fullname
stringlengths
21
72
header
stringlengths
137
382
imported_modules
stringlengths
91
330
opened_namespaces
stringlengths
1
100
formal_statement
stringlengths
73
428
formal_statement_original
stringlengths
85
440
formal_statement_references
stringlengths
0
113
formal_proof
stringclasses
1 value
formal_proof_references
stringclasses
1 value
doc_string
stringclasses
1 value
problem_id
stringclasses
1 value
problem_kind
stringclasses
1 value
informal_statement
stringclasses
1 value
informal_proof
stringclasses
1 value
ref
stringclasses
1 value
inv_references
stringclasses
1 value
module_name
stringlengths
37
66
head
null
lean_toolchain
stringclasses
1 value
package_name
stringclasses
1 value
passed
bool
2 classes
validation_detail
stringlengths
0
1.49k
Monoid.CoprodI.NeWord.of_word_tac_26830
import Init import Mathlib.Algebra.Group.Submonoid.Membership import Mathlib.GroupTheory.Congruence.Basic import Mathlib.GroupTheory.FreeGroup.IsFreeGroup import Mathlib.SetTheory.Cardinal.Basic import Mathlib.Data.Set.Pointwise.SMul import Mathlib.GroupTheory.CoprodI open Set open Word
import Init import Mathlib.Algebra.Group.Submonoid.Membership import Mathlib.GroupTheory.Congruence.Basic import Mathlib.GroupTheory.FreeGroup.IsFreeGroup import Mathlib.SetTheory.Cardinal.Basic import Mathlib.Data.Set.Pointwise.SMul import Mathlib.GroupTheory.CoprodI
open Set open Word
lemma of_word_tac_26830 [(i : ι) → Monoid (M i)] (i : ι) (j : ι) (w : NeWord M i j) (h : w.toWord.toList = w✝.toList) : a✝ ∈ w✝.toList[n✝]? ↔ a✝ ∈ w✝.toList[n✝]? := sorry
lemma of_word_tac_26830 {ι : Type*} {M : Type*} [(i : ι) → Monoid (M i)] (w✝ : Word M) (h✝ : w✝ ≠ empty) (i : ι) (j : ι) (w : NeWord M i j) (h : w.toWord.toList = w✝.toList) (n✝ : ℕ) (a✝ : (i : ι) × M i) : a✝ ∈ w✝.toList[n✝]? ↔ a✝ ∈ w✝.toList[n✝]? := sorry
tactic
['Mathlib', 'GroupTheory', 'CoprodI']
null
leanprover/lean4:v4.11.0
Mathlib
false
{"messages": [{"severity": "error", "pos": {"line": 9, "column": 5}, "endPos": {"line": 9, "column": 9}, "data": "unknown namespace 'Word'"}, {"severity": "error", "pos": {"line": 11, "column": 75}, "endPos": null, "data": "expected token"}], "env": 0}
Subgroup.instMulActionQuotientDiff_tac_3011
import Init import Mathlib.GroupTheory.Transfer import Mathlib.GroupTheory.SchurZassenhaus open MulOpposite MulAction Subgroup.leftTransversals MemLeftTransversals
import Init import Mathlib.GroupTheory.Transfer import Mathlib.GroupTheory.SchurZassenhaus
open MulOpposite MulAction Subgroup.leftTransversals MemLeftTransversals
lemma instMulActionQuotientDiff_tac_3011 [Group G] (H : Subgroup G) [H.IsCommutative] [H.FiniteIndex] (α : ↑(leftTransversals ↑H)) (β : ↑(leftTransversals ↑H)) [H.Normal] (q : H.QuotientDiff) (T : ↑(leftTransversals ↑H)) : (fun α => op 1⁻¹ • α) T = T := sorry
lemma instMulActionQuotientDiff_tac_3011 {G : Type*} [Group G] (H : Subgroup G) [H.IsCommutative] [H.FiniteIndex] (α : ↑(leftTransversals ↑H)) (β : ↑(leftTransversals ↑H)) [H.Normal] (q : H.QuotientDiff) (T : ↑(leftTransversals ↑H)) : (fun α => op 1⁻¹ • α) T = T := sorry
[['inv_one']]
tactic
['Mathlib', 'GroupTheory', 'SchurZassenhaus']
null
leanprover/lean4:v4.11.0
Mathlib
false
{"sorries": [{"proofState": 0, "pos": {"line": 6, "column": 266}, "goal": "x✝¹ : Sort u_2\nleftTransversals : x✝¹\nx✝ : Sort u_3\nop : x✝\nG : Type u_1\ninst✝³ : Group G\nH : Subgroup G\ninst✝² : H.IsCommutative\ninst✝¹ : H.FiniteIndex\nα : sorryAx (Sort u_4) true\nβ : sorryAx (Sort u_5) true\ninst✝ : H.Normal\nq : H.QuotientDiff\nT : sorryAx (Type u_6) true\n⊢ (fun α_1 => ?m.2111 H α β q T α_1 • α_1) T = T", "endPos": {"line": 6, "column": 271}}], "messages": [{"severity": "error", "pos": {"line": 4, "column": 53}, "endPos": {"line": 4, "column": 72}, "data": "unknown namespace 'MemLeftTransversals'"}, {"severity": "error", "pos": {"line": 6, "column": 121}, "endPos": {"line": 6, "column": 140}, "data": "function expected at\n leftTransversals\nterm has type\n ?m.37"}, {"severity": "error", "pos": {"line": 6, "column": 150}, "endPos": {"line": 6, "column": 169}, "data": "function expected at\n leftTransversals\nterm has type\n ?m.37"}, {"severity": "error", "pos": {"line": 6, "column": 211}, "endPos": {"line": 6, "column": 230}, "data": "function expected at\n leftTransversals\nterm has type\n ?m.37"}, {"severity": "error", "pos": {"line": 6, "column": 245}, "endPos": {"line": 6, "column": 251}, "data": "function expected at\n op\nterm has type\n ?m.133"}], "env": 0}
FreeGroup.instLawfulMonad_tac_33581
import Init import Mathlib.Algebra.Group.Subgroup.Basic import Mathlib.Data.Fintype.Basic import Mathlib.Data.List.Sublists import Mathlib.Data.List.InsertNth import Mathlib.GroupTheory.FreeGroup.Basic open Relation open List -- for <+ notation
import Init import Mathlib.Algebra.Group.Subgroup.Basic import Mathlib.Data.Fintype.Basic import Mathlib.Data.List.Sublists import Mathlib.Data.List.InsertNth import Mathlib.GroupTheory.FreeGroup.Basic
open Relation open List -- for <+ notation
lemma instLawfulMonad_tac_33581 (L : List (α × Bool)) (L₁ : List (α × Bool)) (L₂ : List (α × Bool)) (L₃ : List (α × Bool)) (L₄ : List (α × Bool)) (x : α✝) (ih : id <$> pure x = pure x) : id <$> (pure x)⁻¹ = (pure x)⁻¹ := sorry
lemma instLawfulMonad_tac_33581 {α : Type*} (L : List (α × Bool)) (L₁ : List (α × Bool)) (L₂ : List (α × Bool)) (L₃ : List (α × Bool)) (L₄ : List (α × Bool)) {β : Type*} {α✝ : Type*} (x✝ : FreeGroup α✝) (x : α✝) (ih : id <$> pure x = pure x) : id <$> (pure x)⁻¹ = (pure x)⁻¹ := sorry
[['map_inv'], ['ih']]
tactic
['Mathlib', 'GroupTheory', 'FreeGroup', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
false
{"messages": [{"severity": "error", "pos": {"line": 10, "column": 172}, "endPos": null, "data": "expected token"}], "env": 0}
MulAction.mem_stabilizer_of_finite_iff_smul_le_tac_28985
import Init import Mathlib.Algebra.Group.Subgroup.Basic import Mathlib.Algebra.GroupWithZero.Action.Defs import Mathlib.Data.Fintype.Card import Mathlib.Data.Set.Finite import Mathlib.Data.Set.Pointwise.SMul import Mathlib.Data.Setoid.Basic import Mathlib.GroupTheory.GroupAction.Basic open Pointwise open Function
import Init import Mathlib.Algebra.Group.Subgroup.Basic import Mathlib.Algebra.GroupWithZero.Action.Defs import Mathlib.Data.Fintype.Card import Mathlib.Data.Set.Finite import Mathlib.Data.Set.Pointwise.SMul import Mathlib.Data.Setoid.Basic import Mathlib.GroupTheory.GroupAction.Basic
open Pointwise open Function
lemma mem_stabilizer_of_finite_iff_smul_le_tac_28985 [Group G] [MulAction G α] (s : Set α) (hs : s.Finite) (g : G) (h : (g • s).toFinset ⊆ s.toFinset) (this : (g • s).toFinset = Finset.map { toFun := fun x => g • x, inj' := ⋯ } hs.toFinset) : s.toFinset.card = s.toFinset.card := sorry
lemma mem_stabilizer_of_finite_iff_smul_le_tac_28985 {G : Type*} [Group G] {α : Type*} [MulAction G α] (s : Set α) (hs : s.Finite) (g : G) {this✝¹ : Type*} {this✝ : Type*} (h : (g • s).toFinset ⊆ s.toFinset) (this : (g • s).toFinset = Finset.map { toFun := fun x => g • x, inj' := ⋯ } hs.toFinset) : s.toFinset.card = s.toFinset.card := sorry
tactic
