Datasets:
File size: 17,764 Bytes
8ac49a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
"""
Copyright 2025 ServiceNow
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
# This code is an adaptation of
# https://github.com/ServiceNow/context-is-key-forecasting/blob/main/cik_benchmark/metrics/roi_metric.py
# to make it convenient to use with the Hugging Face version of the Context-is-Key benchmark.
# Please see the __main__ section for an example of how to use it.
import numpy as np
import pandas as pd
from io import StringIO
from datasets import Dataset
from fractions import Fraction
def crps(
target: np.array,
samples: np.array,
) -> np.array:
"""
Compute the CRPS using the probability weighted moment form.
See Eq ePWM from "Estimation of the Continuous Ranked Probability Score with
Limited Information and Applications to Ensemble Weather Forecasts"
https://link.springer.com/article/10.1007/s11004-017-9709-7
This is a O(n log n) per variable exact implementation, without estimation bias.
Parameters:
-----------
target: np.ndarray
The target values. (variable dimensions)
samples: np.ndarray
The forecast values. (n_samples, variable dimensions)
Returns:
--------
crps: np.ndarray
The CRPS for each of the (variable dimensions)
"""
assert (
target.shape == samples.shape[1:]
), f"shapes mismatch between: {target.shape} and {samples.shape}"
num_samples = samples.shape[0]
num_dims = samples.ndim
sorted_samples = np.sort(samples, axis=0)
abs_diff = (
np.abs(np.expand_dims(target, axis=0) - sorted_samples).sum(axis=0)
/ num_samples
)
beta0 = sorted_samples.sum(axis=0) / num_samples
# An array from 0 to num_samples - 1, but expanded to allow broadcasting over the variable dimensions
i_array = np.expand_dims(np.arange(num_samples), axis=tuple(range(1, num_dims)))
beta1 = (i_array * sorted_samples).sum(axis=0) / (num_samples * (num_samples - 1))
return abs_diff + beta0 - 2 * beta1
def _crps_ea_Xy_eb_Xy(Xa, ya, Xb, yb):
"""
Unbiased estimate of:
E|Xa - ya| * E|Xb' - yb|
"""
N = len(Xa)
result = 0.0
product = np.abs(Xa[:, None] - ya) * np.abs(Xb[None, :] - yb) # i, j
i, j = np.diag_indices(N)
product[i, j] = 0
result = product.sum()
return result / (N * (N - 1))
def _crps_ea_XX_eb_XX(Xa, ya, Xb, yb):
"""
Unbiased estimate of:
E|Xa - Xa'| * E|Xb'' - Xb'''|
"""
N = len(Xa)
# We want to compute:
# sum_i≠j≠k≠l |Xa_i - Xa_j| |Xb_k - Xb_l|
# Instead of doing a sum over i, j, k, l all differents,
# we take the sum over all i, j, k, l (which is the product between a sum over i, j and a sum over k, l),
# then substract the collisions, ignoring those between i and j and those between k and l, since those
# automatically gives zero.
sum_ea_XX = np.abs(Xa[:, None] - Xa[None, :]).sum()
sum_eb_XX = np.abs(Xb[:, None] - Xb[None, :]).sum()
# Single conflicts: either i=k, i=l, j=k, or j=l
# By symmetry, we are left with: 4 sum_i≠j≠k |Xa_i - Xa_j| |Xb_i - Xb_k|
left = np.abs(Xa[:, None, None] - Xa[None, :, None]) # i, j, k
right = np.abs(Xb[:, None, None] - Xb[None, None, :]) # i, j, k
product = left * right
j, k = np.diag_indices(N)
product[:, j, k] = 0
sum_single_conflict = product.sum()
# Double conflicts: either i=k and j=l, or i=l and j=k
# By symmetry, we are left with: 2 sum_i≠j |Xa_i - Xa_j| |Xb_i - Xb_j|
left = np.abs(Xa[:, None] - Xa[None, :]) # i, j
right = np.abs(Xb[:, None] - Xb[None, :]) # i, j
product = left * right
