(features=tf.train.Features(feature=feature))
    return example_proto.SerializeToString()


# Function to deserialize a single tf.train.Example message
def deserialize_example(example_proto):
    feature_description = {
        "image_id": tf.io.FixedLenFeature([], tf.int64),
        "image_bytes": tf.io.FixedLenFeature([], tf.string),
        "label_indexes": tf.io.VarLenFeature(tf.int64),
        "tag_string": tf.io.FixedLenFeature([], tf.string),
    }

    # Parse the input 'tf.train.Example' proto using the dictionary above.
    parsed_example = tf.io.parse_single_example(example_proto, feature_description)
    image_tensor = tf.io.decode_jpeg(parsed_example["image_bytes"], channels=3)

    # We only stored label indexes in the TFRecords to save space
    # Emulate MultiLabelBinarizer to get a tensor of 0s and 1s
    label_indexes = tf.sparse.to_dense(
        parsed_example["label_indexes"],
        default_value=0,
    )
    one_hots = tf.one_hot(label_indexes, NUM_CLASSES)
    labels = tf.reduce_max(one_hots, axis=0)
    labels = tf.cast(labels, tf.float32)

    sample = {
        "image_ids": parsed_example["image_id"],
        "images": image_tensor,
        "labels": labels,
        "tags": parsed_example["tag_string"],
    }
    return sample
Downloads last month
16