['Mathlib', 'GroupTheory', 'GroupAction', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
null
QuotientGroup.sound_tac_3186
import Init import Mathlib.Algebra.Group.Subgroup.Pointwise import Mathlib.GroupTheory.Congruence.Basic import Mathlib.GroupTheory.Coset.Basic import Mathlib.GroupTheory.QuotientGroup.Basic open Function open scoped Pointwise open scoped Pointwise in
import Init import Mathlib.Algebra.Group.Subgroup.Pointwise import Mathlib.GroupTheory.Congruence.Basic import Mathlib.GroupTheory.Coset.Basic import Mathlib.GroupTheory.QuotientGroup.Basic
open Function open scoped Pointwise open scoped Pointwise in
lemma sound_tac_3186 [Group G] (N : Subgroup G) (nN : N.Normal) (U : Set (G ⧸ N)) (g : ↥N.op) : g • ⇑(mk' N) ⁻¹' U = ⇑(mk' N) ⁻¹' U := sorry
lemma sound_tac_3186 {G : Type*} [Group G] (N : Subgroup G) (nN : N.Normal) (U : Set (G ⧸ N)) (g : ↥N.op) : g • ⇑(mk' N) ⁻¹' U = ⇑(mk' N) ⁻¹' U := sorry
[['x'], ['Set', 'mem_preimage'], ['Set', 'mem_smul_set_iff_inv_smul_mem'], ['rfl'], ['g'], ['Quotient', 'sound']]
tactic
['Mathlib', 'GroupTheory', 'QuotientGroup', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
null
Equiv.Perm.disjoint_prod_right_tac_3734
import Init import Mathlib.Algebra.Group.Commute.Basic import Mathlib.Data.Fintype.Card import Mathlib.GroupTheory.Perm.Basic import Mathlib.GroupTheory.Perm.Support open Equiv Finset
import Init import Mathlib.Algebra.Group.Commute.Basic import Mathlib.Data.Fintype.Card import Mathlib.GroupTheory.Perm.Basic import Mathlib.GroupTheory.Perm.Support
open Equiv Finset
lemma disjoint_prod_right_tac_3734 (f : Perm α) (h : ∀ g ∈ [], f.Disjoint g) : f.Disjoint [].prod := sorry
lemma disjoint_prod_right_tac_3734 {α : Type*} (f : Perm α) (h : ∀ g ∈ [], f.Disjoint g) : f.Disjoint [].prod := sorry
[['disjoint_one_right']]
tactic
['Mathlib', 'GroupTheory', 'Perm', 'Support']
null
leanprover/lean4:v4.11.0
Mathlib
true
{"sorries": [{"proofState": 0, "pos": {"line": 8, "column": 113}, "goal": "α : Type u_1\nf : Perm α\nh : ∀ g ∈ [], f.Disjoint g\n⊢ f.Disjoint [].prod", "endPos": {"line": 8, "column": 118}}], "messages": [{"severity": "warning", "pos": {"line": 8, "column": 6}, "endPos": {"line": 8, "column": 34}, "data": "declaration uses 'sorry'"}], "env": 0}
Monoid.CoprodI.lift_tac_7061
import Init import Mathlib.Algebra.Group.Submonoid.Membership import Mathlib.GroupTheory.Congruence.Basic import Mathlib.GroupTheory.FreeGroup.IsFreeGroup import Mathlib.SetTheory.Cardinal.Basic import Mathlib.Data.Set.Pointwise.SMul import Mathlib.GroupTheory.CoprodI open Set
import Init import Mathlib.Algebra.Group.Submonoid.Membership import Mathlib.GroupTheory.Congruence.Basic import Mathlib.GroupTheory.FreeGroup.IsFreeGroup import Mathlib.SetTheory.Cardinal.Basic import Mathlib.Data.Set.Pointwise.SMul import Mathlib.GroupTheory.CoprodI
open Set
lemma lift_tac_7061 [(i : ι) → Monoid (M i)] [Monoid N] : Function.RightInverse (fun f i => f.comp of) fun fi => (conGen (Rel M)).lift (FreeMonoid.lift fun p => (fi p.fst) p.snd) ⋯ := sorry
lemma lift_tac_7061 {ι : Type*} {M : Type*} [(i : ι) → Monoid (M i)] {N : Type*} [Monoid N] : Function.RightInverse (fun f i => f.comp of) fun fi => (conGen (Rel M)).lift (FreeMonoid.lift fun p => (fi p.fst) p.snd) ⋯ := sorry
[['x'], ['f'], ['i']]
tactic
['Mathlib', 'GroupTheory', 'CoprodI']
null
leanprover/lean4:v4.11.0
Mathlib
null
Monoid.CoprodI.Word.mem_smul_iff_tac_21643
import Init import Mathlib.Algebra.Group.Submonoid.Membership import Mathlib.GroupTheory.Congruence.Basic import Mathlib.GroupTheory.FreeGroup.IsFreeGroup import Mathlib.SetTheory.Cardinal.Basic import Mathlib.Data.Set.Pointwise.SMul import Mathlib.GroupTheory.CoprodI open Set
import Init import Mathlib.Algebra.Group.Submonoid.Membership import Mathlib.GroupTheory.Congruence.Basic import Mathlib.GroupTheory.FreeGroup.IsFreeGroup import Mathlib.SetTheory.Cardinal.Basic import Mathlib.Data.Set.Pointwise.SMul import Mathlib.GroupTheory.CoprodI
open Set
lemma mem_smul_iff_tac_21643 [(i : ι) → Monoid (M i)] [DecidableEq ι] [(i : ι) → DecidableEq (M i)] (j : ι) (m₂ : M j) (w : Word M) (m₁ : M j) (hw : ⟨j, m₁⟩ ∉ w.toList.tail) (hm1 : ¬m₁ = 1) : (¬∃ (h : ¬w.toList = []), (w.toList.head h).fst = j) → (m₁ = m₂ * 1 ↔ (∃ m', w.toList.head? = some ⟨j, m'⟩ ∧ m₁ = m₂ * m') ∨ ¬w.fstIdx = some j ∧ m₁ = m₂) := sorry
lemma mem_smul_iff_tac_21643 {ι : Type*} {M : Type*} [(i : ι) → Monoid (M i)] [DecidableEq ι] [(i : ι) → DecidableEq (M i)] (j : ι) (m₂ : M j) (w : Word M) (m₁ : M j) (hw : ⟨j, m₁⟩ ∉ w.toList.tail) (hm1 : ¬m₁ = 1) : (¬∃ (h : ¬w.toList = []), (w.toList.head h).fst = j) → (m₁ = m₂ * 1 ↔ (∃ m', w.toList.head? = some ⟨j, m'⟩ ∧ m₁ = m₂ * m') ∨ ¬w.fstIdx = some j ∧ m₁ = m₂) := sorry
tactic
['Mathlib', 'GroupTheory', 'CoprodI']
null
leanprover/lean4:v4.11.0
Mathlib
null
QuotientGroup.quotientRightRelEquivQuotientLeftRel_tac_11249
import Init import Mathlib.Algebra.Quotient import Mathlib.Algebra.Group.Subgroup.Actions import Mathlib.Algebra.Group.Subgroup.MulOpposite import Mathlib.GroupTheory.GroupAction.Basic import Mathlib.GroupTheory.Coset.Basic open Function MulOpposite Set open scoped Pointwise open Submonoid open Subgroup
import Init import Mathlib.Algebra.Quotient import Mathlib.Algebra.Group.Subgroup.Actions import Mathlib.Algebra.Group.Subgroup.MulOpposite import Mathlib.GroupTheory.GroupAction.Basic import Mathlib.GroupTheory.Coset.Basic
open Function MulOpposite Set open scoped Pointwise open Submonoid open Subgroup
lemma quotientRightRelEquivQuotientLeftRel_tac_11249 [Group α] (s : Subgroup α) (a : α) (b : α) : b * a⁻¹ ∈ s → ((fun g => g⁻¹) a)⁻¹ * (fun g => g⁻¹) b ∈ s := sorry
lemma quotientRightRelEquivQuotientLeftRel_tac_11249 {α : Type*} [Group α] (s : Subgroup α) (a : α) (b : α) : b * a⁻¹ ∈ s → ((fun g => g⁻¹) a)⁻¹ * (fun g => g⁻¹) b ∈ s := sorry
tactic
['Mathlib', 'GroupTheory', 'Coset', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
true
{"sorries": [{"proofState": 0, "pos": {"line": 12, "column": 171}, "goal": "α : Type u_1\ninst✝ : Group α\ns : Subgroup α\na b : α\n⊢ b * a⁻¹ ∈ s → ((fun g => g⁻¹) a)⁻¹ * (fun g => g⁻¹) b ∈ s", "endPos": {"line": 12, "column": 176}}], "messages": [{"severity": "warning", "pos": {"line": 12, "column": 6}, "endPos": {"line": 12, "column": 52}, "data": "declaration uses 'sorry'"}], "env": 0}
List.formPerm_apply_lt_get_tac_7336
import Init import Mathlib.Algebra.Order.Group.Nat import Mathlib.Data.List.Rotate import Mathlib.GroupTheory.Perm.Support import Mathlib.GroupTheory.Perm.List open Equiv Equiv.Perm
import Init import Mathlib.Algebra.Order.Group.Nat import Mathlib.Data.List.Rotate import Mathlib.GroupTheory.Perm.Support import Mathlib.GroupTheory.Perm.List
open Equiv Equiv.Perm
lemma formPerm_apply_lt_get_tac_7336 [DecidableEq α] (xs : List α) (h : xs.Nodup) (n : ℕ) (hn : n + 1 < xs.length) : xs.formPerm (xs.get ⟨n, ⋯⟩) = xs.get ⟨n + 1, hn⟩ := sorry
lemma formPerm_apply_lt_get_tac_7336 {α : Type*} [DecidableEq α] (xs : List α) (h : xs.Nodup) (n : ℕ) (hn : n + 1 < xs.length) : xs.formPerm (xs.get ⟨n, ⋯⟩) = xs.get ⟨n + 1, hn⟩ := sorry
[['formPerm_apply_lt_getElem']]