sum_double_conflict = product.sum()
result = sum_ea_XX * sum_eb_XX - 4 * sum_single_conflict - 2 * sum_double_conflict
return result / (N * (N - 1) * (N - 2) * (N - 3))
def _crps_ea_Xy_eb_XX(Xa, ya, Xb, yb):
"""
Unbiased estimate of:
E|Xa - ya| * E|Xb' - Xb''|
"""
N = len(Xa)
left = np.abs(Xa[:, None, None] - ya) # i, j, k
right = np.abs(Xb[None, :, None] - Xb[None, None, :]) # i, j, k
product = left * right
i, j = np.diag_indices(N)
product[i, j, :] = 0
i, k = np.diag_indices(N)
product[i, :, k] = 0
result = product.sum()
return result / (N * (N - 1) * (N - 2))
def _crps_f_Xy(Xa, ya, Xb, yb):
"""
Unbiased estimate of:
E(|Xa - ya| * |Xb - yb|)
"""
N = len(Xa)
product = np.abs(Xa - ya) * np.abs(Xb - yb) # i
result = product.sum()
return result / N
def _crps_f_XXXy(Xa, ya, Xb, yb):
"""
Unbiased estimate of:
E(|Xa - Xa'| * |Xb - yb|)
"""
N = len(Xa)
left = np.abs(Xa[:, None] - Xa[None, :]) # i, j
right = np.abs(Xb[:, None] - yb) # i, j
product = left * right
result = product.sum()
return result / (N * (N - 1))
def _crps_f_XX(Xa, ya, Xb, yb):
"""
Unbiased estimate of:
E(|Xa - Xa'| * |Xb - Xb'|)
"""
N = len(Xa)
left = np.abs(Xa[:, None] - Xa[None, :]) # i, j
right = np.abs(Xb[:, None] - Xb[None, :]) # i, j
product = left * right
result = product.sum()
return result / (N * (N - 1))
def _crps_f_XXXX(Xa, ya, Xb, yb):
"""
Unbiased estimate of:
E(|Xa - Xa'| * |Xb - Xb''|)
"""
N = len(Xa)
left = np.abs(Xa[:, None, None] - Xa[None, :, None]) # i, j, k
right = np.abs(Xb[:, None, None] - Xb[None, None, :]) # i, j, k
product = left * right
j, k = np.diag_indices(N)
product[:, j, k] = 0
result = product.sum()
return result / (N * (N - 1) * (N - 2))
def crps_covariance(
Xa: np.array,
ya: float,
Xb: np.array,
yb: float,
) -> float:
"""
Unbiased estimate of the covariance between the CRPS of two correlated random variables.
If Xa == Xb and ya == yb, returns the variance of the CRPS instead.
Parameters:
-----------
Xa: np.ndarray
Samples from a forecast for the first variable. (n_samples)
ya: float
The ground-truth value for the first variable.
Xb: np.ndarray
Samples from a forecast for the second variable. (n_samples)
yb: float
The ground-truth value for the second variable.
Returns:
--------
covariance: float
The covariance between the CRPS estimators.
"""
N = len(Xa)
ea_Xy_eb_Xy = _crps_ea_Xy_eb_Xy(Xa, ya, Xb, yb)
ea_Xy_eb_XX = _crps_ea_Xy_eb_XX(Xa, ya, Xb, yb)
ea_XX_eb_Xy = _crps_ea_Xy_eb_XX(Xb, yb, Xa, ya)
ea_XX_eb_XX = _crps_ea_XX_eb_XX(Xa, ya, Xb, yb)
f_Xy = _crps_f_Xy(Xa, ya, Xb, yb)
f_XXXy = _crps_f_XXXy(Xa, ya, Xb, yb)
f_XyXX = _crps_f_XXXy(Xb, yb, Xa, ya)
f_XX = _crps_f_XX(Xa, ya, Xb, yb)
f_XXXX = _crps_f_XXXX(Xa, ya, Xb, yb)
return (
-(1 / N) * ea_Xy_eb_Xy
+ (1 / N) * ea_Xy_eb_XX
+ (1 / N) * ea_XX_eb_Xy
- ((2 * N - 3) / (2 * N * (N - 1))) * ea_XX_eb_XX
+ (1 / N) * f_Xy
- (1 / N) * f_XXXy
- (1 / N) * f_XyXX
+ (1 / (2 * N * (N - 1))) * f_XX
+ ((N - 2) / (N * (N - 1))) * f_XXXX
)
def weighted_sum_crps_variance(
target: np.array,
samples: np.array,
weights: np.array,
) -> float:
"""
Unbiased estimator of the variance of the numerical estimate of the
given weighted sum of CRPS values.
This implementation assumes that the univariate is estimated using:
CRPS(X, y) ~ (1 / n) * sum_i |x_i - y| - 1 / (2 * n * (n-1)) * sum_i,i' |x_i - x_i'|.
This formula gives the same result as the one used in the crps() implementation above.