tactic
['Mathlib', 'GroupTheory', 'Perm', 'List']
null
leanprover/lean4:v4.11.0
Mathlib
false
{"sorries": [{"proofState": 0, "pos": {"line": 8, "column": 181}, "goal": "α : Type u_1\ninst✝ : DecidableEq α\nxs : List α\nh : xs.Nodup\nn : ℕ\nhn : n + 1 < xs.length\n⊢ xs.formPerm (xs.get ⟨n, ⋯⟩) = xs.get ⟨n + 1, hn⟩", "endPos": {"line": 8, "column": 186}}], "messages": [{"severity": "warning", "pos": {"line": 8, "column": 153}, "endPos": {"line": 8, "column": 154}, "data": "The '⋯' token is used by the pretty printer to indicate omitted terms, and it should not be used directly. It logs this warning and then elaborates like `_`.\n\nThe presence of `⋯` in pretty printing output is controlled by the 'pp.deepTerms' and `pp.proofs` options. These options can be further adjusted using `pp.deepTerms.threshold` and `pp.proofs.threshold`."}, {"severity": "error", "pos": {"line": 8, "column": 153}, "endPos": {"line": 8, "column": 154}, "data": "don't know how to synthesize placeholder for argument 'isLt'\ncontext:\nα : Type u_1\ninst✝ : DecidableEq α\nxs : List α\nh : xs.Nodup\nn : ℕ\nhn : n + 1 < xs.length\n⊢ n < xs.length\nwhen the resulting type of a declaration is explicitly provided, all holes (e.g., `_`) in the header are resolved before the declaration body is processed"}], "env": 0}
Con.coe_iInf_tac_17952
import Init import Mathlib.Algebra.Group.Equiv.Basic import Mathlib.Algebra.Group.Submonoid.Operations import Mathlib.Algebra.GroupWithZero.Action.Defs import Mathlib.Data.Setoid.Basic import Mathlib.GroupTheory.Congruence.Basic open Function Setoid
import Init import Mathlib.Algebra.Group.Equiv.Basic import Mathlib.Algebra.Group.Submonoid.Operations import Mathlib.Algebra.GroupWithZero.Action.Defs import Mathlib.Data.Setoid.Basic import Mathlib.GroupTheory.Congruence.Basic
open Function Setoid
lemma coe_iInf_tac_17952 [Mul M] (ι : Sort u_4) (f : ι → Con M) : ⨅ x, ⇑(f x) = ⨅ i, ⇑(f i) := sorry
lemma coe_iInf_tac_17952 {M : Type*} [Mul M] (ι : Sort u_4) (f : ι → Con M) : ⨅ x, ⇑(f x) = ⨅ i, ⇑(f i) := sorry
tactic
['Mathlib', 'GroupTheory', 'Congruence', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
true
{"sorries": [{"proofState": 0, "pos": {"line": 9, "column": 107}, "goal": "M : Type u_1\ninst✝ : Mul M\nι : Sort u_4\nf : ι → Con M\n⊢ ⨅ x, ⇑(f x) = ⨅ i, ⇑(f i)", "endPos": {"line": 9, "column": 112}}], "messages": [{"severity": "warning", "pos": {"line": 9, "column": 6}, "endPos": {"line": 9, "column": 24}, "data": "declaration uses 'sorry'"}], "env": 0}
Equiv.Perm.prod_list_swap_mem_alternatingGroup_iff_even_length_tac_2396
import Init import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Subgroup.Simple import Mathlib.Tactic.IntervalCases import Mathlib.Data.Fintype.Units import Mathlib.GroupTheory.SpecificGroups.Alternating open Equiv Equiv.Perm Subgroup Fintype
import Init import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Subgroup.Simple import Mathlib.Tactic.IntervalCases import Mathlib.Data.Fintype.Units import Mathlib.GroupTheory.SpecificGroups.Alternating
open Equiv Equiv.Perm Subgroup Fintype
lemma prod_list_swap_mem_alternatingGroup_iff_even_length_tac_2396 [DecidableEq α] (l : List (Perm α)) (hl : ∀ g ∈ l, g.IsSwap) : Even l.length ↔ Even l.length := sorry
lemma prod_list_swap_mem_alternatingGroup_iff_even_length_tac_2396 {α : Type*} {inst✝¹ : Type*} [DecidableEq α] (l : List (Perm α)) (hl : ∀ g ∈ l, g.IsSwap) : Even l.length ↔ Even l.length := sorry
tactic
['Mathlib', 'GroupTheory', 'SpecificGroups', 'Alternating']
null
leanprover/lean4:v4.11.0
Mathlib
false
{"messages": [{"severity": "error", "pos": {"line": 9, "column": 84}, "endPos": null, "data": "expected token"}], "env": 0}
DomMulAct.instMulOfMulOpposite_tac_4876
import Init import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.Group.Pi.Lemmas import Mathlib.Algebra.GroupWithZero.Action.Defs import Mathlib.Algebra.Ring.Defs import Mathlib.GroupTheory.GroupAction.DomAct.Basic open Function
import Init import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.Group.Pi.Lemmas import Mathlib.Algebra.GroupWithZero.Action.Defs import Mathlib.Algebra.Ring.Defs import Mathlib.GroupTheory.GroupAction.DomAct.Basic
open Function
lemma instMulOfMulOpposite_tac_4876 [MulOneClass Mᵐᵒᵖ] : MulOneClass Mᵈᵐᵃ := sorry
lemma instMulOfMulOpposite_tac_4876 {M : Type*} [MulOneClass Mᵐᵒᵖ] : MulOneClass Mᵈᵐᵃ := sorry
tactic
['Mathlib', 'GroupTheory', 'GroupAction', 'DomAct', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
false
{"sorries": [{"proofState": 0, "pos": {"line": 9, "column": 89}, "goal": "M : Type u_1\ninst✝ : MulOneClass Mᵐᵒᵖ\n⊢ MulOneClass Mᵈᵐᵃ", "endPos": {"line": 9, "column": 94}}], "messages": [{"severity": "error", "pos": {"line": 9, "column": 0}, "endPos": {"line": 9, "column": 94}, "data": "type of theorem 'instMulOfMulOpposite_tac_4876' is not a proposition\n {M : Type u_1} → [inst : MulOneClass Mᵐᵒᵖ] → MulOneClass Mᵈᵐᵃ"}], "env": 0}
Con.list_prod_tac_759
import Init import Mathlib.GroupTheory.Congruence.Basic import Mathlib.Algebra.BigOperators.Group.Finset import Mathlib.Algebra.BigOperators.Group.Multiset import Mathlib.Algebra.BigOperators.Group.List import Mathlib.GroupTheory.Congruence.BigOperators
import Init import Mathlib.GroupTheory.Congruence.Basic import Mathlib.Algebra.BigOperators.Group.Finset import Mathlib.Algebra.BigOperators.Group.Multiset import Mathlib.Algebra.BigOperators.Group.List import Mathlib.GroupTheory.Congruence.BigOperators
lemma list_prod_tac_759 [Monoid M] (c : Con M) (l : List ι) (f : ι → M) (g : ι → M) (h : ∀ x ∈ l, c (f x) (g x)) : c (List.map f l).prod (List.map g l).prod := sorry
lemma list_prod_tac_759 {ι : Type*} {M : Type*} [Monoid M] (c : Con M) (l : List ι) (f : ι → M) (g : ι → M) (h : ∀ x ∈ l, c (f x) (g x)) : c (List.map f l).prod (List.map g l).prod := sorry
tactic
['Mathlib', 'GroupTheory', 'Congruence', 'BigOperators']
null
leanprover/lean4:v4.11.0
Mathlib
true
{"sorries": [{"proofState": 0, "pos": {"line": 9, "column": 184}, "goal": "ι : Type u_1\nM : Type u_2\ninst✝ : Monoid M\nc : Con M\nl : List ι\nf g : ι → M\nh : ∀ x ∈ l, c (f x) (g x)\n⊢ c (List.map f l).prod (List.map g l).prod", "endPos": {"line": 9, "column": 189}}], "messages": [{"severity": "warning", "pos": {"line": 9, "column": 6}, "endPos": {"line": 9, "column": 23}, "data": "declaration uses 'sorry'"}], "env": 0}
Monoid.CoprodI.NeWord.of_word_tac_26830
import Init import Mathlib.Algebra.Group.Submonoid.Membership import Mathlib.GroupTheory.Congruence.Basic import Mathlib.GroupTheory.FreeGroup.IsFreeGroup import Mathlib.SetTheory.Cardinal.Basic import Mathlib.Data.Set.Pointwise.SMul import Mathlib.GroupTheory.CoprodI open Set open Word
import Init import Mathlib.Algebra.Group.Submonoid.Membership import Mathlib.GroupTheory.Congruence.Basic import Mathlib.GroupTheory.FreeGroup.IsFreeGroup import Mathlib.SetTheory.Cardinal.Basic import Mathlib.Data.Set.Pointwise.SMul import Mathlib.GroupTheory.CoprodI
open Set open Word
lemma of_word_tac_26830 [(i : ι) → Monoid (M i)] (i : ι) (j : ι) (w : NeWord M i j) (h : w.toWord.toList = w✝.toList) : a✝ ∈ w✝.toList[n✝]? ↔ a✝ ∈ w✝.toList[n✝]? := sorry