Note that this is a heavy computation, being O(k^2 n^3) with k variables and n samples.
Also, while it is unbiased, it is not guaranteed to be >= 0.
Parameters:
-----------
target: np.ndarray
The target values: y in the above formula. (k variables)
samples: np.ndarray
The forecast values: X in the above formula. (n samples, k variables)
weights: np.array
The weight given to the CRPS of each variable. (k variables)
Returns:
--------
variance: float
The variance of the weighted sum of the CRPS estimators.
"""
assert len(target.shape) == 1
assert len(samples.shape) == 2
assert len(weights.shape) == 1
assert target.shape[0] == samples.shape[1] == weights.shape[0]
s = 0.0
for i in range(target.shape[0]):
for j in range(i, target.shape[0]):
Xa = samples[:, i]
Xb = samples[:, j]
ya = target[i]
yb = target[j]
if i == j:
s += weights[i] * weights[j] * crps_covariance(Xa, ya, Xb, yb)
else:
# Multiply by 2 since we would get the same results by switching i and j
s += 2 * weights[i] * weights[j] * crps_covariance(Xa, ya, Xb, yb)
return s
def mean_crps(target, samples):
"""
The mean of the CRPS over all variables
"""
if target.size > 0:
return crps(target, samples).mean()
else:
raise RuntimeError(
f"CRPS received an empty target. Shapes = {target.shape} and {samples.shape}"
)
def compute_constraint_violation(
entry: dict,
samples: np.array,
scaling: float,
) -> float:
violation = 0.0
scaled_samples = scaling * samples
# Min constraint
scaled_threshold = scaling * entry["constraint_min"]
violation += (scaled_threshold - scaled_samples).clip(min=0).mean(axis=1)
# Max constraint
scaled_threshold = scaling * entry["constraint_max"]
violation += (scaled_samples - scaled_threshold).clip(min=0).mean(axis=1)
# Variable max constraint
if len(entry["constraint_variable_max_index"]) > 0:
indexed_samples = scaled_samples[:, entry["constraint_variable_max_index"]]
scaled_thresholds = scaling * np.array(entry["constraint_variable_max_values"])
violation += (
(indexed_samples - scaled_thresholds[None, :]).clip(min=0).mean(axis=1)
)
return violation
def roi_crps(
entry: dict,
forecast: np.array,
) -> dict[str, float]:
"""
Compute the Region-of-Interest CRPS for a single entry of the context-is-key Hugging Face dataset,
for the given forecast.
Parameters:
----------
entry: dict
A dictionary containing a single entry of the context-is-key Hugging Face dataset.
forecast: np.array
The forecast values. (n_samples, n_timesteps)
Returns:
--------
result: dict[str, float]
A dictionary containing the following entries:
"metric": the final metric.
"raw_metric": the metric before the log transformation.
"scaling": the scaling factor applied to the CRPS and the violations.
"crps": the weighted CRPS.
"roi_crps": the CRPS only for the region of interest.
"non_roi_crps": the CRPS only for the forecast not in the region of interest.
"violation_mean": the average constraint violation over the samples.
"violation_crps": the CRPS of the constraint violation.
"metric_variance": an unbiased estimate of the variance of the metric.
"""
future_time = pd.read_json(StringIO(entry["future_time"]))
target = future_time[future_time.columns[-1]].to_numpy()
assert (
future_time.shape[0] == forecast.shape[1]
), "Incorrect number of timesteps in forecast"
variance_target = target.to_numpy() if isinstance(target, pd.Series) else target
variance_forecast = forecast
if entry["region_of_interest"]:
roi_mask = np.zeros(forecast.shape[1], dtype=bool)
for i in entry["region_of_interest"]:
roi_mask[i] = True
roi_crps = mean_crps(target=target[roi_mask], samples=forecast[:, roi_mask])
non_roi_crps = mean_crps(
target=target[~roi_mask], samples=forecast[:, ~roi_mask]
)
crps_value = 0.5 * roi_crps + 0.5 * non_roi_crps
standard_crps = mean_crps(target=target, samples=forecast)
num_roi_timesteps = roi_mask.sum()
num_non_roi_timesteps = (~roi_mask).sum()
variance_weights = entry["metric_scaling"] * (
0.5 * roi_mask / num_roi_timesteps
+ (1 - 0.5) * ~roi_mask / num_non_roi_timesteps
)
else:
crps_value = mean_crps(target=target, samples=forecast)
# Those will only be used in the reporting
roi_crps = crps_value
non_roi_crps = crps_value
standard_crps = crps_value
num_roi_timesteps = len(target)
num_non_roi_timesteps = 0
variance_weights = np.full(
target.shape, fill_value=entry["metric_scaling"] / len(target)
)
violation_amount = compute_constraint_violation(
entry, samples=forecast, scaling=entry["metric_scaling"]
)
violation_func = 10.0 * violation_amount
# The target is set to zero, since we make sure that the ground truth always satisfy the constraints
# The crps code assume multivariate input, so add a dummy dimension
violation_crps = crps(target=np.zeros(1), samples=violation_func[:, None])[0]
variance_target = np.concatenate((variance_target, np.zeros(1)), axis=0)
variance_forecast = np.concatenate(
(variance_forecast, violation_func[:, None]), axis=1
)
variance_weights = np.concatenate((variance_weights, 1.0 * np.ones(1)), axis=0)