lemma of_word_tac_26830 {ι : Type*} {M : Type*} [(i : ι) → Monoid (M i)] (w✝ : Word M) (h✝ : w✝ ≠ empty) (i : ι) (j : ι) (w : NeWord M i j) (h : w.toWord.toList = w✝.toList) (n✝ : ℕ) (a✝ : (i : ι) × M i) : a✝ ∈ w✝.toList[n✝]? ↔ a✝ ∈ w✝.toList[n✝]? := sorry
tactic
['Mathlib', 'GroupTheory', 'CoprodI']
null
leanprover/lean4:v4.11.0
Mathlib
false
{"messages": [{"severity": "error", "pos": {"line": 9, "column": 5}, "endPos": {"line": 9, "column": 9}, "data": "unknown namespace 'Word'"}, {"severity": "error", "pos": {"line": 11, "column": 75}, "endPos": null, "data": "expected token"}], "env": 0}
FreeAbelianGroup.toFinsupp_toFreeAbelianGroup_tac_3133
import Init import Mathlib.Algebra.Group.Equiv.TypeTags import Mathlib.GroupTheory.FreeAbelianGroup import Mathlib.GroupTheory.FreeGroup.IsFreeGroup import Mathlib.LinearAlgebra.Dimension.StrongRankCondition import Mathlib.GroupTheory.FreeAbelianGroupFinsupp open Finsupp FreeAbelianGroup open Finsupp
import Init import Mathlib.Algebra.Group.Equiv.TypeTags import Mathlib.GroupTheory.FreeAbelianGroup import Mathlib.GroupTheory.FreeGroup.IsFreeGroup import Mathlib.LinearAlgebra.Dimension.StrongRankCondition import Mathlib.GroupTheory.FreeAbelianGroupFinsupp
open Finsupp FreeAbelianGroup open Finsupp
lemma toFinsupp_toFreeAbelianGroup_tac_3133 (f : X →₀ ℤ) : f = f := sorry
lemma toFinsupp_toFreeAbelianGroup_tac_3133 {X : Type*} (f : X →₀ ℤ) : f = f := sorry
tactic
['Mathlib', 'GroupTheory', 'FreeAbelianGroupFinsupp']
null
leanprover/lean4:v4.11.0
Mathlib
true
{"sorries": [{"proofState": 0, "pos": {"line": 10, "column": 80}, "goal": "X : Type u_1\nf : X →₀ ℤ\n⊢ f = f", "endPos": {"line": 10, "column": 85}}], "messages": [{"severity": "warning", "pos": {"line": 10, "column": 6}, "endPos": {"line": 10, "column": 43}, "data": "declaration uses 'sorry'"}], "env": 0}
MulAction.quotient_preimage_image_eq_union_mul_tac_12971
import Init import Mathlib.Algebra.Group.Subgroup.Basic import Mathlib.Algebra.GroupWithZero.Action.Defs import Mathlib.Data.Fintype.Card import Mathlib.Data.Set.Finite import Mathlib.Data.Set.Pointwise.SMul import Mathlib.Data.Setoid.Basic import Mathlib.GroupTheory.GroupAction.Basic open Pointwise open Function
import Init import Mathlib.Algebra.Group.Subgroup.Basic import Mathlib.Algebra.GroupWithZero.Action.Defs import Mathlib.Data.Fintype.Card import Mathlib.Data.Set.Finite import Mathlib.Data.Set.Pointwise.SMul import Mathlib.Data.Setoid.Basic import Mathlib.GroupTheory.GroupAction.Basic
open Pointwise open Function
lemma quotient_preimage_image_eq_union_mul_tac_12971 [Group G] [MulAction G α] (U : Set α) (this : Setoid α) (f : α → Quotient (orbitRel G α)) (a : α) (g : G) (hb : (fun m => m • a) g ∈ U) (hab : f ((fun m => m • a) g) = f a) : a ∈ ⋃ g, (fun x => g • x) '' U := sorry
lemma quotient_preimage_image_eq_union_mul_tac_12971 {G : Type*} {α : Type*} [Group G] [MulAction G α] (U : Set α) (this : Setoid α) (f : α → Quotient (orbitRel G α)) (a : α) (g : G) (hb : (fun m => m • a) g ∈ U) (hab : f ((fun m => m • a) g) = f a) : a ∈ ⋃ g, (fun x => g • x) '' U := sorry
[['Set', 'mem_iUnion']]
tactic
['Mathlib', 'GroupTheory', 'GroupAction', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
false
{"sorries": [{"proofState": 0, "pos": {"line": 12, "column": 284}, "goal": "x✝ : Sort u_3\norbitRel : x✝\nG : Type u_1\nα : Type u_2\ninst✝¹ : Group G\ninst✝ : MulAction G α\nU : Set α\nthis : Setoid α\nf : α → Quotient (sorryAx (Setoid (?m.1438 U this)) true)\na : α\ng : G\nhb : (fun m => m • a) g ∈ U\nhab : f ((fun m => m • a) g) = f a\n⊢ a ∈ ⋃ g_1, (fun x => g_1 • x) U", "endPos": {"line": 12, "column": 289}}], "messages": [{"severity": "error", "pos": {"line": 12, "column": 152}, "endPos": {"line": 12, "column": 164}, "data": "function expected at\n orbitRel\nterm has type\n ?m.117"}], "env": 0}
List.isCycle_formPerm_tac_2862
import Init import Mathlib.Data.List.Cycle import Mathlib.GroupTheory.Perm.Cycle.Type import Mathlib.GroupTheory.Perm.List import Mathlib.GroupTheory.Perm.Cycle.Concrete open Equiv Equiv.Perm List
import Init import Mathlib.Data.List.Cycle import Mathlib.GroupTheory.Perm.Cycle.Type import Mathlib.GroupTheory.Perm.List import Mathlib.GroupTheory.Perm.Cycle.Concrete
open Equiv Equiv.Perm List
lemma isCycle_formPerm_tac_2862 [DecidableEq α] (y : α) (l : List α) (x : α) (hl : (x :: y :: l).Nodup) (hn : 2 ≤ (x :: y :: l).length) (w : α) (hw : (x :: y :: l).formPerm w ≠ w) : (x :: y :: l).formPerm.SameCycle x w := sorry
lemma isCycle_formPerm_tac_2862 {α : Type*} [DecidableEq α] (y : α) (l : List α) (tail_ih✝ : ∀ (x : α), (x :: l).Nodup → 2 ≤ (x :: l).length → (x :: l).formPerm.IsCycle) (x : α) (hl : (x :: y :: l).Nodup) (hn : 2 ≤ (x :: y :: l).length) (w : α) (hw : (x :: y :: l).formPerm w ≠ w) : (x :: y :: l).formPerm.SameCycle x w := sorry
[['mem_of_formPerm_ne_self'], ['x'], ['hw'], ['y'], [], ['l'], ['w']]
tactic
['Mathlib', 'GroupTheory', 'Perm', 'Cycle', 'Concrete']
null
leanprover/lean4:v4.11.0
Mathlib
false
{"messages": [{"severity": "error", "pos": {"line": 8, "column": 89}, "endPos": null, "data": "expected token"}], "env": 0}
CoxeterSystem.prod_alternatingWord_eq_prod_alternatingWord_sub_tac_19833
import Init import Mathlib.Algebra.Ring.Int import Mathlib.GroupTheory.PresentedGroup import Mathlib.GroupTheory.Coxeter.Matrix import Mathlib.Tactic.Ring import Mathlib.Tactic.Use import Mathlib.Tactic.NormNum.DivMod import Mathlib.GroupTheory.Coxeter.Basic open Function Set List open CoxeterMatrix
import Init import Mathlib.Algebra.Ring.Int import Mathlib.GroupTheory.PresentedGroup import Mathlib.GroupTheory.Coxeter.Matrix import Mathlib.Tactic.Ring import Mathlib.Tactic.Use import Mathlib.Tactic.NormNum.DivMod import Mathlib.GroupTheory.Coxeter.Basic
open Function Set List open CoxeterMatrix
lemma prod_alternatingWord_eq_prod_alternatingWord_sub_tac_19833 [Group W] (M : CoxeterMatrix B) (cs : CoxeterSystem M W) (i : B) (i' : B) (m : ℕ) (k : ℤ) (this : ¬Even (↑(M.M i i') * 2 - (2 * k + 1))) : cs.simple i' * (cs.simple i * cs.simple i') ^ ((2 * k + 1) / 2) = cs.simple i * (cs.simple i' * cs.simple i) ^ ((↑(M.M i i') * 2 - (2 * k + 1)) / 2) := sorry
lemma prod_alternatingWord_eq_prod_alternatingWord_sub_tac_19833 {B : Type*} {W : Type*} [Group W] (M : CoxeterMatrix B) (cs : CoxeterSystem M W) (i : B) (i' : B) (m : ℕ) (k : ℤ) (this✝ : ¬Even (2 * k + 1)) (this : ¬Even (↑(M.M i i') * 2 - (2 * k + 1))) : cs.simple i' * (cs.simple i * cs.simple i') ^ ((2 * k + 1) / 2) = cs.simple i * (cs.simple i' * cs.simple i) ^ ((↑(M.M i i') * 2 - (2 * k + 1)) / 2) := sorry
tactic
['Mathlib', 'GroupTheory', 'Coxeter', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
null
Submonoid.LocalizationMap.subsingleton_tac_1368
import Init import Mathlib.Algebra.Regular.Basic import Mathlib.GroupTheory.MonoidLocalization.Basic import Mathlib.GroupTheory.MonoidLocalization.MonoidWithZero open Function
import Init import Mathlib.Algebra.Regular.Basic import Mathlib.GroupTheory.MonoidLocalization.Basic import Mathlib.GroupTheory.MonoidLocalization.MonoidWithZero
open Function
lemma subsingleton_tac_1368 [CommMonoidWithZero M] (S : Submonoid M) [CommMonoidWithZero N] (f : S.LocalizationMap N) (h : 0 ∈ S) (a : N) (b : N) : ∃ c, ↑c * (↑(f.sec b).2 * (f.sec a).1) = ↑c * (↑(f.sec a).2 * (f.sec b).1) := sorry
lemma subsingleton_tac_1368 {M : Type*} [CommMonoidWithZero M] (S : Submonoid M) {N : Type*} [CommMonoidWithZero N] (f : S.LocalizationMap N) (h : 0 ∈ S) (a : N) (b : N) : ∃ c, ↑c * (↑(f.sec b).2 * (f.sec a).1) = ↑c * (↑(f.sec a).2 * (f.sec b).1) := sorry
tactic
['Mathlib', 'GroupTheory', 'MonoidLocalization', 'MonoidWithZero']
null
leanprover/lean4:v4.11.0
Mathlib
true
{"sorries": [{"proofState": 0, "pos": {"line": 7, "column": 250}, "goal": "M : Type u_1\ninst✝¹ : CommMonoidWithZero M\nS : Submonoid M\nN : Type u_2\ninst✝ : CommMonoidWithZero N\nf : S.LocalizationMap N\nh : 0 ∈ S\na b : N\n⊢ ∃ c, c * (↑(f.sec b).2 * (f.sec a).1) = c * (↑(f.sec a).2 * (f.sec b).1)", "endPos": {"line": 7, "column": 255}}], "messages": [{"severity": "warning", "pos": {"line": 7, "column": 6}, "endPos": {"line": 7, "column": 27}, "data": "declaration uses 'sorry'"}], "env": 0}
HNNExtension.NormalWord.unitsSMulGroup_snd_tac_14178
import Init import Mathlib.GroupTheory.Coprod.Basic import Mathlib.GroupTheory.Complement import Mathlib.GroupTheory.HNNExtension open Monoid Coprod Multiplicative Subgroup Function
import Init import Mathlib.GroupTheory.Coprod.Basic import Mathlib.GroupTheory.Complement import Mathlib.GroupTheory.HNNExtension
open Monoid Coprod Multiplicative Subgroup Function
lemma unitsSMulGroup_snd_tac_14178 [Group G] (A : Subgroup G) (B : Subgroup G) (φ : ↥A ≃* ↥B) (d : TransversalPair G A B) (u : ℤˣ) (g : G) : (unitsSMulGroup φ d u g).2 = (⋯.equiv g).2 := sorry
lemma unitsSMulGroup_snd_tac_14178 {G : Type*} [Group G] (A : Subgroup G) (B : Subgroup G) (φ : ↥A ≃* ↥B) (d : TransversalPair G A B) (u : ℤˣ) (g : G) : (unitsSMulGroup φ d u g).2 = (⋯.equiv g).2 := sorry
tactic
['Mathlib', 'GroupTheory', 'HNNExtension']
null
leanprover/lean4:v4.11.0
Mathlib
false
{"sorries": [{"proofState": 0, "pos": {"line": 7, "column": 199}, "goal": "x✝¹ : Sort u_2\nTransversalPair : x✝¹\nx✝ : Sort u_3\nunitsSMulGroup : x✝\nG : Type u_1\ninst✝ : Group G\nA B : Subgroup G\nφ : ↥A ≃* ↥B\nd : sorryAx (Sort u_4) true\nu : ℤˣ\ng : G\n⊢ sorryAx (?m.627 A B φ d u g) true = sorryAx (?m.627 A B φ d u g) true", "endPos": {"line": 7, "column": 204}}], "messages": [{"severity": "error", "pos": {"line": 7, "column": 111}, "endPos": {"line": 7, "column": 132}, "data": "function expected at\n TransversalPair\nterm has type\n ?m.157"}, {"severity": "error", "pos": {"line": 7, "column": 154}, "endPos": {"line": 7, "column": 176}, "data": "function expected at\n unitsSMulGroup\nterm has type\n ?m.290"}, {"severity": "warning", "pos": {"line": 7, "column": 183}, "endPos": {"line": 7, "column": 184}, "data": "The '⋯' token is used by the pretty printer to indicate omitted terms, and it should not be used directly. It logs this warning and then elaborates like `_`.\n\nThe presence of `⋯` in pretty printing output is controlled by the 'pp.deepTerms' and `pp.proofs` options. These options can be further adjusted using `pp.deepTerms.threshold` and `pp.proofs.threshold`."}, {"severity": "error", "pos": {"line": 7, "column": 183}, "endPos": {"line": 7, "column": 192}, "data": "invalid field notation, type is not of the form (C ...) where C is a constant\n ?m.622\nhas type\n ?m.621"}], "env": 0}
Equiv.Perm.perm_mapsTo_inl_iff_mapsTo_inr_tac_4186
import Init import Mathlib.Data.Finset.Fin import Mathlib.Data.Int.Order.Units import Mathlib.GroupTheory.OrderOfElement import Mathlib.GroupTheory.Perm.Support import Mathlib.Logic.Equiv.Fintype import Mathlib.GroupTheory.Perm.Finite open Equiv Function Fintype Finset
import Init import Mathlib.Data.Finset.Fin import Mathlib.Data.Int.Order.Units import Mathlib.GroupTheory.OrderOfElement import Mathlib.GroupTheory.Perm.Support import Mathlib.Logic.Equiv.Fintype import Mathlib.GroupTheory.Perm.Finite
open Equiv Function Fintype Finset
lemma perm_mapsTo_inl_iff_mapsTo_inr_tac_4186 [Finite m] [Finite n] (σ : Perm (m ⊕ n)) (h : Set.MapsTo (⇑σ⁻¹) (Set.range Sum.inr) (Set.range Sum.inr)) : Set.MapsTo (⇑σ) (Set.range Sum.inl) (Set.range Sum.inl) := sorry
lemma perm_mapsTo_inl_iff_mapsTo_inr_tac_4186 {m : Type*} {n : Type*} [Finite m] [Finite n] (σ : Perm (m ⊕ n)) (h : Set.MapsTo (⇑σ⁻¹) (Set.range Sum.inr) (Set.range Sum.inr)) : Set.MapsTo (⇑σ) (Set.range Sum.inl) (Set.range Sum.inl) := sorry
tactic
['Mathlib', 'GroupTheory', 'Perm', 'Finite']
null
leanprover/lean4:v4.11.0
Mathlib
true
{"sorries": [{"proofState": 0, "pos": {"line": 10, "column": 236}, "goal": "m : Type u_1\nn : Type u_2\ninst✝¹ : Finite m\ninst✝ : Finite n\nσ : Perm (m ⊕ n)\nh : Set.MapsTo (⇑σ⁻¹) (Set.range Sum.inr) (Set.range Sum.inr)\n⊢ Set.MapsTo (⇑σ) (Set.range Sum.inl) (Set.range Sum.inl)", "endPos": {"line": 10, "column": 241}}], "messages": [{"severity": "warning", "pos": {"line": 10, "column": 6}, "endPos": {"line": 10, "column": 45}, "data": "declaration uses 'sorry'"}], "env": 0}
Equiv.Perm.closure_cycle_adjacent_swap_tac_1268
import Init import Mathlib.GroupTheory.Perm.Cycle.Basic import Mathlib.GroupTheory.Perm.Closure open Equiv Function Finset open Subgroup
import Init import Mathlib.GroupTheory.Perm.Cycle.Basic import Mathlib.GroupTheory.Perm.Closure
open Equiv Function Finset open Subgroup
lemma closure_cycle_adjacent_swap_tac_1268 [DecidableEq α] (σ : Perm α) (h1 : σ.IsCycle) (h2 : σ.support = ⊤) (x : α) : closure {σ, swap x (σ x)} = ⊤ := sorry
lemma closure_cycle_adjacent_swap_tac_1268 {α : Type*} [DecidableEq α] {inst✝ : Type*} (σ : Perm α) (h1 : σ.IsCycle) (h2 : σ.support = ⊤) (x : α) : closure {σ, swap x (σ x)} = ⊤ := sorry
[['closure'], ['H'], ['swap'], ['x'], ['α'], ['Set'], ['σ'], ['Perm']]
tactic
['Mathlib', 'GroupTheory', 'Perm', 'Closure']
null
leanprover/lean4:v4.11.0
Mathlib
false
{"messages": [{"severity": "error", "pos": {"line": 7, "column": 76}, "endPos": null, "data": "expected token"}], "env": 0}
List.formPerm_apply_lt_getElem_tac_6944
import Init import Mathlib.Algebra.Order.Group.Nat import Mathlib.Data.List.Rotate import Mathlib.GroupTheory.Perm.Support import Mathlib.GroupTheory.Perm.List open Equiv Equiv.Perm
import Init import Mathlib.Algebra.Order.Group.Nat import Mathlib.Data.List.Rotate import Mathlib.GroupTheory.Perm.Support import Mathlib.GroupTheory.Perm.List
open Equiv Equiv.Perm
lemma formPerm_apply_lt_getElem_tac_6944 [DecidableEq α] (n : ℕ) (x : α) (y : α) (l : List α) (h : (x :: y :: l).Nodup) (hn : n + 1 + 1 < (x :: y :: l).length) (IH : (y :: l).formPerm (y :: l)[n] = l[n]) : (y :: l).formPerm (y :: l)[n] ≠ x := sorry
lemma formPerm_apply_lt_getElem_tac_6944 {α : Type*} [DecidableEq α] (n : ℕ) (IH✝ : ∀ (xs : List α), xs.Nodup → ∀ (hn : n + 1 < xs.length), xs.formPerm xs[n] = xs[n + 1]) (x : α) (y : α) (l : List α) (h : (x :: y :: l).Nodup) (hn : n + 1 + 1 < (x :: y :: l).length) (IH : (y :: l).formPerm (y :: l)[n] = l[n]) : (y :: l).formPerm (y :: l)[n] ≠ x := sorry