raw_metric = entry["metric_scaling"] * crps_value + violation_crps
metric = raw_metric
# Computing the variance of the RCPRS is much more expensive,
# especially when the number of samples is large.
# So it can be commented out if not desired.
variance = weighted_sum_crps_variance(
target=variance_target,
samples=variance_forecast,
weights=variance_weights,
)
return {
"metric": metric,
"raw_metric": raw_metric,
"scaling": entry["metric_scaling"],
"crps": entry["metric_scaling"] * crps_value,
"roi_crps": entry["metric_scaling"] * roi_crps,
"non_roi_crps": entry["metric_scaling"] * non_roi_crps,
"standard_crps": entry["metric_scaling"] * standard_crps,
"num_roi_timesteps": num_roi_timesteps,
"num_non_roi_timesteps": num_non_roi_timesteps,
"violation_mean": violation_amount.mean(),
"violation_crps": violation_crps,
"variance": variance,
}
def compute_all_rcprs(
dataset: Dataset,
forecasts: list[dict],
) -> tuple[float, float]:
"""
Compute the Region-of-Interest CRPS for all instances in the Context-is-Key dataset.
Parameters:
----------
dataset: Dataset
The Context-is-Key dataset.
forecasts: list[dict]
A list of dictionaries, each containing the following keys:
- "name": the name of the task for which the forecast is made.
- "seed": the seed of the instance for which the forecast is made.
- "forecast": the forecast values. (n_samples, n_timesteps)
Returns:
--------
mean_crps: float
The aggregated RCRPS over all instances.
std_crps: float
An estimate of the standard error of the aggregated RCRPS.
"""
weighted_sum_rcprs = 0.0
weighted_sum_variance = 0.0
total_weight = 0.0
for entry, forecast in zip(dataset, forecasts):
if entry["name"] != forecast["name"]:
raise ValueError(
f"Forecast name {forecast['name']} does not match dataset entry name {entry['name']}"
)
if entry["seed"] != forecast["seed"]:
raise ValueError(
f"Forecast seed {forecast['seed']} does not match dataset entry seed {entry['seed']}"
)
metric_output = roi_crps(
entry=entry,
forecast=forecast["forecast"],
)
weight = Fraction(entry["weight"])
# Apply the cap of RCPRS = 5 to the metric
if metric_output["metric"] >= 5.0:
metric_output["metric"] = 5.0
metric_output["variance"] = 0.0
weighted_sum_rcprs += weight * metric_output["metric"]
weighted_sum_variance += weight * weight * metric_output["variance"]
total_weight += weight
mean_crps = weighted_sum_rcprs / total_weight
std_crps = np.sqrt(weighted_sum_variance) / total_weight
return mean_crps, std_crps
if __name__ == "__main__":
# An example of how to use this function,
# by using a naive forecaster which use random values from the past as its forecast.
from datasets import load_dataset
dataset = load_dataset("ServiceNow/context-is-key", split="test")
# Create a random forecast for each instance in the dataset
forecasts = []
for entry in dataset:
past_time = pd.read_json(StringIO(entry["past_time"]))
future_time = pd.read_json(StringIO(entry["future_time"]))
forecast = {
"name": entry["name"],
"seed": entry["seed"],
"forecast": np.random.choice(
past_time.to_numpy()[:, -1],
size=(25, len(future_time)),
replace=True,
),
}
forecasts.append(forecast)
mean_crps, std_crps = compute_all_rcprs(dataset, forecasts)
print(f"Mean RCRPS: {mean_crps}")
print(f"Standard error of RCRPS: {std_crps}")
|