[['getElem_mem'], ['h'], ['hx'], ['IH']]
tactic
['Mathlib', 'GroupTheory', 'Perm', 'List']
null
leanprover/lean4:v4.11.0
Mathlib
false
{"messages": [{"severity": "error", "pos": {"line": 8, "column": 80}, "endPos": null, "data": "expected token"}], "env": 0}
Con.quotientKerEquivOfRightInverse_tac_44000
import Init import Mathlib.Algebra.Group.Equiv.Basic import Mathlib.Algebra.Group.Submonoid.Operations import Mathlib.Algebra.GroupWithZero.Action.Defs import Mathlib.Data.Setoid.Basic import Mathlib.GroupTheory.Congruence.Basic open Function Setoid open Quotient
import Init import Mathlib.Algebra.Group.Equiv.Basic import Mathlib.Algebra.Group.Submonoid.Operations import Mathlib.Algebra.GroupWithZero.Action.Defs import Mathlib.Data.Setoid.Basic import Mathlib.GroupTheory.Congruence.Basic
open Function Setoid open Quotient
lemma quotientKerEquivOfRightInverse_tac_44000 [MulOneClass M] [MulOneClass N] [MulOneClass P] (c : Con M) (y : M) (f : M →* P) (g : P → M) (hf : Function.RightInverse g ⇑f) (x : P) : x := sorry
lemma quotientKerEquivOfRightInverse_tac_44000 {M : Type*} {N : Type*} {P : Type*} [MulOneClass M] [MulOneClass N] [MulOneClass P] (c : Con M) (x✝ : M) (y : M) (f✝ : M →* P) (f : M →* P) (g : P → M) (hf : Function.RightInverse g ⇑f) (x : P) : x := sorry
[['x'], ['hf']]
tactic
['Mathlib', 'GroupTheory', 'Congruence', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
false
{"messages": [{"severity": "error", "pos": {"line": 10, "column": 145}, "endPos": null, "data": "expected token"}], "env": 0}
Subgroup.commProb_subgroup_le_tac_4290
import Init import Mathlib.GroupTheory.Abelianization import Mathlib.GroupTheory.GroupAction.CardCommute import Mathlib.GroupTheory.SpecificGroups.Dihedral import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.LinearCombination import Mathlib.Tactic.Qify import Mathlib.GroupTheory.CommutingProbability open scoped Classical open Fintype
import Init import Mathlib.GroupTheory.Abelianization import Mathlib.GroupTheory.GroupAction.CardCommute import Mathlib.GroupTheory.SpecificGroups.Dihedral import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.LinearCombination import Mathlib.Tactic.Qify import Mathlib.GroupTheory.CommutingProbability
open scoped Classical open Fintype
lemma commProb_subgroup_le_tac_4290 [Group G] [Finite G] (H : Subgroup G) : 0 < ↑(Nat.card ↥H) ^ 2 := sorry
lemma commProb_subgroup_le_tac_4290 {G : Type*} [Group G] [Finite G] (H : Subgroup G) : 0 < ↑(Nat.card ↥H) ^ 2 := sorry
tactic
['Mathlib', 'GroupTheory', 'CommutingProbability']
null
leanprover/lean4:v4.11.0
Mathlib
true
{"sorries": [{"proofState": 0, "pos": {"line": 12, "column": 114}, "goal": "G : Type u_1\ninst✝¹ : Group G\ninst✝ : Finite G\nH : Subgroup G\n⊢ 0 < Nat.card ↥H ^ 2", "endPos": {"line": 12, "column": 119}}], "messages": [{"severity": "warning", "pos": {"line": 12, "column": 6}, "endPos": {"line": 12, "column": 35}, "data": "declaration uses 'sorry'"}], "env": 0}
HNNExtension.induction_on_tac_4814
import Init import Mathlib.GroupTheory.Coprod.Basic import Mathlib.GroupTheory.Complement import Mathlib.GroupTheory.HNNExtension open Monoid Coprod Multiplicative Subgroup Function
import Init import Mathlib.GroupTheory.Coprod.Basic import Mathlib.GroupTheory.Complement import Mathlib.GroupTheory.HNNExtension
open Monoid Coprod Multiplicative Subgroup Function
lemma induction_on_tac_4814 [Group G] (A : Subgroup G) (B : Subgroup G) (φ : ↥A ≃* ↥B) (motive : HNNExtension G A B φ → Prop) (x : HNNExtension G A B φ) (of : ∀ (g : G), motive (HNNExtension.of g)) (t : motive HNNExtension.t) (mul : ∀ (x y : HNNExtension G A B φ), motive x → motive y → motive (x * y)) (inv : ∀ (x : HNNExtension G A B φ), motive x → motive x⁻¹) : 1 ∈ { carrier := setOf motive, mul_mem' := ⋯ }.carrier := sorry
lemma induction_on_tac_4814 {G : Type*} [Group G] (A : Subgroup G) (B : Subgroup G) (φ : ↥A ≃* ↥B) (motive : HNNExtension G A B φ → Prop) (x : HNNExtension G A B φ) (of : ∀ (g : G), motive (HNNExtension.of g)) (t : motive HNNExtension.t) (mul : ∀ (x y : HNNExtension G A B φ), motive x → motive y → motive (x * y)) (inv : ∀ (x : HNNExtension G A B φ), motive x → motive x⁻¹) : 1 ∈ { carrier := setOf motive, mul_mem' := ⋯ }.carrier := sorry
[['of']]
tactic
['Mathlib', 'GroupTheory', 'HNNExtension']
null
leanprover/lean4:v4.11.0
Mathlib
null
IsCyclic.card_pow_eq_one_le_tac_12574
import Init import Mathlib.Algebra.Order.BigOperators.Ring.Finset import Mathlib.Data.Nat.Totient import Mathlib.Data.ZMod.Quotient import Mathlib.GroupTheory.OrderOfElement import Mathlib.GroupTheory.Subgroup.Simple import Mathlib.Tactic.Group import Mathlib.GroupTheory.Exponent import Mathlib.GroupTheory.SpecificGroups.Cyclic open Subgroup open Finset Nat open scoped Classical
import Init import Mathlib.Algebra.Order.BigOperators.Ring.Finset import Mathlib.Data.Nat.Totient import Mathlib.Data.ZMod.Quotient import Mathlib.GroupTheory.OrderOfElement import Mathlib.GroupTheory.Subgroup.Simple import Mathlib.Tactic.Group import Mathlib.GroupTheory.Exponent import Mathlib.GroupTheory.SpecificGroups.Cyclic
open Subgroup open Finset Nat open scoped Classical
lemma card_pow_eq_one_le_tac_12574 [Group α] [DecidableEq α] [IsCyclic α] (n : ℕ) (hn0 : 0 < n) (g : α) (hg : ∀ (x : α), x ∈ zpowers g) (x : α) (hx : x ∈ filter (fun a => a ^ n = 1) univ) (m : ℕ) (hm : g ^ m = x) : x = x := sorry
lemma card_pow_eq_one_le_tac_12574 {α : Type*} [Group α] [DecidableEq α] {inst✝¹ : Type*} [IsCyclic α] (n : ℕ) (hn0 : 0 < n) (g : α) (hg : ∀ (x : α), x ∈ zpowers g) (x : α) (hx : x ∈ filter (fun a => a ^ n = 1) univ) (m : ℕ) (hm : g ^ m = x) {hgmn : Type*} : x = x := sorry
tactic
['Mathlib', 'GroupTheory', 'SpecificGroups', 'Cyclic']
null
leanprover/lean4:v4.11.0
Mathlib
false
{"messages": [{"severity": "error", "pos": {"line": 14, "column": 78}, "endPos": null, "data": "expected token"}], "env": 0}
CoxeterSystem.not_isReduced_alternatingWord_tac_10351
import Init import Mathlib.Data.ZMod.Basic import Mathlib.GroupTheory.Coxeter.Basic import Mathlib.Tactic.Zify import Mathlib.GroupTheory.Coxeter.Length open List Matrix Function Classical
import Init import Mathlib.Data.ZMod.Basic import Mathlib.GroupTheory.Coxeter.Basic import Mathlib.Tactic.Zify import Mathlib.GroupTheory.Coxeter.Length
open List Matrix Function Classical
lemma not_isReduced_alternatingWord_tac_10351 [Group W] (M : CoxeterMatrix B) (cs : CoxeterSystem M W) (i : B) (i' : B) (m : ℕ) (hM : M.M i i' ≠ 0) (this : M.M i i' * 2 - (M.M i i' + 1) = M.M i i' - 1) : cs.length (cs.wordProd (alternatingWord i' i (M.M i i' - 1))) < M.M i i' + 1 := sorry
lemma not_isReduced_alternatingWord_tac_10351 {B : Type*} {W : Type*} [Group W] (M : CoxeterMatrix B) (cs : CoxeterSystem M W) (i : B) (i' : B) (m : ℕ) (hM : M.M i i' ≠ 0) (this✝ : M.M i i' + 1 ≤ M.M i i' * 2) (this : M.M i i' * 2 - (M.M i i' + 1) = M.M i i' - 1) : cs.length (cs.wordProd (alternatingWord i' i (M.M i i' - 1))) < M.M i i' + 1 := sorry
tactic
['Mathlib', 'GroupTheory', 'Coxeter', 'Length']
null
leanprover/lean4:v4.11.0
Mathlib
null
Submonoid.LocalizationMap.lift_surjective_iff_tac_40455
import Init import Mathlib.Algebra.Group.Submonoid.Membership import Mathlib.GroupTheory.Congruence.Basic import Mathlib.RingTheory.OreLocalization.Basic import Mathlib.GroupTheory.MonoidLocalization.Basic open Function
import Init import Mathlib.Algebra.Group.Submonoid.Membership import Mathlib.GroupTheory.Congruence.Basic import Mathlib.RingTheory.OreLocalization.Basic import Mathlib.GroupTheory.MonoidLocalization.Basic
open Function
lemma lift_surjective_iff_tac_40455 [CommMonoid M] (S : Submonoid M) [CommMonoid N] [CommMonoid P] (f : S.LocalizationMap N) (g : M →* P) (hg : ∀ (y : ↥S), IsUnit (g ↑y)) (H : ∀ (v : P), ∃ x, v * g ↑x.2 = g x.1) (v : P) (x : M × ↥S) (hx : v * g ↑x.2 = g x.1) : (f.lift hg) (f.mk' x.1 x.2) = v := sorry
lemma lift_surjective_iff_tac_40455 {M : Type*} [CommMonoid M] (S : Submonoid M) {N : Type*} [CommMonoid N] {P : Type*} [CommMonoid P] (f : S.LocalizationMap N) (g : M →* P) (hg : ∀ (y : ↥S), IsUnit (g ↑y)) (H : ∀ (v : P), ∃ x, v * g ↑x.2 = g x.1) (v : P) (x : M × ↥S) (hx : v * g ↑x.2 = g x.1) : (f.lift hg) (f.mk' x.1 x.2) = v := sorry
tactic
['Mathlib', 'GroupTheory', 'MonoidLocalization', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
null
QuotientGroup.map_tac_7575
import Init import Mathlib.Algebra.Group.Subgroup.Pointwise import Mathlib.GroupTheory.Congruence.Basic import Mathlib.GroupTheory.Coset.Basic import Mathlib.GroupTheory.QuotientGroup.Basic open Function open scoped Pointwise open scoped Pointwise in
import Init import Mathlib.Algebra.Group.Subgroup.Pointwise import Mathlib.GroupTheory.Congruence.Basic import Mathlib.GroupTheory.Coset.Basic import Mathlib.GroupTheory.QuotientGroup.Basic
open Function open scoped Pointwise open scoped Pointwise in
lemma map_tac_7575 [Group G] (N : Subgroup G) (nN : N.Normal) [Group H] [Monoid M✝] (M : Subgroup H) [M.Normal] (f : G →* H) (h : N ≤ Subgroup.comap f M) (x : G) (hx : x ∈ N) : (f x)⁻¹ * 1 ∈ M := sorry
lemma map_tac_7575 {G : Type*} [Group G] (N : Subgroup G) (nN : N.Normal) {H : Type*} [Group H] {M✝ : Type*} [Monoid M✝] (M : Subgroup H) [M.Normal] (f : G →* H) (h : N ≤ Subgroup.comap f M) (x : G) (hx : x ∈ N) : (f x)⁻¹ * 1 ∈ M := sorry
[['Subgroup', 'inv_mem_iff'], ['mul_one']]
tactic
['Mathlib', 'GroupTheory', 'QuotientGroup', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
false
{"messages": [{"severity": "error", "pos": {"line": 10, "column": 98}, "endPos": null, "data": "expected token"}], "env": 0}
Submonoid.LocalizationMap.inv_unique_tac_23449
import Init import Mathlib.Algebra.Group.Submonoid.Membership import Mathlib.GroupTheory.Congruence.Basic import Mathlib.RingTheory.OreLocalization.Basic import Mathlib.GroupTheory.MonoidLocalization.Basic open Function
import Init import Mathlib.Algebra.Group.Submonoid.Membership import Mathlib.GroupTheory.Congruence.Basic import Mathlib.RingTheory.OreLocalization.Basic import Mathlib.GroupTheory.MonoidLocalization.Basic
open Function
lemma inv_unique_tac_23449 [CommMonoid M] (S : Submonoid M) [CommMonoid N] (f : M →* N) (h : ∀ (y : ↥S), IsUnit (f ↑y)) (y : ↥S) (z : N) (H : f ↑y * z = 1) : ↑1 = f ↑y * z := sorry
lemma inv_unique_tac_23449 {M : Type*} [CommMonoid M] (S : Submonoid M) {N : Type*} [CommMonoid N] (f : M →* N) (h : ∀ (y : ↥S), IsUnit (f ↑y)) (y : ↥S) (z : N) (H : f ↑y * z = 1) : ↑1 = f ↑y * z := sorry
tactic
['Mathlib', 'GroupTheory', 'MonoidLocalization', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
true
{"sorries": [{"proofState": 0, "pos": {"line": 8, "column": 199}, "goal": "M : Type u_1\ninst✝¹ : CommMonoid M\nS : Submonoid M\nN : Type u_2\ninst✝ : CommMonoid N\nf : M →* N\nh : ∀ (y : ↥S), IsUnit (f ↑y)\ny : ↥S\nz : N\nH : f ↑y * z = 1\n⊢ 1 = f ↑y * z", "endPos": {"line": 8, "column": 204}}], "messages": [{"severity": "warning", "pos": {"line": 8, "column": 6}, "endPos": {"line": 8, "column": 26}, "data": "declaration uses 'sorry'"}], "env": 0}
Submonoid.LocalizationMap.eq'_tac_27372
import Init import Mathlib.Algebra.Group.Submonoid.Membership import Mathlib.GroupTheory.Congruence.Basic import Mathlib.RingTheory.OreLocalization.Basic import Mathlib.GroupTheory.MonoidLocalization.Basic open Function
import Init import Mathlib.Algebra.Group.Submonoid.Membership import Mathlib.GroupTheory.Congruence.Basic import Mathlib.RingTheory.OreLocalization.Basic import Mathlib.GroupTheory.MonoidLocalization.Basic
open Function
lemma eq'_tac_27372 [CommMonoid M] (S : Submonoid M) [CommMonoid N] (f : S.LocalizationMap N) (a₁ : M) (b₁ : M) (a₂ : ↥S) (b₂ : ↥S) : f.mk' a₁ a₂ = f.mk' b₁ b₂ ↔ (Localization.r S) (a₁, a₂) (b₁, b₂) := sorry
lemma eq'_tac_27372 {M : Type*} [CommMonoid M] (S : Submonoid M) {N : Type*} [CommMonoid N] (f : S.LocalizationMap N) (a₁ : M) (b₁ : M) (a₂ : ↥S) (b₂ : ↥S) : f.mk' a₁ a₂ = f.mk' b₁ b₂ ↔ (Localization.r S) (a₁, a₂) (b₁, b₂) := sorry
[['f', 'eq'], ['Localization', 'r_iff_exists']]
tactic
['Mathlib', 'GroupTheory', 'MonoidLocalization', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
null
MonoidHom.noncommPiCoprod_mrange_tac_6137
import Init import Mathlib.GroupTheory.OrderOfElement import Mathlib.Data.Nat.GCD.BigOperators import Mathlib.Order.SupIndep import Mathlib.GroupTheory.NoncommPiCoprod
import Init import Mathlib.GroupTheory.OrderOfElement import Mathlib.Data.Nat.GCD.BigOperators import Mathlib.Order.SupIndep import Mathlib.GroupTheory.NoncommPiCoprod
lemma noncommPiCoprod_mrange_tac_6137 [Monoid M] [(i : ι) → Monoid (N i)] (ϕ : (i : ι) → N i →* M) (hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute ((ϕ i) x) ((ϕ j) y)) (this : DecidableEq ι) : mrange (noncommPiCoprod ϕ hcomm) = ⨆ i, mrange (ϕ i) := sorry
lemma noncommPiCoprod_mrange_tac_6137 {M : Type*} [Monoid M] {ι : Type*} {inst✝¹ : Type*} {N : Type*} [(i : ι) → Monoid (N i)] (ϕ : (i : ι) → N i →* M) (hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute ((ϕ i) x) ((ϕ j) y)) (this : DecidableEq ι) : mrange (noncommPiCoprod ϕ hcomm) = ⨆ i, mrange (ϕ i) := sorry
tactic
['Mathlib', 'GroupTheory', 'NoncommPiCoprod']
null
leanprover/lean4:v4.11.0
Mathlib
false
{"messages": [{"severity": "error", "pos": {"line": 8, "column": 78}, "endPos": null, "data": "expected token"}], "env": 0}
FreeAbelianGroup.instCommRingOfCommMonoid_tac_18750
import Init import Mathlib.GroupTheory.Abelianization import Mathlib.GroupTheory.FreeGroup.Basic import Mathlib.GroupTheory.FreeAbelianGroup open FreeAbelianGroup open scoped Classical
import Init import Mathlib.GroupTheory.Abelianization import Mathlib.GroupTheory.FreeGroup.Basic import Mathlib.GroupTheory.FreeAbelianGroup
open FreeAbelianGroup open scoped Classical
lemma instCommRingOfCommMonoid_tac_18750 [CommMonoid α] (x : FreeAbelianGroup α) (y : FreeAbelianGroup α) (s : α) (t : α) : (lift fun x₁ => of (Mul.mul x₁ t)) (of s) = (lift fun x₂ => (lift fun x₁ => of (Mul.mul x₁ x₂)) (of t)) (of s) := sorry
lemma instCommRingOfCommMonoid_tac_18750 {α : Type*} {β : Type*} {γ : Type*} [CommMonoid α] (x : FreeAbelianGroup α) (y : FreeAbelianGroup α) (s : α) (t : α) : (lift fun x₁ => of (Mul.mul x₁ t)) (of s) = (lift fun x₂ => (lift fun x₁ => of (Mul.mul x₁ x₂)) (of t)) (of s) := sorry
[['lift', 'of']]
tactic
['Mathlib', 'GroupTheory', 'FreeAbelianGroup']
null
leanprover/lean4:v4.11.0
Mathlib
true
{"sorries": [{"proofState": 0, "pos": {"line": 8, "column": 274}, "goal": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\ninst✝ : CommMonoid α\nx y : FreeAbelianGroup α\ns t : α\n⊢ (lift fun x₁ => of (Mul.mul x₁ t)) (of s) = (lift fun x₂ => (lift fun x₁ => of (Mul.mul x₁ x₂)) (of t)) (of s)", "endPos": {"line": 8, "column": 279}}], "messages": [{"severity": "warning", "pos": {"line": 8, "column": 6}, "endPos": {"line": 8, "column": 40}, "data": "declaration uses 'sorry'"}], "env": 0}
Subgroup.quotientEquivProdOfLE'_tac_20080
import Init import Mathlib.Algebra.Quotient import Mathlib.Algebra.Group.Subgroup.Actions import Mathlib.Algebra.Group.Subgroup.MulOpposite import Mathlib.GroupTheory.GroupAction.Basic import Mathlib.GroupTheory.Coset.Basic open Function MulOpposite Set open scoped Pointwise open Submonoid open Subgroup open QuotientGroup
import Init import Mathlib.Algebra.Quotient import Mathlib.Algebra.Group.Subgroup.Actions import Mathlib.Algebra.Group.Subgroup.MulOpposite import Mathlib.GroupTheory.GroupAction.Basic import Mathlib.GroupTheory.Coset.Basic
open Function MulOpposite Set open scoped Pointwise open Submonoid open Subgroup open QuotientGroup
lemma quotientEquivProdOfLE'_tac_20080 [Group α] (s : Subgroup α) (t : Subgroup α) (h_le : s ≤ t) (f : α ⧸ t → α) (hf : Function.RightInverse f QuotientGroup.mk) (a : α) (b : ↥t) : (fun a => (Quotient.map' id ⋯ a, Quotient.map' (fun g => ⟨(f (Quotient.mk'' g))⁻¹ * g, ⋯⟩) ⋯ a)) ((fun a => Quotient.map' (fun b => f a.1 * ↑b) ⋯ a.2) (Quotient.mk'' a, Quotient.mk'' b)) = (Quotient.mk'' a, Quotient.mk'' b) := sorry
lemma quotientEquivProdOfLE'_tac_20080 {α : Type*} [Group α] (s : Subgroup α) (t : Subgroup α) (h_le : s ≤ t) (f : α ⧸ t → α) (hf : Function.RightInverse f QuotientGroup.mk) (a : α) (b : ↥t) : (fun a => (Quotient.map' id ⋯ a, Quotient.map' (fun g => ⟨(f (Quotient.mk'' g))⁻¹ * g, ⋯⟩) ⋯ a)) ((fun a => Quotient.map' (fun b => f a.1 * ↑b) ⋯ a.2) (Quotient.mk'' a, Quotient.mk'' b)) = (Quotient.mk'' a, Quotient.mk'' b) := sorry
[['trans'], ['Quotient', "mk''"], ['a'], ['key'], ['hf'], ['f'], ['QuotientGroup', 'mk_mul_of_mem'], ['b']]
tactic
['Mathlib', 'GroupTheory', 'Coset', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
null
Equiv.Perm.support_congr_tac_10378
import Init import Mathlib.Algebra.Group.Commute.Basic import Mathlib.Data.Fintype.Card import Mathlib.GroupTheory.Perm.Basic import Mathlib.GroupTheory.Perm.Support open Equiv Finset open scoped List in
import Init import Mathlib.Algebra.Group.Commute.Basic import Mathlib.Data.Fintype.Card import Mathlib.GroupTheory.Perm.Basic import Mathlib.GroupTheory.Perm.Support
open Equiv Finset open scoped List in
lemma support_congr_tac_10378 [DecidableEq α] (f : Perm α) (g : Perm α) (h : f.support ⊆ g.support) (h' : ∀ x ∈ g.support, f x = g x) (x : α) : f x = g x := sorry
lemma support_congr_tac_10378 {α : Type*} [DecidableEq α] {inst✝ : Type*} (f : Perm α) (g : Perm α) (h : f.support ⊆ g.support) (h' : ∀ x ∈ g.support, f x = g x) (x : α) : f x = g x := sorry
[['x'], ['neg', '_@', '_hyg', 3387], ['hx'], ['pos', '_@', '_hyg', 3387], ['g', 'support']]
tactic
['Mathlib', 'GroupTheory', 'Perm', 'Support']
null
leanprover/lean4:v4.11.0
Mathlib
null
instIsAddKleinFourProdZModOfNatNat_tac_2371
import Init import Mathlib.GroupTheory.SpecificGroups.Cyclic import Mathlib.GroupTheory.SpecificGroups.Dihedral import Mathlib.GroupTheory.SpecificGroups.KleinFour
import Init import Mathlib.GroupTheory.SpecificGroups.Cyclic import Mathlib.GroupTheory.SpecificGroups.Dihedral import Mathlib.GroupTheory.SpecificGroups.KleinFour
lemma instIsAddKleinFourProdZModOfNatNat_tac_2371 : AddMonoid.exponent (ZMod 2 × ZMod 2) = 2 := sorry
lemma instIsAddKleinFourProdZModOfNatNat_tac_2371 : AddMonoid.exponent (ZMod 2 × ZMod 2) = 2 := sorry
[['AddMonoid', 'exponent_prod']]
tactic
['Mathlib', 'GroupTheory', 'SpecificGroups', 'KleinFour']
null
leanprover/lean4:v4.11.0
Mathlib
true
{"sorries": [{"proofState": 0, "pos": {"line": 7, "column": 97}, "goal": "⊢ AddMonoid.exponent (ZMod 2 × ZMod 2) = 2", "endPos": {"line": 7, "column": 102}}], "messages": [{"severity": "warning", "pos": {"line": 7, "column": 6}, "endPos": {"line": 7, "column": 49}, "data": "declaration uses 'sorry'"}], "env": 0}
HNNExtension.NormalWord.not_cancels_of_cons_hyp_tac_16303
import Init import Mathlib.GroupTheory.Coprod.Basic import Mathlib.GroupTheory.Complement import Mathlib.GroupTheory.HNNExtension open Monoid Coprod Multiplicative Subgroup Function
import Init import Mathlib.GroupTheory.Coprod.Basic import Mathlib.GroupTheory.Complement import Mathlib.GroupTheory.HNNExtension
open Monoid Coprod Multiplicative Subgroup Function
lemma not_cancels_of_cons_hyp_tac_16303 [Group G] (A : Subgroup G) (B : Subgroup G) (d : TransversalPair G A B) (u : ℤˣ) (w : NormalWord d) (hw : w.head ∈ toSubgroup A B u) (x : G) (h2 : ∀ u' ∈ Option.map Prod.fst (some (-u, x)), w.head ∈ toSubgroup A B u → u = u') (hx : w.toList.head? = some (-u, x)) : False := sorry
lemma not_cancels_of_cons_hyp_tac_16303 {G : Type*} [Group G] (A : Subgroup G) (B : Subgroup G) (d : TransversalPair G A B) (u : ℤˣ) (w : NormalWord d) (hw : w.head ∈ toSubgroup A B u) (x : G) (h2 : ∀ u' ∈ Option.map Prod.fst (some (-u, x)), w.head ∈ toSubgroup A B u → u = u') (hx : w.toList.head? = some (-u, x)) : False := sorry
tactic
['Mathlib', 'GroupTheory', 'HNNExtension']
null
leanprover/lean4:v4.11.0
Mathlib
null
IsCyclic.card_pow_eq_one_le_tac_13075
import Init import Mathlib.Algebra.Order.BigOperators.Ring.Finset import Mathlib.Data.Nat.Totient import Mathlib.Data.ZMod.Quotient import Mathlib.GroupTheory.OrderOfElement import Mathlib.GroupTheory.Subgroup.Simple import Mathlib.Tactic.Group import Mathlib.GroupTheory.Exponent import Mathlib.GroupTheory.SpecificGroups.Cyclic open Subgroup open Finset Nat open scoped Classical
import Init import Mathlib.Algebra.Order.BigOperators.Ring.Finset import Mathlib.Data.Nat.Totient import Mathlib.Data.ZMod.Quotient import Mathlib.GroupTheory.OrderOfElement import Mathlib.GroupTheory.Subgroup.Simple import Mathlib.Tactic.Group import Mathlib.GroupTheory.Exponent import Mathlib.GroupTheory.SpecificGroups.Cyclic
open Subgroup open Finset Nat open scoped Classical
lemma card_pow_eq_one_le_tac_13075 [Group α] [DecidableEq α] [IsCyclic α] (n : ℕ) (hn0 : 0 < n) (g : α) (hg : ∀ (x : α), x ∈ zpowers g) (m : ℕ) (hm0 : m = 0) : False := sorry
lemma card_pow_eq_one_le_tac_13075 {α : Type*} [Group α] [DecidableEq α] {inst✝¹ : Type*} [IsCyclic α] (n : ℕ) (hn0 : 0 < n) (g : α) (hg : ∀ (x : α), x ∈ zpowers g) (m : ℕ) {hm : Type*} (hm0 : m = 0) : False := sorry
tactic
['Mathlib', 'GroupTheory', 'SpecificGroups', 'Cyclic']
null
leanprover/lean4:v4.11.0
Mathlib
false
{"messages": [{"severity": "error", "pos": {"line": 14, "column": 78}, "endPos": null, "data": "expected token"}], "env": 0}
README.md exists but content is empty.
Downloads last month
32